CROSS

Codes \& Restricted Objects Signature Scheme

© Marco Baldi
Alessandro Barenghi
© Sebastian Bitzer
© Patrick Karl
© Felice Manganiello
© Alessio Pavoni

Gerardo Pelosi

* Paolo Santini
© Jonas Schupp
Freeman Slaughter
* Antonia Wachter-Zeh

Violetta Weger

> Post-Quantum Cryptography Workshop
> Oxford, September 5, 2023

CROSS in a nutshell

Fiat-Shamir transformation of ZK interactive proof of knowledge
Main ingredients:
Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)

CVE-style ZK protocol

Optimizations to reduce signature size

CROSS in a nutshell

Fiat-Shamir transformation of ZK interactive proof of knowledge
Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)not so different from non-binary SDPcompact messages and objects, especially with R-SDP (G)
(-) efficient arithmetic

CVE-style ZK protocol

Optimizations to reduce signature size

CROSS in a nutshell

Fiat-Shamir transformation of ZK interactive proof of knowledge
Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)not so different from non-binary SDPcompact messages and objects, especially with R-SDP (G)
(-) efficient arithmetic

- CVE-style ZK protocol

(-) simple and efficient
() good trade-off between signature size and computational overhead

- Optimizations to reduce signature size

CROSS in a nutshell

Fiat-Shamir transformation of ZK interactive proof of knowledge
Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)not so different from non-binary SDPcompact messages and objects, especially with R-SDP (G)
(-) efficient arithmetic

- CVE-style ZK protocol

(-) simple and efficient
() good trade-off between signature size and computational overhead

- Optimizations to reduce signature size
(-) transparent from the security point of view

Restricted Syndrome Decoding Problem

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $z=|\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{q}^{n-k}, w \in \mathbb{N}$, find $\mathbf{x} \in(\{0\} \cup \mathbb{E})^{n}$ such that $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$ and $\mathrm{wt}(\mathbf{x})=w$.

Restricted Syndrome Decoding Problem

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $\boldsymbol{z}=|\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{q}^{n-k}, w \in \mathbb{N}$, find $\mathbf{x} \in(\{0\} \cup \mathbb{E})^{n}$ such that $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$ and $\mathrm{wt}(\mathbf{x})=w$.
Baldi et al., 2023: study of ISD algorithms for R-SDP

Restricted Syndrome Decoding Problem

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $\boldsymbol{z}=|\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{q}^{n-k}, w \in \mathbb{N}$, find $\mathbf{x} \in(\{0\} \cup \mathbb{E})^{n}$ such that $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$ and $\mathrm{wt}(\mathbf{x})=w$.
Baldi et al., 2023: study of ISD algorithms for R-SDP
Unique solution: decrease $z \quad \Longrightarrow \quad$ larger w

Restricted Syndrome Decoding Problem

Let $\mathbb{E} \subseteq \mathbb{F}_{q}^{*}$, with $\boldsymbol{z}=|\mathbb{E}|$.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{q}^{n-k}, w \in \mathbb{N}$, find $\mathbf{x} \in(\{0\} \cup \mathbb{E})^{n}$ such that $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$ and $\mathrm{wt}(\mathbf{x})=w$.
Baldi et al., 2023: study of ISD algorithms for R-SDP
Unique solution: decrease $z \quad \Longrightarrow \quad$ larger w
Stern's ISD, $\frac{k}{n}=\frac{1}{2}, q=251$

Smaller codes

With respect to SDP, we can use shorter codes (smaller n)

R-SDP with restricted group and R-SDP (G)

The restriction used in CROSS

Let $g \in \mathbb{F}_{q}$ with $\operatorname{ord}(g)=z$ and $\mathbb{E}=\left\{g^{i} \mid i \in[0 ; z-1]\right\}=\left\{1, g, g^{2}, \cdots, g^{z-1}\right\}$ We consider $w=n$ and solution space $\mathbb{E}^{n}=\left\{\left(g^{i_{1}}, g^{i_{2}}, \cdots, g^{i_{n}}\right) \mid\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in \mathbb{Z}_{z}^{n}\right\}$

R-SDP with restricted group and R-SDP (G)

