

Codes & Restricted Objects Signature Scheme

- 🗷 Marco Baldi
- ⊗ Alessandro Barenghi
- Sebastian Bitzer
- 🗷 Patrick Karl
- ✤ Felice Manganiello
- 🗷 Alessio Pavoni

- 🗴 Gerardo Pelosi
- 🗷 Paolo Santini
- ⊗ Jonas Schupp
- ${\scriptstyle{ (\! \! S)}}$ Freeman Slaughter
- 🗷 Antonia Wachter-Zeh
- ⊗ Violetta Weger

Post-Quantum Cryptography Workshop Oxford, September 5, 2023

Fiat-Shamir transformation of ZK interactive proof of knowledge

Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)

CVE-style ZK protocol

• **Optimizations** to reduce signature size

Fiat-Shamir transformation of ZK interactive proof of knowledge

Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)
 - not so different from non-binary SDP
 - compact messages and objects, especially with R-SDP(*G*)
 - efficient arithmetic

CVE-style ZK protocol

Optimizations to reduce signature size

Fiat-Shamir transformation of ZK interactive proof of knowledge

Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)
 - not so different from non-binary SDP
 - compact messages and objects, especially with R-SDP(*G*)
 - 🙂 efficient arithmetic

CVE-style ZK protocol

- 🙂 good trade-off between signature size and computational overhead
- Optimizations to reduce signature size

Fiat-Shamir transformation of ZK interactive proof of knowledge

Main ingredients:

- **Restricted Syndrome-Decoding Problem (R-SDP)** and **R-SDP**(G)
 - ۲ not so different from non-binary SDP
 - \odot compact messages and objects, especially with R-SDP(G)
 - \odot efficient arithmetic

CVE-style ZK protocol

- simple and efficient
- ۲ good trade-off between signature size and computational overhead
- **Optimizations** to reduce signature size
 - (:)transparent from the security point of view

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $z = |\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$, $w \in \mathbb{N}$, find $\mathbf{x} \in (\{0\} \cup \mathbb{E})^n$ such that $\mathbf{x} \mathbf{H}^{\mathsf{T}} = \mathbf{s}$ and $\operatorname{wt}(\mathbf{x}) = w$.

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $z = |\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$, $w \in \mathbb{N}$, find $\mathbf{x} \in (\{0\} \cup \mathbb{E})^n$ such that $\mathbf{x} \mathbf{H}^{\mathsf{T}} = \mathbf{s}$ and $\operatorname{wt}(\mathbf{x}) = w$.

Baldi et al., 2023: study of ISD algorithms for R-SDP

Let $\mathbb{E} \subseteq \mathbb{F}_{q'}^*$ with $z = |\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$, $w \in \mathbb{N}$, find $\mathbf{x} \in (\{0\} \cup \mathbb{E})^n$ such that $\mathbf{x} \mathbf{H}^{\mathsf{T}} = \mathbf{s}$ and $\operatorname{wt}(\mathbf{x}) = w$.

Baldi et al., 2023: study of ISD algorithms for R-SDP

Unique solution: decrease $z \implies$ larger w

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $z = |\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$, $w \in \mathbb{N}$, find $\mathbf{x} \in (\{0\} \cup \mathbb{E})^n$ such that $\mathbf{x} \mathbf{H}^{\mathsf{T}} = \mathbf{s}$ and $\operatorname{wt}(\mathbf{x}) = w$.

Baldi et al., 2023: study of ISD algorithms for R-SDP

Unique solution: decrease $z \implies$ larger w

Stern's ISD, $\frac{k}{n} = \frac{1}{2}$, q = 251

Smaller codes

With respect to SDP, we can use shorter codes (smaller *n*)

R-SDP with restricted group and R-SDP(G)

The restriction used in CROSS

Let $g \in \mathbb{F}_q$ with $\operatorname{ord}(g) = z$ and $\mathbb{E} = \{g^i | i \in [0; z-1]\} = \{1, g, g^2, \cdots, g^{z-1}\}$

We consider w = n and solution space $\mathbb{E}^n = \left\{ \left(g^{i_1}, g^{i_2}, \cdots, g^{i_n}\right) \middle| (i_1, i_2, \cdots, i_n) \in \mathbb{Z}_z^n \right\}$

