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Introduction



Digital Signatures [I]

• Digital signatures are among the most important cryptographic tools

• Applications for digital signatures include digital certificates for e-commerce, legal signing of

contracts etc.
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Digital Signatures [II]

Verification

Signer’s public key pk

Accept/ Reject

Key Generation
κ

security parameter

private key sk

public key pk

x σ( ),

Signaturemessage x

Signer’s private key sk

signature σ

Figure 1: Overview of digital signature schemes
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Principle of Digital Signatures

Signature
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Verification
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Accept/Reject

Figure 2: Usage of digital signatures
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Post-Quantum Digital Signatures [I]

• Quantum computers will impact security of most (if not all) of the signature schemes used today

(see Shor’s algorithm1)

• The proposed solution is the so-called Post-Quantum Signatures

1Peter W Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: Proceedings 35th annual

symposium on foundations of computer science. Ieee. 1994, pp. 124–134.
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Post-Quantum Digital Signatures [II]
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Figure 3: Classification of post-quantum digital signatures
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Hash Based Signatures

• A hash function maps an arbitrary length message to a fixed length message:

H : {0, 1}∗ → {0, 1}n

• It is easy to compute but hard to revert back (one-way property)

• The desirable properties of a hash functions are:

• Collision resistance (hard to find x ′ ̸= x with H(x ′) = H(x) given x)

• Pre-image resistance (hard to find x given H(x))

• Second pre-image resistance (given x , hard to find x ′ ̸= x with H(x ′) = H(x))

• These are considered quite fast and simple to implement/analyze

• Hash functions belong to the symmetric key cryptography and are generally well-understood
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Lamport OTS (LOTS)



Lamport OTS [I]

Overview

• The first hash-based signature scheme2 by Lamport back in 1979

• It is based on the observation that, given only a (secure) hash function (collision resistance is not

needed) one can build a (secure) signature

2Leslie Lamport. “Constructing digital signatures from a one way function”. In: SRI International (CSL-98) (1979).
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Lamport OTS [II] Skip

Key Generation

• Hash H : {0, 1}256 → {0, 1}256

• Message m ∈ {0, 1}256

• Private key (sk0, sk1):

sk0 = sk0
1 , sk

0
2 , . . . , sk

0
256

sk1 = sk1
1 , sk

1
2 , . . . , sk

1
256

• Public key (pk0, pk1):

pk0 = H(sk0
1 ),H(sk0

2 ), . . . ,H(sk0
256)

pk1 = H(sk1
1 ),H(sk1

2 ), . . . ,H(sk1
256)
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Lamport OTS [III] Skip

Signature

• Represent m as a sequence of 256 individual bits:

m = m1, . . . ,m256, mi ∈ {0, 1}

• For i = 1 to 256;

if the i th message bit Mi = 0, take the i th private string (sk0
i ) from the sk0;

output that string as part of our signature

• If the message bit Mi = 1, we take the appropriate string (sk1
i ) from the sk1 list

• Concatenate all the strings together to output the signature (σ)
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Lamport OTS [IV] Skip

Verification
Given a message signature pair (m, σ) and the public key pk = (pk0, pk1), a verifier proceeds in the

following way:

• Let σi denotes the i th component of σ

• For each i ∈ {1, 256}, the verifier considers the message-bit mi , and calculate H(σi )

• If Mi = 0, the H(σi ) should be equal to the corresponding element from pk0

• If Mi = 1, H(σi ) should be equal to the corresponding element in pk1

• Signature is declared valid if every component of the signature when hashed, matches the correct

portion of the pk
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Lamport OTS [V]

sk0 sk01 sk02 sk03 sk04

sk1 sk11 sk12 sk13 sk14
m 001 1

sk11 sk02 sk03 sk14σ

Figure 4: Signature generation of LOTS (example with message m = 1001 with secret key sk = (sk0, sk1))
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Lamport OTS [VI] Skip

pk0 H
(
sk01

)
H

(
sk02

)
H(sk03) H

(
sk04

)

pk1 H
(
sk11

)
H

(
sk12

)
H

(
sk13

)
H

(
sk14

)

m 001 1

σ1 σ2 σ3 σ4σ

(m = 1001, σ = σ1σ2σ3σ4)

Public Key

Message-Signature Pair

H(σ1)

H

Since m1 = 1, we check the equality H(σ1)= pk11

H(σ2)

H

H(σ3)

H

H(σ4)

H

pk01 pk02 pk03 pk04

pk11 pk12 pk13 pk14

Since m2 = 0, we check the equality H(σ1)= pk02

Since m1 = 0, we check the equality H(σ1)= pk03

Since m2 = 1, we check the equality H(σ1)= pk14

If all the equalities are satisfied
then a signature is considered valid

Figure 5: Signature generation of LOTS (example with message m = 1001 with secret key sk = (sk0, sk1))
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Winternitz One Time Signature

(WOTS+)



WOTS+ [I]

Overview

• The WOTS+3 approach aims to reduce the size of signatures and key pairs, albeit at the cost of

additional hash evaluations

• WOTS+ first converts the message m into a new form using a base w representation, and then

breaks it down into blocks of length logw

• For each block, it applies a function up to a maximum of w − 1 times, and the output of the

function becomes the signature for that block

• The resulting signatures for each block are concatenated in sequence to form the entire signature

for m

3Andreas Hülsing. “W-OTS+–shorter signatures for hash-based signature schemes”. In: International Conference on

Cryptology in Africa. Springer. 2013, pp. 173–188.
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WOTS+ [II]