The restriction used in CROSS

Let $g \in \mathbb{F}_{q}$ with $\operatorname{ord}(g)=z$ and $\mathbb{E}=\left\{g^{i} \mid i \in[0 ; z-1]\right\}=\left\{1, g, g^{2}, \cdots, g^{z-1}\right\}$
We consider $w=n$ and solution space $\mathbb{E}^{n}=\left\{\left(g^{i_{1}}, g^{i_{2}}, \cdots, g^{i_{n}}\right) \mid\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in \mathbb{Z}_{z}^{n}\right\}$

Let $\mathbf{b}_{1}, \cdots, \mathbf{b}_{m} \in \mathbb{E}^{n}$ and

$$
G=\left\langle\mathbf{b}_{1}, \cdots, \mathbf{b}_{m}\right\rangle=\left\{\mathbf{b}_{1}^{c_{1}} \star \mathbf{b}_{2}^{c_{2}} \star \cdots \star \mathbf{b}_{m}^{c_{m}} \mid\left(c_{1}, \cdots, c_{m}\right) \in \mathbb{F}_{z}^{m}\right\} \leq \mathbb{E}^{n}
$$

R-SDP (G): R-SDP with subgroup G

Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{q}^{n-k}$ and $G \leq \mathbb{E}^{n}$, find $\underline{\mathbf{x} \in G}$ such that $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$.

When $G=\mathbb{E}^{n}, \operatorname{R-SDP}(G)$ is the same as R-SDP

SDP vs R-SDP vs R-SDP (G)

With R-SDP (G), messages and codes get even shorter

	SDP	R-SDP	R-SDP (G)
Solution space	Hamming sphere with radius $w \leq n-k$	\mathbb{E}^{n}	$G \leq \mathbb{E}^{n}$
Group description	-	$g \in \mathbb{F}_{q}^{*}$	$\mathbf{M}_{G} \in \mathbb{F}_{z}^{m \times n}$
Element size	Positions and values: $w\left(\log _{2}(n)+\log _{2}(q-1)\right)$	Exponents: $n \log _{2}(z)$	m Coeffs over $\mathbb{F}_{z}:$ $m \log _{2}(z)$
Transitive maps			
Map size			
Code length			

SDP vs R-SDP vs R-SDP (G)

With R-SDP (G), messages and codes get even shorter

	SDP	R-SDP	R-SDP (G)
Solution space	Hamming sphere with radius $w \leq n-k$	\mathbb{E}^{n}	$G \leq \mathbb{E}^{n}$
Group description	-	$g \in \mathbb{F}_{q}^{*}$	$\mathbf{M}_{G} \in \mathbb{F}_{z}^{m \times n}$
Element size	Positions and values: $w\left(\log _{2}(n)+\log _{2}(q-1)\right)$	Exponents: $n \log _{2}(z)$	m Coeffs over $\mathbb{F}_{z}:$ $m \log _{2}(z)$
Transitive maps			
Map size			
Code length			

SDP vs R-SDP vs R-SDP (G)

With R-SDP (G), messages and codes get even shorter

	SDP	R-SDP	R-SDP (G)
Solution space	Hamming sphere with radius $w \leq n-k$	\mathbb{E}^{n}	$G \leq \mathbb{E}^{n}$
Group description	-	$g \in \mathbb{F}_{q}^{*}$	$\mathbf{M}_{G} \in \mathbb{F}_{z}^{m \times n}$
Element size	Positions and values: $w\left(\log _{2}(n)+\log _{2}(q-1)\right)$	Exponents: $n \log _{2}(z)$	m Coeffs over $\mathbb{F}_{z}:$ $m \log _{2}(z)$
Transitive maps			
Map size			
Code length			

SDP vs R-SDP vs R-SDP (G)

With R-SDP (G), messages and codes get even shorter

	SDP	R-SDP	R-SDP(G)
Solution space	Hamming sphere with radius $w \leq n-k$	\mathbb{E}^{n}	$G \leq \mathbb{E}^{n}$
Group description	-	$g \in \mathbb{F}_{q}^{*}$	$\mathbf{M}_{G} \in \mathbb{F}_{z}^{m \times n}$
Element size	Positions and values: $w\left(\log _{2}(n)+\log _{2}(q-1)\right)$	Exponents: $n \log _{2}(z)$	$\begin{gathered} m \text { coeffs over } \mathbb{F}_{z}: \\ m \log _{2}(z) \\ \hline \end{gathered}$
Transitive maps	Monomial transformations	$\mathbf{d} \in \mathbb{E}^{n}$	$\mathbf{d} \in G$
Map size	$n\left(\log _{2}(n)+\log _{2}(q-1)\right)$	$n \log _{2}(z)$	$m \log _{2}(z)$
Code length			