R-SDP with restricted group and R-SDP(G)

The restriction used in CROSS

Let
$$g \in \mathbb{F}_q$$
 with $\operatorname{ord}(g) = z$ and $\mathbb{E} = \{g^i | i \in [0; z-1]\} = \{1, g, g^2, \dots, g^{z-1}\}$
We consider $w = n$ and solution space $\mathbb{E}^n = \{(g^{i_1}, g^{i_2}, \dots, g^{i_n}) | (i_1, i_2, \dots, i_n) \in \mathbb{Z}_2^n\}$

Let $\mathbf{b}_1, \cdots, \mathbf{b}_m \in \mathbb{E}^n$ and

$$G = \langle \mathbf{b}_1, \cdots, \mathbf{b}_m \rangle = \left\{ \mathbf{b}_1^{c_1} \star \mathbf{b}_2^{c_2} \star \cdots \star \mathbf{b}_m^{c_m} \mid (c_1, \cdots, c_m) \in \mathbb{F}_z^m \right\} \leq \mathbb{E}^n$$

R-SDP(G): **R-SDP** with subgroup G

Given $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$ and $G \leq \mathbb{E}^n$, find $\mathbf{x} \in G$ such that $\mathbf{x} \mathbf{H}^{\mathsf{T}} = \mathbf{s}$.

When $G = \mathbb{E}^n$, R-SDP(G) is the same as R-SDP

	SDP	R-SDP	R-SDP(G)
Solution space	Hamming sphere with radius $w \leq n - k$	\mathbb{E}^n	$G \leq \mathbb{E}^n$
Group description	-	$g\in \mathbb{F}_q^*$	$\mathbf{M}_G \in \mathbb{F}_z^{m imes n}$
Element size	Positions and values: $w(\log_2(n) + \log_2(q-1))$	Exponents: $n \log_2(z)$	m coeffs over \mathbb{F}_z : $m \log_2(z)$
Transitive maps			
Map size			
Code length			

	SDP	R-SDP	R-SDP(G)
Solution space	Hamming sphere with radius $w \leq n - k$	\mathbb{E}^n	$G \leq \mathbb{E}^n$
Group description	-	$g\in \mathbb{F}_q^*$	$\mathbf{M}_G \in \mathbb{F}_z^{m imes n}$
Element size	Positions and values: $w(\log_2(n) + \log_2(q-1))$	Exponents: $n \log_2(z)$	m coeffs over \mathbb{F}_z : $m \log_2(z)$
Transitive maps			
Map size			
Code length			

	SDP	R-SDP	R-SDP(G)
Solution space	Hamming sphere with radius $w \leq n - k$	\mathbb{E}^n	$G \leq \mathbb{E}^n$
Group description	-	$g\in \mathbb{F}_q^*$	$\mathbf{M}_G \in \mathbb{F}_z^{m imes n}$
Element size	Positions and values: $w(\log_2(n) + \log_2(q-1))$	Exponents: $n \log_2(z)$	m coeffs over \mathbb{F}_z : $m \log_2(z)$
Transitive maps			
Map size			
Code length			

	SDP	R-SDP	$R extsf{-}SDP(G)$
Solution space	Hamming sphere with radius $w \leq n - k$	\mathbb{E}^n	$G \leq \mathbb{E}^n$
Group description	-	$g\in \mathbb{F}_q^*$	$\mathbf{M}_G \in \mathbb{F}_z^{m imes n}$
Element size	Positions and values:	Exponents:	<i>m</i> coeffs over \mathbb{F}_z :
	$w(\log_2(n) + \log_2(q-1))$	$n\log_2(z)$	$m\log_2(z)$
Transitive maps	Monomial transformations	$\mathbf{d} \in \mathbb{E}^n$	$\mathbf{d} \in G$
Map size	$n(\log_2(n) + \log_2(q-1))$	$n\log_2(z)$	$m\log_2(z)$
Code length			