Parameters and Functions

• Cryptographic hash, F : {0, 1}n → {0, 1}n

• Pseudo-random generators Gλ : {0, 1}n → {0, 1}λn for different values of λ

• Base w

• Message length n

• l1 = ⌈ n
log(w)

⌉

• l2 = ⌊ log(l1(w−1))
log w

⌋+ 1

• l = l1 + l2
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WOTS+ [III]

Chain Function

• Given a input value x ∈ {0, 1}n, a iterative counter i ∈ N, and bitmask r = (r1, . . . , rj) ∈ {0, 1}n×j

( j ≥ i), the chain function works as follows:

1. If i = 0, c0(x , r) = x

2. If i ≥ 0, c i (x , r) = F (c i−1(x , r)⊕ ri )

ci−1(x, r)

ri

F ci(x, r)

. . .

c0(x, r) c1(x, r) c2(x, r) cw−1(x, r)

Figure 6: Chain function used in WOTS+
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WOTS+ [IV] Skip

Key Generation

• Inputs:

• Seed S ∈ {0, 1}n
• Bitmasks r = (r1, . . . , rw−1) ∈ {0, 1}n×(w−1)

• Secret key:

sk = (sk1, . . . , skl)← Gl(S)

• Public key:

pk = (pk1, . . . , pkl) = (cw−1(sk1, r), . . . , c
w−1(skl , r))
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WOTS+ [V] Skip

sk1

sk2

skl

...

...

c0(sk1, r)

c0(sk2, r)

c0(skl, r)

c1(sk1, r)

c1(sk2, r)

c1(skl, r)

cw−1(sk1, r)

cw−1(sk2, r)

cw−1(skl, r)

...

...

...

...

= pk1

= pk2

= pkl

Figure 7: Key generation in WOTS+
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WOTS+ [VI] Skip

Signature

• Inputs:

• Message m (n-bit long)

• Seed S

• Bitmasks r

• Compute a base-w representation of m; m = (m1, . . . ,ml1), mi ∈ {0, . . . ,w − 1}

• C =
∑l−1

i=1 (w − 1−Mi ) is represented in base w representation, C = (C1, . . . ,Cl2)

• Append m and C to get b = m||C , i.e., b = (b1, . . . , bl)

• Signature:

(σ1, . . . , σl) = (cb1(sk1, r), . . . , c
bl (skl , r))
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WOTS+ [VII] Skip

Verification

• Construct (b1, . . . , bl)

• Check

(pk ′
1, . . . , pk

′
l )

?
= (cw−1−b1(σ1, rb1+1,w−1), . . . , c

w−1−bl (σ1, rbl+1,w−1))

20



WOTS+ [VIII] Skip

n−bit message (m)

Split m into l1 chunks

where each mi ∈ {0, ..., w − 1}

m1 m2 m3
. . . ml1

Checksum C

Split C into l2 chunks

where each ci ∈ {0, ..., w − 1}

C1 C2 C3
. . . Cl2

Concatenate both the strings and

call the resulting string b

m1 m2 m3
. . . ml1 C1 C2 C3

. . .
Cl2

l = l1 + l2 chunks and each chunk is
interpreted as an unsigned
number 0 ≤ bi ≤ w − 1

b =

b = (m1, . . . ,ml1 , C1, . . . , Cl2) = (b1, b2, . . . , bl)

b1 b2 b3
. . .

bl1 bl1+1 bl1+2 bl1+3
. . .

blb =

σ1 =cb1(sk1, r) σl =c
bl(skl, r)

σ2 =cb2(sk2, r)

σ = (σ1, σ2, . . . , σl)Final signature

Figure 8: Signature generation (schematic) in WOTS+ 21



WOTS+ Signature [IX] Skip

Split m into l1 = 4 chunks

where each mi ∈ {0, w − 1}

0011 1001 0101 1000

Checksum C =

l1∑

i=1

(w − 1−mi)

Split C into l2 = 2 chunks

where each ci ∈ {0, w − 1}

0010 0011

b = (b1, b2, . . . , b6) = (3, 9, 5, 8, 2, 3)

b1 = 3 b2 = 9 b3 = 5 b5 = 2b =

σ6 =c3(skl, r)

m = 0011 1001 0101 1000

sk = (sk1, sk2, sk3, sk4, sk5, sk6)Secret key

Message

m = 0011 1001 0101 1000

m1 = 3 m2 = 9 m3 = 5 m4 = 8 c1 = 2 c2 = 3

0011 1001 0101 1000 0010 0011

m1 = 3 m2 = 9 m3 = 5 m4 = 8 c1 = 2 c2 = 3

b =

b4 = 8 b6 = 3

σ1 =c3(sk1, r) σ2 =c2(sk2, r) σ3 =c5(sk3, r) σ4 =c8(sk4, r) σ5 =c2(sk5, r)

Final signature σ = (σ1, σ2, σ3, σ4, σ5, σ6)

concatenate

Figure 9: Toy example of WOTS+ signature generation (n = 16,w = 16)
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Merkle Signature Scheme (MSS)



MSS [I]

Overview

• The Merkle Tree Signature Scheme4 to manage OTS keys

• The idea here is to use Merkle tree leaves to store OTS keys

• Merkle trees are binary trees (a Merkle tree of height h has 2h leaves)

• The signature consists of the index of the leaf, the OTS public key, the digest of the OTS public

key (the leaf), and the authentication path of that leaf

4Ralph C Merkle. “A certified digital signature”. In: Advances in cryptology—CRYPTO’89 proceedings. Springer. 2001,

pp. 218–238.
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MSS [II] Skip

Key Generation

• Generate N = 2n public key-private key pairs

(OTSPK0 ,OTSSK0), . . . (OTSPKN−1 ,OTSSKN−1)

of some OTS scheme

• For each i ∈ {0, 2n − 1}, compute hi = H(OTSPKi )