SDP vs R-SDP vs R-SDP (G)

With R-SDP (G), messages and codes get even shorter

	SDP	R-SDP	R-SDP(G)
Solution space	Hamming sphere with radius $w \leq n-k$	\mathbb{E}^{n}	$G \leq \mathbb{E}^{n}$
Group description	-	$g \in \mathbb{F}_{q}^{*}$	$\mathbf{M}_{G} \in \mathbb{F}_{z}^{m \times n}$
Element size	Positions and values: $w\left(\log _{2}(n)+\log _{2}(q-1)\right)$	Exponents: $n \log _{2}(z)$	$\begin{gathered} m \text { coeffs over } \mathbb{F}_{z}: \\ m \log _{2}(z) \\ \hline \end{gathered}$
Transitive maps	Monomial transformations	$\mathbf{d} \in \mathbb{E}^{n}$	$\mathbf{d} \in G$
Map size	$n\left(\log _{2}(n)+\log _{2}(q-1)\right)$	$n \log _{2}(z)$	$m \log _{2}(z)$
Code length		Less than SDP	Less than R-SDP

Cryptanalysis

For each security category, computationally-friendly parameters:

- for R-SDP: $q=127, g=2, z=7$
- for $\operatorname{R-SDP}(G): q=509, g=16, z=127$

Cryptanalysis

For each security category, computationally-friendly parameters:

- for R-SDP: $q=127, g=2, z=7$
- for $\operatorname{R-SDP}(G): q=509, g=16, z=127$

Considered attacks:

	R-SDP	R-SDP(G)
Decoding attacks	Tailor BJMM to $q=127, g=2$	
Algebraic attacks	Polynomial system	
(syndrome eqs + group eqs)		

Cryptanalysis

For each security category, computationally-friendly parameters:

- for R-SDP: $q=127, g=2, z=7$
- for $\operatorname{R-SDP}(G): q=509, g=16, z=127$

Considered attacks:

	R-SDP	R-SDP(G)
Decoding attacks	Tailor BJMM to $q=127, g=2$	
Algebraic attacks	Polynomial system	
(syndrome eqs + group eqs)		

Personal communication by Briaud and Øygarden

" Our results seem to confirm that the algebraic modeling is solved at a degree which is linear in n provided that the code rate $R=k / n$ is a constant. This approach does not threaten the current parameters of CROSS."

Cryptanalysis

For each security category, computationally-friendly parameters:

- for R-SDP: $q=127, g=2, z=7$
- for $\operatorname{R-SDP}(G): q=509, g=16, z=127$

Considered attacks:

	R-SDP	R-SDP(G)
Decoding attacks	Tailor BJMM to $q=127, g=2$	Use rank-deficient submatrices of \mathbf{M}_{G} for
Algebraic attacks	Polynomial system (syndrome eqs + group eqs)	???

Personal communication by Briaud and Øygarden

" Our results seem to confirm that the algebraic modeling is solved at a degree which is linear in n provided that the code rate $R=k / n$ is a constant. This approach does not threaten the current parameters of CROSS."

The CROSS ZK proof of knowledge

Private Key: restricted vector $\mathbf{e} \in G$
Public Key: group $G \leq \mathbb{E}^{n}$, parity-check matrix \mathbf{H}, \quad syndrome $\mathbf{s}=\mathbf{H e}^{\top}$
PROVER
VERIFIER
Sample Seed $\stackrel{\$}{\leftarrow}\{0 ; 1\}^{\lambda}, \quad\left(\mathbf{u}^{\prime}, \mathbf{e}^{\prime}\right) \stackrel{\text { Seed }}{\longleftarrow} \mathbb{F}_{q}^{n} \times G \backslash \backslash$ Randomness
Compute $\mathbf{d} \in G$ such that $\mathbf{d} \star \mathbf{e}^{\prime}=\mathbf{e} \backslash \backslash \mathbf{d}$ is uniformly random over G
Set $\mathbf{u}=\mathbf{d} \star \mathbf{u}^{\prime}$ and $\widetilde{\mathbf{s}}=\mathbf{u} \mathbf{H}^{\top}$
Set $c_{0}=\operatorname{Hash}(\widetilde{\mathbf{s}}, \mathbf{d}), c_{1}=\operatorname{Hash}\left(\mathbf{u}^{\prime}, \mathbf{e}^{\prime}\right) \backslash \backslash$ Commitments

$$
\stackrel{\left(c_{0}, c_{1}\right)}{\longleftrightarrow} \quad \text { Sample } \beta \stackrel{\Phi}{\rightleftarrows} \mathbb{F}_{q}^{*}
$$