	SDP	R-SDP	\mathbf{R} -SDP (G)
Solution space	Hamming sphere with radius $w \leq n - k$	\mathbb{E}^n	$G \leq \mathbb{E}^n$
Group description	-	$g\in \mathbb{F}_q^*$	$\mathbf{M}_G \in \mathbb{F}_z^{m imes n}$
Element size	Positions and values:	Exponents:	m coeffs over \mathbb{F}_z :
	$w(\log_2(n) + \log_2(q-1))$	$n\log_2(z)$	$m\log_2(z)$
Transitive maps	Monomial transformations	$\mathbf{d} \in \mathbb{E}^n$	d ∈ <i>G</i>
Map size	$n(\log_2(n) + \log_2(q-1))$	$n\log_2(z)$	$m\log_2(z)$
Code length		Less than SDP	Less than R-SDP

For each security category, computationally-friendly parameters:

- for R-SDP: q = 127, g = 2, z = 7
- for R-SDP(G): q = 509, g = 16, z = 127

For each security category, computationally-friendly parameters:

- for R-SDP: q = 127, g = 2, z = 7
- for R-SDP(G): q = 509, g = 16, z = 127

Considered attacks:

	R-SDP	\mathbf{R} -SDP (G)
Decoding attacks	Tailor BJMM to $q = 127, g = 2$	
Algebraic	Polynomial system	
attacks	(syndrome eqs + group eqs)	

For each security category, computationally-friendly parameters:

- for R-SDP: q = 127, g = 2, z = 7
- for R-SDP(G): q = 509, g = 16, z = 127

Considered attacks:

	R-SDP	\mathbf{R} -SDP (G)
Decoding attacks	Tailor BJMM to $q = 127, g = 2$	
Algebraic	Polynomial system	
attacks	(syndrome eqs + group eqs)	

Personal communication by Briaud and Øygarden

" Our results seem to confirm that the algebraic modeling is solved at a degree which is linear in **n** provided that the code rate R = k/n is a constant. This approach does not threaten the current parameters of CROSS."

For each security category, computationally-friendly parameters:

- for R-SDP: q = 127, g = 2, z = 7
- for R-SDP(G): q = 509, g = 16, z = 127

Considered attacks:

allacks.	R-SDP	$R ext{-}SDP(G)$	
Decoding	Tailor BIMM to	Use rank-deficient submatrices	
attacks	a = 127 $a = 2$	of M _G for	
	q = 127, g = 2	enumeration in Stern/Dumer ISD	
Algebraic	Polynomial system	222	
attacks	(syndrome eqs + group eqs)		

Personal communication by Briaud and Øygarden

" Our results seem to confirm that the algebraic modeling is solved at a degree which is linear in **n** provided that the code rate R = k/n is a constant. This approach does not threaten the current parameters of CROSS."

The CROSS ZK proof of knowledge

Private Key: restricted vector $\mathbf{e} \in G$ **Public Key**: group $G \leq \mathbb{E}^n$, parity-check matrix **H**, syndrome **s** = **He**^T PROVER VERIFIER Sample Seed $\stackrel{\$}{\leftarrow} \{0;1\}^{\lambda}$, $(\mathbf{u}',\mathbf{e}') \stackrel{\text{Seed}}{\longleftarrow} \mathbb{F}_{a}^{n} \times G \setminus \mathbb{R}$ andomness Compute $\mathbf{d} \in G$ such that $\mathbf{d} \star \mathbf{e}' = \mathbf{e} \setminus \mathbf{d}$ is uniformly random over G Set $\mathbf{u} = \mathbf{d} \star \mathbf{u}'$ and $\mathbf{\tilde{s}} = \mathbf{u}\mathbf{H}^{\mathsf{T}}$ Set $c_0 = \text{Hash}(\widetilde{\mathbf{s}}, \mathbf{d}), c_1 = \text{Hash}(\mathbf{u}', \mathbf{e}') \setminus \mathbb{C}$ ommitments (c_0, c_1) β Sample $\beta \stackrel{\$}{\leftarrow} \mathbb{F}_{a}^{*}$ Compute $\mathbf{y} = \mathbf{u}' + \beta \mathbf{e}' \setminus \text{Uniformly random over } \mathbb{F}_q$ Set *h* = Hash(y) \\First response \xrightarrow{h} Sample $b \stackrel{\$}{\leftarrow} \{0, 1\}$ b ~ If b = 0, set rsp = (y, d) \\Second response (the larger one) If b = 1, set rsp = Seed \\Second response (the shorter one) rsp Verify ch using rsp