• The hash values hi are placed as leaves and hashed recursively to form a binary tree

• The private key of the Merkle signature scheme is the entire set of (OTSPKi ,OTSSKi ) pairs

• The public key pub is the root of the tree an,0
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MSS [III] Skip

a00 a01 a02 a04 a05a03 a07a06

a20

a13a12a11a10

a21

a30

OTSPK0 OTSPK1 OTSPK3 OTSPK4
OTSPK5

OTSPK6 OTSPK7OTSPK2

H H H H H H H H

Root of the tree

Height

0

1

2

3
ai,j = H(ai−1,2j ||ai−1,2j+1)

Leaves
of the tree

Figure 10: Key generation of Merkle signature (with Merkle tree height h = 3 and 2h = 8 leaves)
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MSS [IV] Skip

Signature

• Select the i th public key OTSPKi from the tree

• Sign the message using the corresponding OTS secret key OTSSKi resulting in a signature σOTSi

• Signature σ = (i ,OTSPKi , σOTSi ,Authi )
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MSS [V] Skip

Verification

• Verify σOTSi using the OTS public key OTSPKi

• Computes a0,i = H(OTSPKi )

• Using Authi to compute the root of the Merkle tree pub’

• If pub’=pub, then the verifier declares the signature as valid otherwise rejects
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MSS [VI] Skip

a00 a01 a02 a04 a05a03 a07a06

a20

a13a12a11a10

a21

a30

OTSPK3

H

Root of the tree

Height

0

1

2

3

Let i = 3, i.e., the signer selects OTS key pair (OTSPKi , OTSSKi) for the signature on the
message m. The signature is given by

σ = (i = 3, OTSPK3
, σOTSSK3

,Auth3 = (a02, a10, a21))

Figure 11: Signature generation of MSS (toy example)
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Few Time Signature (FTS)



HORS [I]

Overview

• Hash to Obtain Random Subset (HORS)5 is an FTS algorithm

• Unlike OTS, an FTS algorithm can be used to sign messages for a few times

• Each time it is used, some information is exposed, thereby reducing the key’s security

5Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-Time Signatures with Fast Signing and Verifying”. In:

Information Security and Privacy. Ed. by Lynn Batten and Jennifer Seberry. Berlin, Heidelberg: Springer Berlin Heidelberg,

2002, pp. 144–153. isbn: 978-3-540-45450-2.
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HORS [II] Skip

Key Generation

• Generates t random n-bit strings to produce the secret key: SK = (s1, . . . , st)

• Public key is computed as PK = (k, v1, . . . , vt) where vi = F (ski )
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HORS [III] Skip

Signature

• Compute a = Hash(m)

• Split a into k substrings a1, . . . ak , of length log2 t bits each

• Interpret each aj as an integer ij for 1 ≤ j ≤ k

• Output signature σ = (ski1 , . . . , skik )
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HORS [IV] Skip

Verification

• Compute a = Hash(m)

• Split a into k substrings a1, . . . ak , of length log2 t bits each

• Interpret each aj as an integer ij for 1 ≤ j ≤ k

• If for each j (where 1 ≤ j ≤ k), vij = F (skj); accept the signature; otherwise reject
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HORS [V] Skip

Split a into k = 4 chunks

of length log2 32 = 5 bits each

01101 10101 11011 11001

k = 4, t = 32

a = 01101 10101 11011 11001

m

sk1
. . .

sk2 sk3 sk4 sk5 sk6 sk7 sk8 sk9 sk10 sk13 sk27sk26sk25sk24sk23sk22sk21sk20 sk32

Hash

Interpret each aj as an integer ij

13 21 27 25

. . . . . .
sk12 sk19

. . .

sk = (sk1, sk2, . . . , sk32)

pk = (F (sk1), F (sk2), . . . , F (sk32))

σ = (sk13,sk21, sk25, sk27)Final signature

Figure 12: HORS signature (toy example)
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Hash to Obtain Random Subsets with

Trees (HORST)



HORST [I]

Overview

• HORST6 is proposed by Bernstein et al. as an improvement over HORS

• Uses a binary hash-tree structure to reduce the size of both the public key and signature

• HORST replaces the t-value public key with a single value that represents the root of the Merkle

tree, the leaves of this tree are the pki ’s

• A HORST signature includes k ski ’s and their respective authentication paths

6Daniel J Bernstein et al. “SPHINCS: practical stateless hash-based signatures”. In: Annual international conference on the

theory and applications of cryptographic techniques. Springer. 2015, pp. 368–397.
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HORST [II] Skip

sk1 sk2 sk3 sk4

pk1 pk2 pk3 pk4

F FFF

a01 = H(pk1) a03 = H(pk3)a02 = H(pk2) a04 = H(pk4)

H(a01 ⊕ ql1||a02 ⊕ qr1)

a11 = a12 =

H(a03 ⊕ ql1||a04 ⊕ qr1)

a21 = H(a11 ⊕ ql2||a12 ⊕ qr2)pub

ql2

⊕
qr2

ql1 ql1qr1 qr1

⊕

⊕ ⊕ ⊕ ⊕

Figure 13: HORST key generation
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HORST [III] Skip

a01 = H(pk1) a03 = H(pk3)a02 = H(pk2) a04 = H(pk4)

qr1

H(a01 ⊕ ql1||a02 ⊕ qr1)

a11 a12

H(a03 ⊕ ql1||a04 ⊕ qr1)

ql2 qr2

a21 = H(a11 ⊕ ql2||a12 ⊕ qr2)pub

k = 2, t = 4 sk = (sk1, sk2, sk3, sk4) pk = pub

m = 1101

m is split into k = 2 blocks of
length log2t = 2 bit-length

11 01

m1 = 3 m2 = 1

Each mi is interpreted as an integer

σ = (skm1
= sk3, Authm1

= Auth3, skm2
= sk1, Authm1

= Auth1)

where Auth3 = (a04, a11) and Auth1 = (a02, a12)

