ALTEQ: Digital Signatures from Alternating Trilinear Form Equivalence

Markus Bläser ${ }^{1}$, Dung Hoang Duong ${ }^{2}$, Anand Kumar Narayanan ${ }^{3}$, Thomas Plantard ${ }^{4}$ Youming Qiao ${ }^{5}$, Arnaud Sipasseuth ${ }^{6}$, Gang Tang ${ }^{5}$

${ }^{1}$ Saarland University
${ }^{2}$ University of Wollongong
${ }^{3}$ SandboxAQ
${ }^{4}$ Bell Labs
${ }^{5}$ University of Technology Sydney ${ }^{6}$ KDDI Research

7 Sep, 2023

Alternating Trilinear Form

- Let $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ be the general linear group consisting of $n \times n$ invertible matrices over \mathbb{F}_{q}
- $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is trilinear if it is linear in all the three arguments.
- We say that a trilinear form $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is alternating, if whenever two arguments of ϕ are equal, ϕ evaluates to zero.
- A natural group action of $A \in \operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ on the alternating trilinear form ϕ sends $\phi(u, v, w)$ to $\phi \circ A=\phi\left(A^{t}(u), A^{t}(v), A^{t}(w)\right)$.

Alternating Trilinear Form

- Let $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ be the general linear group consisting of $n \times n$ invertible matrices over \mathbb{F}_{q}
- $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is trilinear if it is linear in all the three arguments.
- We say that a trilinear form $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is alternating, if whenever two arguments of ϕ are equal, ϕ evaluates to zero.
- A natural group action of $A \in \mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ on the alternating trilinear form ϕ sends $\phi(u, v, w)$ to $\phi \circ A=\phi\left(A^{t}(u), A^{t}(v), A^{t}(w)\right)$.

Definition (Alternating Trilinear Form Equivalence (ATFE))

Given two alternating trilinear forms ϕ and ψ, whether there exists $A \in \mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ such that $\phi=\psi \circ A$, and computes one such A if it exists.

The complexity class TI-complete

■ Recently, [Grochow-Qiao] define a new complexity class TI-complete, consisting of problems that are polynomial-time equivalent to Tensorlso.

- Alternating Trilinear Form Equivalence (ATFE) problem is TI-complete [Grochow-Qiao-Tang].

The complexity class TI-complete

■ Recently, [Grochow-Qiao] define a new complexity class TI-complete, consisting of problems that are polynomial-time equivalent to Tensorlso.

- Alternating Trilinear Form Equivalence (ATFE) problem is TI-complete [Grochow-Qiao-Tang].
- More, Matrix Code Equivalence problem is TI-complete and Linear Code Monomial Equivalence can be reduced to ATFE [Grochow-Qiao, Growchow-Qiao-Tang].
- Based on these two problems, two signature schemes are proposed as the NIST candidates: MEDS and LESS.

■ Interestingly,these problems are of particular relevance!

Digital signature based on ATFE

■ It has a clear, 2-step, structure

- Identification scheme based on Goldreich-Micali-Wigderson (J. ACM'91) zero-knowledge protocol.
- Use Fiat-Shamir transformation (Crypto'86) to turn the above ID scheme to a digital signature.

GMW zero-knowledge protocol for ATFE

- Given two ATFs ϕ_{0} and ϕ_{1} as public key, let A be an equivalence as secret key such that $\phi_{0} \circ A=\phi_{1}$.
- Alice generates a random equivalence B which sends ϕ_{0} to ψ.

GMW zero-knowledge protocol for ATFE

- Given two ATFs ϕ_{0} and ϕ_{1} as public key, let A be an equivalence as secret key such that $\phi_{0} \circ A=\phi_{1}$.

■ Alice generates a random equivalence B which sends ϕ_{0} to ψ.

Alice: ϕ_{0}, ϕ_{1}
Bob: ϕ_{0}, ϕ_{1}
■ If $b=0$, Alice sends $r:=B$ to Bob; Otherwise sends $r:=A^{-1} B$.
■ If $b=0$, Bob checks whether $\phi_{0} \circ r=\psi$; Otherwise checks $\phi_{1} \circ r=\psi$.

Digital signature based on ATFE

■ It's well-known GMW ZK protocol is complete, 2-special sound and HVZK.

Digital signature based on ATFE

■ It's well-known GMW ZK protocol is complete, 2-special sound and HVZK.