The CROSS ZK proof of knowledge

Private Key: restricted vector $\mathbf{e} \in G$ **Public Key**: group $G \leq \mathbb{E}^n$, parity-check matrix **H**, syndrome **s** = **He**^T **PROVER** VERIFIER Sample Seed $\stackrel{\$}{\leftarrow} \{0;1\}^{\lambda}$, $(\mathbf{u}',\mathbf{e}') \stackrel{\text{Seed}}{\longleftarrow} \mathbb{F}_{a}^{n} \times G \setminus \mathbb{R}$ andomness Compute $\mathbf{d} \in G$ such that $\mathbf{d} \star \mathbf{e}' = \mathbf{e} \setminus \mathbf{d}$ is uniformly random over G Set $\mathbf{u} = \mathbf{d} \star \mathbf{u}'$ and $\mathbf{\tilde{s}} = \mathbf{u}\mathbf{H}^{\mathsf{T}}$ Set $c_0 = \text{Hash}(\widetilde{\mathbf{s}}, \mathbf{d}), c_1 = \text{Hash}(\mathbf{u}', \mathbf{e}') \setminus \text{Commitments}$ (c_0, c_1) β Sample $\beta \xleftarrow{\$} \mathbb{F}_{a}^{*}$ Compute $\mathbf{y} = \mathbf{u}' + \beta \mathbf{e}' \setminus \text{Uniformly random over } \mathbb{F}_q$ Set *h* = Hash(y) \\First response \xrightarrow{h} Sample $b \stackrel{\$}{\leftarrow} \{0, 1\}$ b ~ If b = 0, set rsp = (y, d) \\Second response (the larger one) If b = 1. Set rsp = Seed \\Second response (the shorter one) rsp Verify ch using rsp

Standard optimizations: PRNG trees, fixed-weight challenges,...

The CROSS ZK proof of knowledge

Private Kev: restricted vector $\mathbf{e} \in G$ **Public Key**: group $G \leq \mathbb{E}^n$, parity-check matrix **H**, syndrome **s** = **He**^T **PROVER** VERIFIER Sample Seed $\stackrel{\$}{\leftarrow} \{0;1\}^{\lambda}$, $(\mathbf{u}',\mathbf{e}') \stackrel{\text{Seed}}{\longleftarrow} \mathbb{F}_{a}^{n} \times G \setminus \mathbb{R}$ andomness Compute $\mathbf{d} \in G$ such that $\mathbf{d} \star \mathbf{e}' = \mathbf{e} \setminus \mathbf{d}$ is uniformly random over G Set $\mathbf{u} = \mathbf{d} \star \mathbf{u}'$ and $\mathbf{\tilde{s}} = \mathbf{u}\mathbf{H}^{\mathsf{T}}$ Set $c_0 = \text{Hash}(\widetilde{\mathbf{s}}, \mathbf{d}), c_1 = \text{Hash}(\mathbf{u}', \mathbf{e}') \setminus \text{Commitments}$ (c_0, c_1) β Sample $\beta \xleftarrow{\$} \mathbb{F}_{a}^{*}$ Compute $\mathbf{y} = \mathbf{u}' + \beta \mathbf{e}' \setminus \text{Uniformly random over } \mathbb{F}_{a}$ Set *h* = Hash(y) \\First response \xrightarrow{h} Sample $b \stackrel{\$}{\leftarrow} \{0, 1\}$ b ~ If b = 0, set rsp = (y, d) \\Second response (the larger one) If b = 1. Set rsp = Seed \\Second response (the shorter one) rsp Verify *c*_b using **rsp**

Standard optimizations: PRNG trees, fixed-weight challenges,...