Final signature

ql1 ql1 qr1

⊕ ⊕

⊕ ⊕ ⊕ ⊕

Figure 14: HORST signature generation (toy example) 36



Extended Merkle Signature Scheme

(XMSS)



XMSS [I]

Overview

• The XMSS-XOR7 tree is an improved variant of the Merkle tree

• Level j , 0 < j ≤ h, is constructed using a bit-mask (ql,j ||qr,j) ∈R {0, 1}2n

• The nodes are computed as

ai,j = Hash((a2i,j−1 ⊕ ql,j)||(a2i+1,j−1 ⊕ qr,j))

7Bernstein et al., “SPHINCS: practical stateless hash-based signatures”; Johannes Buchmann, Erik Dahmen, and

Andreas Hülsing. “XMSS-a practical forward secure signature scheme based on minimal security assumptions”. In: International

Workshop on Post-Quantum Cryptography. Springer. 2011, pp. 117–129.
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XMSS [II] Skip

qr1ql1

H(a01 ⊕ ql1||a02 ⊕ qr1)

qr1

H(a03 ⊕ ql1||a04 ⊕ qr1)

qr1

H(a05 ⊕ ql1||a06 ⊕ qr1)

qr1ql1

H(a07 ⊕ ql1||a08 ⊕ qr1)

ql2

H(a11 ⊕ ql2||a12 ⊕ qr2) H(a13 ⊕ ql2||a14 ⊕ qr2)

qr3

H(a21 ⊕ ql3||a22 ⊕ qr3)

a01 a02 a04a03 a06a05 a08a07

a11 = a12 = a13 = a14 =

a21 = a22 =

ql3

ql2qr2 qr2

ql1
ql1

⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 15: Tree structure of XMSS (height = 3)
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XMSS [III]

L-Tree in XMSS

• Used to compress the public keys of each WOTS+

• The first l leaves of an L-tree are the l bit strings (pk1, . . . , pkl) from the corresponding public key

of WOTS+

• If l is not a power of 2, a node with no right sibling is pushed to a higher level of the L-tree until

it becomes the right sibling of another node
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XMSS [IV] Skip

pk1

pk5

pk2

⊕⊕

pk3 pk4

⊕⊕

pk5

⊕ ⊕

pk5

⊕ ⊕

Root of L-Tree

bl1

bl2

bl3

bl1

br2

br3

br1br1

Figure 16: Toy example illustrating the L-tree construction of a WOTS+ public key pk = (pk1, . . . , pk5).
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XMSS [V] Skip

Signature

• To sign the i th message, the i th W-OTS key pair is used

• The signature SIG = (i , σ,Auth)
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XMSS [VI] Skip

Verification

• To verify SIG = (i , σ,Auth), the string (b1, . . . , bl) is computed

• The i th verification key (pk1, . . . , pkl) is computed similar to verification algorithm of WOTS+

• The corresponding leaf of the XMSS tree is constructed using the L-tree.

• This leaf and the authentication path are used to compute the root
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XMSS [VII]

MSS vs XMSS

• Leaves of XMSS-tree is not simply a hash of OTS public key

• Root of another tree (also known as L-tree) is used as the leaves of the XMSS tree
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XMSS [VIII] Skip

qr1
ql1

qr1

ql2 qr2

ql1

⊕ ⊕

⊕ ⊕ ⊕ ⊕

XMSS master public key

XMSS-XOR
Tree. Bitmasks
are XOR’ed
with nodes
before taking
the hash to
construct
the higher
nodes

(sk11, sk12, sk13, sk14, sk15) (sk21, sk22, sk23, sk24, sk25) (sk31, sk32, sk33, sk34, sk35) (sk41, sk42, sk43, sk44, sk45)

sk1 sk2 sk3 sk4

4 W −OTS+ Secret Keys

Chain Function to get the public keys
(shown in green) from secret keys.
Refer to W-OTS+ public key generation

Leaves of
XMSS
Tree are
root of
L-Tree

⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

L-Tree.
It is used
to
compress
the public
key
W-OTS+.

Figure 17: Representation of XMSS with L-Tree
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XMSS Multitree (XMSSMT)



XMSSMT [I]

Overview

• Hypertree variant of XMSS8 which enables an unlimited number of messages to be signed

cryptographically

• Uses XMSS to build the interior authentication path in a subtree

• Utilizes WOTS+ to sign the root of the subtree by the signature key corresponding to the leaf

node on the one layer higher

8Andreas Hülsing, Lea Rausch, and Johannes Buchmann. “Optimal parameters for XMSS MT”. In: Security Engineering and

Intelligence Informatics: CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany, September 2-6, 2013.

Proceedings 8. Springer. 2013, pp. 194–208.
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XMSSMT [II]

Overview

• Trees at the lowest level are utilized for message signing

• Trees at higher levels are used for signing the roots of the trees located on the layer below

• To create a signature, all these WOTS+ signatures along the way to the highest tree are combined

• Signature σ = (i , σ0,Auth0, σ1,Auth1, . . . , σd ,Authd)
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XMSSMT [III] Skip

Message

Message is signed with the secret
key corresponding to a leaf of a tree
on the lowest layer

T0i

T1i

σ0

σ1

T2i

σ2

T30

σ3

Layer 0
having
trees of
height h0

Layer 1
having
trees of
height h1

Layer 2
having
trees of
height h2

Layer 3
having
trees of
height h3

. . . . . .