Compute $\mathbf{y}=\mathbf{u}^{\prime}+\beta \mathbf{e}^{\prime} \backslash \backslash$ Uniformly random over \mathbb{F}_{q}
Set $h=\operatorname{Hash}(\mathbf{y}) \backslash \backslash$ First response

If $b=0$, set $\mathrm{rsp}=(\mathbf{y}, \mathbf{d}) \backslash \backslash$ Second response (the larger one)
If $b=1$, set $\mathrm{rsp}=\mathrm{Seed} \backslash \backslash$ Second response (the shorter one)

The CROSS ZK proof of knowledge

Private Key: restricted vector $\mathbf{e} \in G$
Public Key: group $G \leq \mathbb{E}^{n}$, parity-check matrix \mathbf{H}, syndrome $\mathbf{s}=\mathbf{H e}^{\top}$
PROVER
VERIFIER
Sample Seed $\stackrel{\$\{0 ; 1\}^{\lambda}, \quad\left(\mathbf{u}^{\prime}, \mathbf{e}^{\prime}\right) \stackrel{\text { Seed }}{\leftarrow} \mathbb{F}_{q}^{n} \times G \backslash \backslash \text { Randomness }}{ }$
Compute $\mathbf{d} \in G$ such that $\mathbf{d} \star \mathbf{e}^{\prime}=\mathbf{e} \backslash \backslash \mathbf{d}$ is uniformly random over G
Set $\mathbf{u}=\mathbf{d} \star \mathbf{u}^{\prime}$ and $\widetilde{\mathbf{s}}=\mathbf{u} \mathbf{H}^{\top}$
Set $c_{0}=\operatorname{Hash}(\widetilde{\mathbf{s}}, \mathbf{d}), c_{1}=\operatorname{Hash}\left(\mathbf{u}^{\prime}, \mathbf{e}^{\prime}\right) \backslash \backslash$ Commitments
$\xrightarrow{\left(c_{0}, c_{1}\right)}$
$\stackrel{\beta}{\rightleftarrows}$
\xrightarrow{h} Sample $b \stackrel{\$}{\leftarrow}\{0,1\}$

If $b=0$, set $\mathrm{rsp}=(\mathbf{y}, \mathbf{d}) \backslash \backslash$ Second response (the larger one)
If $b=1$, set $\mathrm{rsp}=$ Seed $\backslash \backslash$ Second response (the shorter one)
Sample $\beta \stackrel{\ddagger}{\rightleftarrows} \mathbb{F}_{q}^{*}$
Compute $\mathbf{y}=\mathbf{u}^{\prime}+\beta \mathbf{e}^{\prime} \backslash \backslash$ Uniformly random over \mathbb{F}_{q}
Set $h=\operatorname{Hash}(\mathbf{y}) \backslash \backslash$ First response
$\stackrel{b}{\longleftrightarrow}$
$\xrightarrow{\text { rsp }}$
Verify c_{b} using rsp

Standard optimizations: PRNG trees, fixed-weight challenges,...

The CROSS ZK proof of knowledge

Private Key: restricted vector $\mathbf{e} \in G$
Public Key: group $G \leq \mathbb{E}^{n}$, parity-check matrix \mathbf{H}, syndrome $\mathbf{s}=\mathbf{H e}^{\top}$

Standard optimizations: PRNG trees, fixed-weight challenges,...
Forgeries: attack by Kales and Zaverucha, 2020, adapted to fixed-weight challenges

Why such a simple ZK protocol?

Baldi et al., 2023: R-BG protocol, soundness error $\varepsilon \approx \max \left\{\frac{1}{N} ; \frac{1}{q-1}\right\}$
Computational cost: one round of $\mathrm{R}-\mathrm{BG}$ is $\approx N$ rounds of CROSS

Why such a simple ZK protocol?