Forgeries: attack by Kales and Zaverucha, 2020, adapted to fixed-weight challenges

<u>Baldi et al., 2023</u>: R-BG protocol, soundness error $\varepsilon \approx \max\left\{\frac{1}{N}; \frac{1}{q-1}\right\}$

<u>Baldi et al., 2023</u>: R-BG protocol, soundness error $\varepsilon \approx \max\left\{\frac{1}{N}; \frac{1}{q-1}\right\}$

<u>Baldi et al., 2023</u>: R-BG protocol, soundness error $\varepsilon \approx \max\left\{\frac{1}{N}; \frac{1}{q-1}\right\}$

<u>Baldi et al., 2023</u>: R-BG protocol, soundness error $\varepsilon \approx \max\left\{\frac{1}{N}; \frac{1}{q-1}\right\}$

Table: Parameter choices, signature sizes and timings for both **CROSS**-R-SDP and **CROSS**-R-SDP(*G*), for NIST security category **1**. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz.

Algorithm ID	Туре	(n, k, m)	# rounds	Sign. Size (kB)	Sign (MCycles)	Verify (MCycles)
CROSS-R-SDP	fast short	(127, 76, -)	256 871	12.9 10.3	6.8 22.0	3.2 10.3
CROSS-R-SDP(G)	fast short	(42, 23, 24)	243 871	8.7 7.6	3.1 11.0	2.1 7.8

Table: Parameter choices, signature sizes and timings for both **CROSS**-R-SDP and **CROSS**-R-SDP(*G*), for NIST security category **1**. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz.

Algorithm ID	Туре	(n, k, m)	# rounds	Sign. Size (kB)	Sign (MCycles)	Verify (MCycles)
CROSS-R-SDP	fast short	(127, 76, -)	256 871	12.9 10.3	6.8 22.0	3.2 10.3
CROSS-R-SDP(G)	fast short	(42, 23, 24)	243 871	8.7 7.6	3.1 11.0	2.1 7.8

Table: Parameter choices, signature sizes and timings for both **CROSS**-R-SDP and **CROSS**-R-SDP(*G*), for NIST security category **1**. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz.

Algorithm ID	Туре	(n, k, m)	# rounds	Sign. Size (kB)	Sign (MCycles)	Verify (MCycles)
CROSS-R-SDP	fast short	(127,76,-)	256 871	12.9 10.3	6.8 22.0	3.2 10.3
CROSS-R-SDP(G)	fast short	(42, 23, 24)	243 871	8.7 7.6	3.1 11.0	2.1 7.8

- ${\mathfrak O}$ Elements of ${\mathfrak G}$ are smaller than 2 λ
- $igodoldsymbol{eta}$ Computation time split in half between modular arithmetic and SHA-3/SHAKE computations
- Simple operations (basic symmetric primitives, vector/matrix operations among small elements) and no permutations: straightforward **constant-time implementation**
- Ongoing AVX2 optimized implementation (around 4× boost expected)

Thanks for the attention! Questions?

CROSS: Codes & Restricted Objects Signature Scheme

Brought to you by the wonderful CROSS team :)

https://www.cross-crypto.com/

References

- D. Kales, G. Zaverucha. "An attack on some signature schemes constructed from five-pass identification schemes." International Conference on Cryptology and Network Security. Cham: Springer International Publishing, 2020.
- J. Stern. "Designing identification schemes with keys of short size". In: Advances in Cryptology—CRYPTO'94: 14th Annual International Cryptology Conference Santa Barbara, California, USA August 21–25, 1994 Proceedings. Springer. 2001, pp. 164–173
- M. Baldi, M. Battaglioni, F. Chiaraluce, A.L. Horlemann-Trautmann, E. Persichetti, P. Santini, V. Weger, (2020). A new path to code-based signatures via identification schemes with restricted errors. arXiv preprint arXiv:2008.06403.. "A new path to code-based signatures via identification schemes with restricted errors." arXiv preprint arXiv:2008.06403 (2020)
- F. Manganiello, and F. Slaughter. "Generic Error SDP and Generic Error CVE." Cryptology ePrint Archive (2023).