. . .. . .

. . . . . .

Master Root

The root of a child tree is

signed with the one-time

signature key

corresponding to a

certain leaf of his

parent tree

Figure 18: Pictorial description of XMSSMT with 4 layers.
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SPHINCS



SPHINCS [I]

Stateless vs. Stateful

• Stateful schemes have a Merkle tree (or tree of trees) with a number of one-time signatures at the

bottom

• Each one-time signature can be used once; hence the signer needs to keep track of which ones

have been used

• When signer uses a one-time signature to sign a message, the state needs to be updated
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SPHINCS [II]

Stateless vs. Stateful

• Stateless schemes (such as SPHINCS9) has a large tree-of-trees; but at the bottom, they have a

number of few time signatures (SPHINCS uses HORST)

• Each such few time signature can sign several messages

• The signer picks a random few-time-signature, uses that to sign the message, and then

authenticates that through the Merkle trees up to the root (which is the public key)

• Since we are using a few-time signature, we do not mind if we pick the same few-time signature

multiple times on occasion

• The few time signature scheme can handle it

• Since we do not need to update any state when generating a signature (the so-called stateless

property)

9Bernstein et al., “SPHINCS: practical stateless hash-based signatures”.
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SPHINCS [III]

Overview

• Composed of WOTS+, XMSS, and HORST as the building blocks

• Stateless

• SPHINCS can manage a much larger quantity of keys without the need to pre-compute all the
leaves by utilizing two methods:

• Hyper-tree

• Random key path addressing scheme
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SPHINCS [IV]

Overview

• The hyper-tree structure in SPHINCS is a tree of trees, where the height of the hyper-tree is

denoted by h. This hyper-tree is composed of trees with a height of h/d

• At the bottom level of the SPHINCS hyper-tree, there is a level of HORS trees that contain

private keys used for signing messages

• When a message needs to be signed, SPHINCS selects a HORS tree to sign the message and

generates a signature σH

• Above the HORS level, which is level 0, there are L-trees consisting of WOTS+ key pairs. Each

leaf of these trees contains the public key strings of WOTS+, and their corresponding private keys

are used for signing the root of the trees on the level below
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SPHINCS [V]

Overview

• There is only one tree on level d − 1 which is the top tree

• There are 2(d−i−1)∗(h/d) trees on level i , i ∈ [0, d − 2], and the root of the tree in level i will be

signed by the WOTS+ private key of the tree on level i + 1

• SPHINCS only identifies specific paths in the hyper-tree when signing a message (by employing an

addressing scheme to locate the WOTS+ public keys in the hyper-tree)

• The addressing scheme consists of the level of the hyper-tree, the tree on that level, and the leaf

within that tree

• We can uniquely identify the location of each WOTS+ public key at every level of the hyper-tree
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SPHINCS [VI] Skip

Key Generation

• An n-bit key SK1 generated using a PRG. It is used to generate random seeds for HORST and

WOTS+ private key generation

• An n-bit key SK2 is also generated using a PRG. This key is used for generating an unpredictable

index and message hash

• Bitmasks Q = (Q0,Q1, . . . ,Qp−1): Bitmasks are used in HORST, WOTS+, L-tree, and

hyper-tree. WOTS+ needs w − 1 bitmasks, HORST needs 2 log(t) bitmasks, and L-tree needs

2⌈log(l)⌉ bitmasks. In total, the complete SPHINCS structure needs p bitmasks where

p = max(w − 1, 2(h + ⌈log(l)⌉), 2 log(t))
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SPHINCS [VII] Skip

Key Generation

• The address of the leaves of the trees at the highest layer, i.e., layer d − 1 is given by

A = (d − 1||0||i)(i ∈ [2
h
d − 1)]

• Generate the seed SA ← F (A,SK1) using the n-bit secret key SK1

• Use SA as the seed for the generation of the private keys of WOTS+

• Compute the root of this top level tree (let us denote the root by PKroot)

• Final private key and public key of SPHINCS is given by

SK = (SK1, SK2,Q)

PK = (PKroot,Q)
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SPHINCS [VIII] Skip

Signature Generation

• Generate two random n-bit numbers R1 and R2 by F (M, SK2)

• Compute the message digest D ← H(R1,M)

• Compute HORST address i ← Chop(R2, h) and

AddressH = (d ||i(0, (d − 1)h/d)||i((d − 1)h/d , h/d))
• Generate HORST key pair and HOTST signature

• Generate HORST key pair seed by SeedH ← F (AddressH , SK1)

• Generate HORST signature and public key by (σH , pkH) by executing the signature generation

algorithm of HORST with (D, SeedH ,QH) as inputs

• Generate all WOTS+ signatures along the SPHINCS path

• Compute all addresses of WOTS+ in the path

Addressw,j = (j ||i(0, (d − 1− j)h/d ||i((d − 1− j)h/d), h/d)) where j is the level and j ∈ [0, d − 1].

• Compute all the seeds Seedw,j = F (Addressw,j , SK1)

• Generate WOTS+ signature σw,j by running the signature generation of WOTS+ with

(pkw,j−1,Seedw,j ,QWOTS+) as inputs (here, pkw,j−1 is the root of the tree of j − 1 level)

• We need the authentication path authAj
of corresponding WOTS+ public key

• σSPHINCS = (i ,R1, σH , σw,0, authA0 , σw,1, authA1 , . . . , σw,d−1, authAd−1)
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SPHINCS [IX] Skip

Verification

• The first step involves checking the HORST signature. The verification algorithm computes the

digest D by computing H(R1,M).