- Reduce the soundness error by $r=\lambda$ repetitions.
- Optimization by the following method:

■ Larger challenge space

- Public key include C ATFs instead of 2 ATFs, then reduce soundness error to $1 / C$.
■ Unbalanced challange space
- Respond a seed instead of a matrix for the fixed positions.

Digital signature based on ATFE

■ It's well-known GMW ZK protocol is complete, 2-special sound and HVZK.

- Reduce the soundness error by $r=\lambda$ repetitions.
- Optimization by the following method:
- Larger challenge space

■ Public key include C ATFs instead of 2 ATFs, then reduce soundness error to $1 / C$.
■ Unbalanced challange space

- Respond a seed instead of a matrix for the fixed positions.
- Apply Fiat-Shamir transformation: use a hash function to simulate the interaction process.

Algorithms and complexity of ATFE problem

■ The direct Gröbner basis attack

- There are there modellings as follows:

Algorithms and complexity of ATFE problem

■ The direct Gröbner basis attack

- There are there modellings as follows:
- The direct cubic modelling.

$$
\phi_{2}(u, v, w)=\phi_{1}\left(A^{t}(u), A^{t}(v), A^{t}(w)\right)
$$

Algorithms and complexity of ATFE problem

■ The direct Gröbner basis attack

- There are there modellings as follows:
- The direct cubic modelling.

$$
\phi_{2}(u, v, w)=\phi_{1}\left(A^{t}(u), A^{t}(v), A^{t}(w)\right)
$$

- The quadratic with inverse modelling.

$$
\begin{aligned}
& A B=B A=I_{n} \\
& \phi_{2}\left(u, v, B^{t}(w)\right)=\phi_{1}\left(A^{t}(u), A^{t}(v), w\right) \\
& \phi_{2}\left(u, B^{t}(v), B^{t}(w)\right)=\phi_{1}\left(A^{t}(u), v, w\right)
\end{aligned}
$$

Algorithms and complexity of ATFE problem

■ The direct Gröbner basis attack

- There are there modellings as follows:
- The direct cubic modelling.

$$
\phi_{2}(u, v, w)=\phi_{1}\left(A^{t}(u), A^{t}(v), A^{t}(w)\right)
$$

- The quadratic with inverse modelling.

$$
\begin{aligned}
& A B=B A=I_{n} \\
& \phi_{2}\left(u, v, B^{t}(w)\right)=\phi_{1}\left(A^{t}(u), A^{t}(v), w\right) \\
& \phi_{2}\left(u, B^{t}(v), B^{t}(w)\right)=\phi_{1}\left(A^{t}(u), v, w\right)
\end{aligned}
$$

- The quadratic dual modelling [Ran-Samardjiska-Trimoska].
- Let $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ represent the ATF ϕ_{1} and ϕ_{2} respectively, where X_{i}, Y_{i} are n by n matrices.
- Let $l=\binom{n}{2}-n$ and B_{1}, \ldots, B_{l} be a basis of linear space $\left\{D \in \Lambda(n, q) \mid \operatorname{Tr}\left(Y_{i} D^{t}\right)=0\right\}$.
■ For $i \in[n], j \in[l]$, set $\operatorname{Tr}\left(A^{t} X_{i} A B_{j}^{t}\right)=0$.
\square Add some cubic equations to remove invalid solutions.

Algorithms and complexity of ATFE problem

■ The direct Gröbner basis attack

- There are there modellings as follows:
- The direct cubic modelling.

$$
\phi_{2}(u, v, w)=\phi_{1}\left(A^{t}(u), A^{t}(v), A^{t}(w)\right)
$$

- The quadratic with inverse modelling.

$$
\begin{aligned}
& A B=B A=I_{n} \\
& \phi_{2}\left(u, v, B^{t}(w)\right)=\phi_{1}\left(A^{t}(u), A^{t}(v), w\right) \\
& \phi_{2}\left(u, B^{t}(v), B^{t}(w)\right)=\phi_{1}\left(A^{t}(u), v, w\right)
\end{aligned}
$$

- The quadratic dual modelling [Ran-Samardjiska-Trimoska].
- Let $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ represent the ATF ϕ_{1} and ϕ_{2} respectively, where X_{i}, Y_{i} are n by n matrices.
- Let $l=\binom{n}{2}-n$ and B_{1}, \ldots, B_{l} be a basis of linear space $\left\{D \in \Lambda(n, q) \mid \operatorname{Tr}\left(Y_{i} D^{t}\right)=0\right\}$.
■ For $i \in[n], j \in[l]$, set $\operatorname{Tr}\left(A^{t} X_{i} A B_{j}^{t}\right)=0$.
- Add some cubic equations to remove invalid solutions.
- This modelling is interesting, but based on an assumption which we are still working on understanding.