References

- M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V. Weger, (2023). Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem. Cryptology ePrint Archive. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem." Cryptology ePrint Archive, 2023
- Bitzer, Sebastian, et al, "Generic Decoding of Restricted Errors." 2023 IEEE International Symposium on Information Theory (ISIT). IEEE, 2023
- Bidoux, Loïc, and Philippe Gaborit. "Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the SD, MQ, PKP and RSD Problems." International Conference on Codes, Cryptology, and Information Security. Cham: Springer Nature Switzerland, 2023

R-SDP vs SDP: Information Set Decoding

Prange's ISD

- 1) choose an information set J
- 2) "hope" $\mathbf{x}' = \mathbf{x}_J = (0, \dots, 0)$
- 3) repeat until 2) is true

Running time is T_{ISD} = N_{Guess}

R-SDP vs SDP: Information Set Decoding

Prange's ISD

- 1) choose an information set J
- 2) "hope" $\mathbf{x}' = \mathbf{x}_J = (0, \dots, 0)$
- 3) repeat until 2) is true

Running time is $T_{ISD} = N_{Guess} \cdot T_{Enumeration}$

R-SDP is harder than SDP: the intuition

Any ISD requires to guess many entries of \mathbf{x} : with SDP, there are always at least k zeros. With full weight R-SDP, \mathbf{x}' has always full weight!

Advanced ISD

- 1) choose a set $J, |J| \ge k$
- 2) "hope" $\mathbf{x'} = \mathbf{x}_J$ has low weight
- 3) enumerate candidates for $\mathbf{x'}$
- 4) repeat until 2) is true

Employing G to speed up ISD

We search for two rank-deficient matrices $\mathbf{M}' \in \mathbb{F}_{z}^{m \times \ell'}$, $\mathbf{M}'' \in \mathbb{F}_{z}^{m \times \ell''}$:

We can build lists for Stern/Dumer ISD with reduced cost:

candidates for
$$\mathbf{x}' = z^{m'} < \min\left\{z^m, z^{\ell'}\right\}$$

candidates for $\mathbf{x}'' = z^{m''} < \min\left\{z^m, z^{\ell''}\right\}$

 $\operatorname{Rank}(\mathbf{M}') = m' < \min\{m, \ell'\}$

 $\operatorname{Rank}(\mathbf{M}'') = m'' < \min\{m, \ell''\}$

Example

Let q = 11 and g = 4, with $\operatorname{ord}(g) = z = 5$:

$$\mathbb{E} = \left\{ 1 = g^0, \quad 4 = g^1, \quad 5 = g^2, \quad 9 = g^3, \quad 3 = g^4 \right\}.$$

Let

 $\mathbf{b}_1 = (1, 4, 9, 5, 3)$ $\mathbf{b}_2 = (5, 9, 4, 9, 3)$ $\mathbf{b}_3 = (9, 9, 4, 1, 1)$ (entries over \mathbb{F}_a)

 $\ell(\mathbf{b}_1) = (0, 1, 3, 2, 4)$ $\ell(\mathbf{b}_2) = (2, 3, 1, 3, 4)$ $\ell(\mathbf{b}_3) = (3, 3, 1, 0, 0)$ (entries over \mathbb{F}_z)

Example

Let q = 11 and g = 4, with $\operatorname{ord}(g) = z = 5$:

$$\mathbb{E} = \left\{ 1 = g^0, \quad 4 = g^1, \quad 5 = g^2, \quad 9 = g^3, \quad 3 = g^4 \right\}.$$

Let

$$\mathbf{b}_1 = (1, 4, 9, 5, 3)$$
 $\mathbf{b}_2 = (5, 9, 4, 9, 3)$ $\mathbf{b}_3 = (9, 9, 4, 1, 1)$ (entries over \mathbb{F}_q)

 $\ell(\mathbf{b}_1) = (0, 1, 3, 2, 4) \quad \ell(\mathbf{b}_2) = (2, 3, 1, 3, 4) \quad \ell(\mathbf{b}_3) = (3, 3, 1, 0, 0) \quad (\text{entries over } \mathbb{F}_z)$

The group $G = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ has maximum order $z^3 = 125$; its associated subspace is generated by

$$\mathbf{M} = \begin{pmatrix} \ell(\mathbf{b}_1) \\ \ell(\mathbf{b}_2) \\ \ell(\mathbf{b}_3) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 3 & 2 & 4 \\ 2 & 3 & 1 & 3 & 4 \\ 3 & 3 & 1 & 0 & 0 \end{pmatrix}$$

Example

Let q = 11 and g = 4, with $\operatorname{ord}(g) = z = 5$:

$$\mathbb{E} = \left\{ 1 = g^0, \quad 4 = g^1, \quad 5 = g^2, \quad 9 = g^3, \quad 3 = g^4 \right\}.$$