• The verifier runs verification of HORST with (D,QHORST , σH) as inputs to check the validity of

the HORST signature σH

• The second step involves checking all WOTS+ signatures. The verifier first verifies σw,0 by

executing verification algorithm of WOTS+ with (pkH , σw,0,QHORST ) as inputs.

• In the following, the verifier verifies σw,i by running the verification algorithm of WOTS+ with

(pkw,i , σw,i ,QHORST+) as inputs. Here i ∈ [1, d − 1]

• Reject if any one of the WOTS+ signatures cannot be validated

• On hyper-tree level d − 1, the verifier gets the root of the hyper-tree. If the root == PKroot, the

σSPHINCS is validated, otherwise reject
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HORST

WOTS+

XMSS Subtree

XMSSMT Hypertree
Structure

Public Key

Figure 19: Construction of SPHINCS (schematic) 57
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HORST HORST HORST HORST HORST HORST HORST HORST

WOTS+ WOTS+ WOTS+ WOTS+ WOTS+ WOTS+ WOTS+ WOTS+

WOTS+ WOTS+ WOTS+ WOTS+

WOTS+ WOTS+

master public key

signs signs

signs signs signs signs

signs signs signs signs signs signs signs signs

signs signs signs signs signs signs signs signs

messages

Layer 0

Layer 1

Layer d− 1 = 2
consisting of a
single tree

h = 3, d = 3, 3 layers of height h/d = 1

height 1

level 0

level 1

XMSS
tree

HORST
tree

WOTS+
L-tree which
is used to
compress the
public keys
of WOTS+

Figure 20: Tree structure of SPHINCS (schematic)
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SPHINCS+ [I]

SPHINCS+: An Improvement over SPHINCS

• SPHINCS+10 is proposed by Bernstein et al.

• Multi-target attack protection

• Tree-less WOTS+ public key compression

• FORS

• Verifiable index selection

10Daniel J Bernstein et al. “The SPHINCS+ signature framework”. In: Proceedings of the 2019 ACM SIGSAC conference on

computer and communications security. 2019, pp. 2129–2146.
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SPHINCS+ [II]

Variants

• Korean-SPHINCS11

• SPHINCS-Simpira12

• SPHINCS-Streebog13

• SPHINCS-α14

• SPHINCS-Gravity15

11Minjoo Sim et al. “K-XMSS and K-SPHINCS+ : Hash based Signatures with Korean Cryptography Algorithms”. In:

Cryptology ePrint Archive (2022).
12Shay Gueron and Nicky Mouha. “Simpira v2: A family of efficient permutations using the AES round function”. In: Advances

in Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information

Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I. Springer. 2016, pp. 95–125; Shay Gueron and Nicky Mouha.

“Sphincs-simpira: Fast stateless hash-based signatures with post-quantum security”. In: Cryptology ePrint Archive (2017).
13EO Kiktenko et al. “SPHINCS+ post-quantum digital signature scheme with Streebog hash function”. In: AIP Conference

Proceedings. Vol. 2241. 1. AIP Publishing LLC. 2020, p. 020014.
14Kaiyi Zhang, Hongrui Cui, and Yu Yu. “SPHINCS-α: A Compact Stateless Hash-Based Signature Scheme”. In: Cryptology

ePrint Archive (2022).
15Jean-Philippe Aumasson and Guillaume Endignoux. “Improving stateless hash-based signatures”. In: Topics in

Cryptology–CT-RSA 2018: The Cryptographers’ Track at the RSA Conference 2018, San Francisco, CA, USA, April 16-20,

2018, Proceedings. Springer. 2018, pp. 219–242.
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SPHINCS-α

• The design rationale behind SPHINCS-α follows the original SPHINCS+ construction and apply

the optimized CS-WOTS+ one time signature scheme

• CS-WOTS+ allows a larger message space/signature size ratio as compared to the original

WOTS+ scheme (allowing a smaller one-time signature size)

• For instance, in both running time (in terms of the expected number of hash function calls) and
size:

• The SPHINCS+-256s parameter set suggests w = 16 and l = 67

• For SPHINCS-α, we require l = 66 for w = 16 (which reduces both running time and size by 1.5%)
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Ascon-Sign [I]

Overview

• We propose Ascon-Sign16, which is a variant of the SPHINCS signature scheme with Ascon-Hash

and Ascon-XOF17 as building blocks

• The ASCON cipher suite offers both authenticated encryption with associated data (AEAD) and

hashing capabilities

• The primary goal of Ascon-Sign is to offer efficient and secure cryptographic operations for

immediate use in a resource-constrained environment

16Vikas Srivastava et al. Ascon-Sign. NIST PQC Additional Round 1 Candidates. https:

//csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Ascon-sign-spec-web.pdf. 2023.
17Christoph Dobraunig et al. “Ascon v1. 2: Lightweight authenticated encryption and hashing”. In: Journal of Cryptology 34

(2021), pp. 1–42.
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Ascon-Sign [II] Skip

Hash Function Usage

Table 1: Hash function calls in Ascon-Sign

Task Input Notation

Generation of pseudo-random

string from the message

Secret seed SK.prf;

optional random value OptRand;

message M

PRFmsg(SK.prf,OptRand,M)

Computation of message digest

Pseusorandom bytestring R;

public seed PK.seed;

public XMSS-MT root PK.root;

message M

Hmsg(R,PK.seed,PK.root,M)

Generation of FTS secret key elements
Secret seed SK.seed;

element address ADRS
PRF(SK.seed,ADRS)