Algorithms and complexity of ATFE problem

- The graph-theoretic algorithms
$■ \mathbf{a} \in \mathbb{F}_{q}^{n}$ be a vertex. (\mathbf{a}, \mathbf{b}) be a edge iff $\phi_{\mathbf{a}, \mathbf{b}}=\phi(\mathbf{a}, \mathbf{b}, w)=0$.

Algorithms and complexity of ATFE problem

- The graph-theoretic algorithms
$\square \mathbf{a} \in \mathbb{F}_{q}^{n}$ be a vertex. (a,b) be a edge iff $\phi_{\mathbf{a}, \mathbf{b}}=\phi(\mathbf{a}, \mathbf{b}, w)=0$.
- $O\left(q^{2 / 3 n}\right)$ by brute force sampling and then find collision.[Bouillaguet-Fouque-Véber].
- $O\left(q^{k}\right)$ by graph walking for sampling and then find collision, when n is odd $k=n-7$ otherwise $k=n-4$ [Beullens].
- $O\left(q^{k / 2}\right)$ by graph walking or Min-Rank for sampling and then birthday paradox [Narayanan-Qiao-Tang].

Parameter Choices

- λ denotes the security parameter.
- r denotes the number of round.
- C denotes the number of alternating trilinear forms in public key.
- K is the parameter from unbalanced challenge.
- Choose n by the direct Gröbner Basis attack.

■ Choose q by the graph-theoretic algorithm.
■ PubKeySize $=\left(C \cdot\binom{n}{3} \cdot\left\lceil\log _{2}(q)\right\rceil+\lambda\right) / 8$.

- PriKeySize $=\lambda / 8$.
\square SigSize $=\left((r-K+2) \cdot \lambda+K \cdot n^{2} \cdot\left\lceil\log _{2}(q)\right\rceil\right) / 8$.

Benchmark

NIST Cat.	n	q	r	K	C	PK(KB)	Sig(KB)
1	13	$2^{32}-5$	84	22	7	8.0	15.9
3	20	$2^{32}-5$	201	28	7	31.9	49.0
5	25	$2^{32}-5$	119	48	8	73.67	122.3

Table: Key and Signature Sizes for Balanced-ALTEQ

NIST Cat.	n	q	r	K	C	PK(KB)	Sig(KB)
1	13	$2^{32}-5$	16	14	458	52.4	9.5
3	20	$2^{32}-5$	39	20	229	104.4	32.5
5	25	$2^{32}-5$	67	25	227	208.8	63.9

Table: Key and Signature Sizes for ShortSig-ALTEQ

Benchmark

- We test our code on a laptop with the following configurations:

■ Processor: 12 th Gen Intel(R) Core(TM) i7-127oP, 2.2GHz, 12 cores, 18 MB L3 Cache.
■ Balanced, Cat. 1, Keygen:o.39 Mcycles, Sign: 2.8 Mcycles, Verify: 4.2 Mcycles.
■ ShortSig, Cat. 1, Keygen:26.3 Mcycles, Sign: o.73 Mcycles, Verify: 1.77 Mcycles.

Benchmark

- We test our code on a laptop with the following configurations:

■ Processor: 12 th Gen Intel(R) Core(TM) i7-127oP, 2.2GHz, 12 cores, 18 MB L3 Cache.

■ Balanced, Cat. 1, Keygen:o.39 Mcycles, Sign: 2.8 Mcycles, Verify: 4.2 Mcycles.
■ ShortSig, Cat. 1, Keygen:26.3 Mcycles, Sign: 0.73 Mcycles, Verify: 1.77 Mcycles.

- There is ample room for improvement in our implementation:

■ This or Next week (for verification time): about $2 x$ speed up (for Balanced) and $4 x$ speed-up (for ShortSig) of NIST Cat. 1 parameter set.
■ Next step: implement 64-bit arithmetic, AVX512...

Thank you for your attention.

Questions please?