Let

$$\mathbf{b}_1 = (1, 4, 9, 5, 3)$$
 $\mathbf{b}_2 = (5, 9, 4, 9, 3)$ $\mathbf{b}_3 = (9, 9, 4, 1, 1)$ (entries over \mathbb{F}_q)

 $\ell(\mathbf{b}_1) = (0, 1, 3, 2, 4) \quad \ell(\mathbf{b}_2) = (2, 3, 1, 3, 4) \quad \ell(\mathbf{b}_3) = (3, 3, 1, 0, 0) \quad (\text{entries over } \mathbb{F}_z)$

The group $G = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ has maximum order $z^3 = 125$; its associated subspace is generated by

$$\mathbf{M} = \begin{pmatrix} \ell(\mathbf{b}_1) \\ \ell(\mathbf{b}_2) \\ \ell(\mathbf{b}_3) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 3 & 2 & 4 \\ 2 & 3 & 1 & 3 & 4 \\ 3 & 3 & 1 & 0 & 0 \end{pmatrix}$$

The vector $\mathbf{a} = (9, 4, 1, 4, 5)$ is in *G* and $\ell_G(\mathbf{a}) = (3, 0, 2)$; indeed

 $(3,0,2) \cdot \mathbf{M} = (3,1,0,1,2)$ $\ell^{-1}((3,1,0,1,2)) = (g^3, g^1, g^0, g^1, g^2) = (9,4,1,4,5)$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^n = \left\{ g^i \mid i = 0, 1, \dots, z - 1 \right\}^n$ such that $\mathbf{H} \mathbf{x}^{\mathsf{T}} = \mathbf{s}$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^n = \left\{ g^i \mid i = 0, 1, \cdots, z - 1 \right\}^n$ such that $\mathbf{H} \mathbf{x}^{\mathsf{T}} = \mathbf{s}$

Treat x_1, \dots, x_n as unknowns and build the following system:

 $\begin{cases} \mathbf{H}\mathbf{x}^{\mathsf{T}} = \mathbf{s} & \text{linear eqs in } \mathbf{n} \text{ unknowns,} \\ x_i^z = \mathbf{1}, \ \forall i = 1, \cdots, \mathbf{n} & \text{nonlinear eqs in } \mathbf{n} \text{ unknowns} \end{cases}$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^n = \left\{ g^i \mid i = 0, 1, \cdots, z - 1 \right\}^n$ such that $\mathbf{H}\mathbf{x}^{\mathsf{T}} = \mathbf{s}$

Treat x_1, \dots, x_n as unknowns and build the following system:

 $\begin{cases} \mathbf{H}\mathbf{x}^{\mathsf{T}} = \mathbf{s} & \text{linear eqs in } \mathbf{n} \text{ unknowns,} \\ x_i^z = \mathbf{1}, \ \forall i = 1, \dots, \mathbf{n} & \text{nonlinear eqs in } \mathbf{n} \text{ unknowns} \end{cases}$

Complexity of solving with F5 algorithm for Grobner basis:

$$O\left(\left(egin{array}{c} n+d_{\mathrm{reg}} \\ d_{\mathrm{reg}} \end{array}
ight)^{\omega}
ight)$$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^n = \left\{ g^i \mid i = 0, 1, \cdots, z - 1 \right\}^n$ such that $\mathbf{H} \mathbf{x}^{\mathsf{T}} = \mathbf{s}$

Treat x_1, \dots, x_n as unknowns and build the following system:

 $\begin{cases} \mathbf{H}\mathbf{x}^{\mathsf{T}} = \mathbf{s} & \text{linear eqs in } \mathbf{n} \text{ unknowns,} \\ x_i^z = \mathbf{1}, \ \forall i = 1, \dots, \mathbf{n} & \text{nonlinear eqs in } \mathbf{n} \text{ unknowns} \end{cases}$

Complexity of solving with F5 algorithm for Grobner basis:

$$O\left(\left(egin{array}{c} n+d_{
m reg}\ d_{
m reg}
ight)^{\omega}
ight)$$

For CROSS parameters, experiments suggest that d_{reg} is linear in *n*: complexity is exponential in *n*