Hash-tree construction of FTS

Public seed PK.seed;

address of node to compute ADRS;

hash strings of two children nodes M1,M2

H(PK.seed,ADRS,M1,M2)

FTS tree roots compression

Public seed PK.seed;

address in XMSSMT tree ADRS;

k roots of FORS trees roots

Tlen(PK.seed,ADRS, roots[])

Generation of underlying OTS secret key
Secret seed SK.seed;

WOTS+ key element address ADRS
PRF(SK.seed,ADRS)

Chain function iteration in WOTS+

Public seed PK.seed;

chain address of node to compute ADRS;

previous element in chain

F(T ,PK.seed,ADRS)

Compression of public keys

of underlying OTS

Public seed PK.seed;

WOTS+ keypair address ADRS;

WOTS+ public key elements pub

Tlen(PK.seed,ADRS, pub)

Computation of subtree tree

on top of compressed OTS keys

Public seed PK.seed;

address of node to compute ADRS;

hash strings of two children nodes M1,M2

H(PK.seed,ADRS,M1,M2)

63



Ascon-Sign [III]

Variants

• Two variants of Ascon-Sign are proposed, namely the ‘simple’ version and the ‘robust’ version,
similar to the approach used in SPHINCS+18

• For the ‘robust’ instances, the process involves generating pseudo-random bitmasks, which are then

XORed with the input message. These masked messages are represented as M⊕

• The ‘simple’ instances do not include the generation of bitmasks. The ‘simple’ instances offer faster

performance since they eliminate the need for additional calls to the PRF to generate bitmasks

18Bernstein et al., “The SPHINCS+ signature framework”.
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Ascon-Sign [IV] Skip

Hash Function Usage

• Hmsg(R,PK.seed,PK.root,M) = Ascon-XOF(R||PK.seed||PK.root||M, 8m)

• PRF(SEED,ADRS) = Ascon-Hash(SEED||ADRS)

• PRFmsg(SK.prf,OptRand,M) = Ascon-Hash(SK.prf||OptRand||M)
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Hash Function Usage (Simple Variant)

F(PK.seed,ADRS,M1) = Ascon-Hash(PK.seed||ADRS||M1),

H(PK.seed,ADRS,M1||M2) = Ascon-Hash(PK.seed||ADRS||M1||M2)

Tl(PK.seed,ADRS,M) = Ascon-Hash(PK.seed||ADRS||M)
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Hash Function Usage (Robust Variant)19

• F(PK.seed,ADRS,M1) = Ascon-Hash(PK.seed||ADRS||M⊕
1 )

• H(PK.seed,ADRS,M1||M2) = Ascon-Hash(PK.seed||ADRS||M⊕
1 ||M

⊕
2 )

• Tl(PK.seed,ADRS,M) = Ascon-Hash(PK.seed||ADRS||M⊕)

19For a message M with len bytes we compute M⊕ = M ⊕ Ascon-XOF(PK.seed||ADRS, len).
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Ascon-Sign [VII]

Parameters

• n : the security parameter in bytes.

• w : the Winternitz parameter

• h : the height of the hypertree

• d : the number of layers in the hypertree

• k : the number of trees in FORS

• t : the number of leaves of a FORS tree

• m: the message digest length in bytes: m = ⌊(k log t+7)/8⌋+ ⌊(h− h/d +7)/8⌋+ ⌊(h/d +7)/8⌋

• len: the number of n-byte string elements in a WOTS + private key, public key, and signature. It

is computed as len = l1 + l2 , with l1 = ⌈8n/ logw⌉andl2 = ⌈log(len1(w − 1))/ log(w)⌉
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Ascon-Sign [VIII]

Hash Calls

Table 2: Hash calls in Ascon-Sign

F H PRF T1en

Key Generation 2h/dw len 2h/d − 1 2h/d len 2h/d

Signing kt + d(2h/d)w len k(t − 1) + d(2h/d − 1) kt + d(2h/d)len d2h/d

Verification k + dw len k log t + h – d

Key and Signature Sizes

Table 3: Key and signature sizes for Ascon-Sign

Secret key Public key Signature

Size 4n 2n (h + k(log t + 1) + d · len + 1)n
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Ascon-Sign [IX]

Parameters for Ascon-Hash and Ascon-XOF

Size in bits of Rounds

Hash output Rate Capacity pa pb

Ascon-Hash 256 64 256 12 12

Ascon-XOF arbitrary 64 256 12 12
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Ascon-Sign [X]

Parameters Sets

Table 4: Parameter sets for Ascon-Sign

n h d log(t) k w Security level Signature size (bytes)

Ascon-Sign-128s 16 63 7 12 14 16 1 7856

Ascon-Sign-128f 16 66 22 6 33 16 1 17088

Ascon-Sign-192s 24 63 7 14 17 16 3 16224

Ascon-Sign-192f 24 66 22 8 33 16 3 35664
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Ascon-Sign [XI]

Security

• Ascon-Sign is based on the SPHINCS+20 signature framework with Ascon-Hash and Ascon-XOF21

as the internal hash function

• Ascon-Sign is expected to have the same security strength as SPHINCS+

20Bernstein et al., “The SPHINCS+ signature framework”.
21Dobraunig et al., “Ascon v1. 2: Lightweight authenticated encryption and hashing”.
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Software Benchmark [I]

• CPU: Intel Core i5 10210U

• Architecture: x64

• Number of cores: 4

• Base clock speed: 1.60 GHz

• Memory (RAM): 8 GiB

• Operating System: Linux Lite 5.2

• Linux kernel version: 5.4.0-113-generic

• Compiler: GCC 9.4.0

• Compiler optimization flag: -Wall -Wextra -Wpedantic -03 -std=c99

• Official benchmark reported in the submission document
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Ascon-Sign [XIII]

Software Benchmark [I]

Table 5: Runtime results for reference and optimized implementation of Ascon-Sign (‘simple’ variant)

Key Generation Signing Verification
R
ef
er
en
ce Ascon-Sign-128s 315840896 2413174678 2429047

Ascon-Sign-128f 5939611 115382780 6972950

Ascon-Sign-192s 599392072 5458909051 4696353

Ascon-Sign-192f 10939221 243023163 13058030

O
p
ti
m
iz
ed Ascon-Sign-128s 291925878 2224377542 2137821

Ascon-Sign-128f 5506606 107020221 6535295

Ascon-Sign-192s 557050751 5046224790 4357430

Ascon-Sign-192f 10117696 226197880 12333664
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Software Benchmark [I]

Table 6: Runtime results for reference and optimized implementation of Ascon-Sign (‘robust’ variant)

Key Generation Signing Verification
R
ef
er
en
ce Ascon-Sign-128s 554679600 4225825170 5516617

Ascon-Sign-128f 10156899 198139090 12469524

Ascon-Sign-192s 1046162651 9916984141 10281218

Ascon-Sign-192f 18827117 419872255 23006148

O
p
ti
m
iz
ed Ascon-Sign-128s 530089300 4038032800 4232362

Ascon-Sign-128f 10678534 182601975 11279318

Ascon-Sign-192s 970639431 8893090510 7664451

Ascon-Sign-192f 17174517 381735599 21408883
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Software Benchmark [II]

• CPU: Intel Xeon W-2133

• Architecture: x64

• Number of cores: 6

• Base clock speed: 3.60 GHz

• TurboBoost: Enabled

• Hyper-threading: Enabled

• Memory (RAM): 16 GiB

• Operating System: Ubuntu 22.04.2

• Linux kernel version: 5.15.90

• Compiler: GCC 11.3

• Compiler optimization flag: -Wall -Wextra -Wpedantic -03 -std=c99

• May not be exactly accurate as the computer was getting heated up while running the code
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Ascon-Sign [XVI]

Software Benchmark [II]

Table 7: Runtime results for reference and optimized implementation of Ascon-Sign (‘simple’ variant)

Key Generation Signing Verification
R
ef
er
en
ce Ascon-Sign-128s 666346681 5267597208 4241980

Ascon-Sign-128f 9502308 284849767 14878615

Ascon-Sign-192s 1265809671 11659028599 11543490

Ascon-Sign-192f 16717264 478521179 23295295

O
p
ti
m
iz
ed Ascon-Sign-128s 609495351 4742432290 3956422

Ascon-Sign-128f 8573282 201057590 11571899

Ascon-Sign-192s 1068742913 10477062639 7687683

Ascon-Sign-192f 16337614 500222731 23693364
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Software Benchmark [II]

Table 8: Runtime results for reference and optimized implementation of Ascon-Sign (‘robust’ variant)

Key Generation Signing Verification
R
ef
er
en
ce Ascon-Sign-128s 1165937867 8896055893 15669154

Ascon-Sign-128f 16119623 377882287 22074915

Ascon-Sign-192s 2340760358 19439420305 15164053

Ascon-Sign-192f 29026503 965865414 41771553

O
p
ti
m
iz
ed Ascon-Sign-128s 1204735982 8547151265 7169614

Ascon-Sign-128f 14574125 378004800 20351596

Ascon-Sign-192s 2134160121 18417354765 13758299

Ascon-Sign-192f 26695005 884829864 39895975
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Benchmark Comparison [I]
Data are taken from Signatures Zoo22 (less in y -axis is better)
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Figure 21: Signature generation time comparison

22PQShield. Post-Quantum Signatures Zoo. https://pqshield.github.io/nist-sigs-zoo/. (Visited on 09/07/2023). 79
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Ascon-Sign [XIX]

Benchmark Comparison [II]
Data are taken from Signatures Zoo23 (less in y -axis is better)
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Figure 22: Verification time comparison

23PQShield, Post-Quantum Signatures Zoo. 80
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Future Prospects [I]

Ongoing Plans

• We hope to propose a quantum Level 5 secure variant

• Currently we are trying to implement/optimize in hardware (e.g., hardware implementation of

Ascon-Hash24) and software

• We intend to eventually have our own hash function so that we can replace Ascon-Hash (which

will hopefully be more lightweight)

• We are considering to adopt SPHINCS-α as the basis for signature (instead of SPHINCS+)

• Last, but not the least, we are trying to come up with our own signature (so far it seems to be

more efficient than SPHINCS+/SPHINCS-α)

24Aneesh Kandi et al. “Hardware Implementation of ASCON”. In: Lightweight Cryptography Workshop (2023). url:

https://csrc.nist.gov/csrc/media/Events/2023/lightweight-cryptography-workshop-2023/documents/accepted-

papers/07-hardware-implementation-of-ascon.pdf.
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Future Prospects [II]

Ongoing Plans

• We observe that the size of OTS/FTS scheme affects the overall performance significantly

• Therefore, we are working on reducing the size of OTS/FTS

• Our preliminary investigation suggests it may be possible to reduce the computation and

verification cost of OTS/FTS.

• We hope to use different binary tree/hypertree structure used in SPHINCS+ signature framework

• Our initial estimates are as follows:

• Constant time verification independent of parameter (as opposed to parameter dependent verification

time in SPHINCS+)

• Verification is probabilistic but system parameters can be tuned to make the failure probability as low

as we want
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We always welcome any kind of suggestion, feedback, implementation. . .
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