Baldi et al., 2023: R-BG protocol, soundness error $\varepsilon \approx \max \left\{\frac{1}{N} ; \frac{1}{q-1}\right\}$
Computational cost: one round of $\mathrm{R}-\mathrm{BG}$ is $\approx N$ rounds of CROSS

Why such a simple ZK protocol?

Baldi et al., 2023: R-BG protocol, soundness error $\varepsilon \approx \max \left\{\frac{1}{N} ; \frac{1}{q-1}\right\}$
Computational cost: one round of $\mathrm{R}-\mathrm{BG}$ is $\approx N$ rounds of CROSS

Why such a simple ZK protocol?

Baldi et al., 2023: R-BG protocol, soundness error $\varepsilon \approx \max \left\{\frac{1}{N} ; \frac{1}{q-1}\right\}$
Computational cost: one round of $\mathrm{R}-\mathrm{BG}$ is $\approx N$ rounds of CROSS

Performances (NIST category 1)

Table: Parameter choices, signature sizes and timings for both CROSS-R-SDP and CROSS-R-SDP (G), for NIST security category 1. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz .

Algorithm ID	Type	$(\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{m})$	\# rounds	Sign. Size (kB)	Sign (MCycles)	Verify (MCycles)
CROSS-R-SDP	fast short		256	12.9	6.8	3.2
		871	10.3	22.0	10.3	
CROSS-R-SDP (G)	fast short	$(42,23,24)$	243	8.7	3.1	2.1
			7.6	11.0	7.8	

Performances (NIST category 1)

Table: Parameter choices, signature sizes and timings for both CROSS-R-SDP and CROSS-R-SDP (G), for NIST security category 1. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz .

Algorithm ID	Type	$(\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{m})$	\# rounds	Sign. Size (kB)	Sign (MCycles)	Verify (MCycles)
CROSS-R-SDP	fast short		256	12.9	6.8	3.2
		871	10.3	22.0	10.3	
CROSS-R-SDP (G)	fast short	$(42,23,24)$	243	8.7	3.1	2.1
			7.6	11.0	7.8	

Performances (NIST category 1)

Table: Parameter choices, signature sizes and timings for both CROSS-R-SDP and CROSS-R-SDP(G), for NIST security category 1. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz .

Algorithm ID	Type	$(n, \boldsymbol{k}, \boldsymbol{m})$	\# rounds	Sign. Size (kB)	Sign (MCycles)	Verify (MCycles)
CROSS-R-SDP	fast short		256	12.9	6.8	3.2
		871	10.3	22.0	10.3	
CROSS-R-SDP (G)	fast short	$(42,23,24)$	243	8.7	3.1	2.1
			7.6	11.0	7.8	

(-) Elements of G are smaller than 2λ
(-) Computation time split in half between modular arithmetic and SHA-3/SHAKE computations
(-) Simple operations (basic symmetric primitives, vector/matrix operations among small elements) and no permutations: straightforward constant-time implementation
© Ongoing AVX2 optimized implementation (around $4 \times$ boost expected)

Thanks for the attention! Questions?

CROSS: Codes \& Restricted Objects Signature Scheme

Brought to you by the wonderful CROSS team :)
https://www.cross-crypto.com/
*

References

R- D. Kales, G. Zaverucha. "An attack on some signature schemes constructed from five-pass identification schemes." International Conference on Cryptology and Network Security. Cham: Springer International Publishing, 2020.
回 J. Stern. "Designing identification schemes with keys of short size". In: Advances in Cryptology—CRYPTO'94: 14th Annual International Cryptology Conference Santa Barbara, California, USA August 21-25, 1994 Proceedings. Springer. 2001, pp. 164-173
(in M. Baldi, M. Battaglioni, F. Chiaraluce, A.L. Horlemann-Trautmann, E. Persichetti, P. Santini, V. Weger, (2020). A new path to code-based signatures via identification schemes with restricted errors. arXiv preprint arXiv:2008.06403.. "A new path to code-based signatures via identification schemes with restricted errors." arXiv preprint arXiv:2008.06403 (2020)
雷 F. Manganiello, and F. Slaughter. "Generic Error SDP and Generic Error CVE." Cryptology ePrint Archive (2023).

References

盏 M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V. Weger, (2023). Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem. Cryptology ePrint Archive. "Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem." Cryptology ePrint Archive, 2023
Bitzer, Sebastian, et al, "Generic Decoding of Restricted Errors." 2023 IEEE International Symposium on Information Theory (ISIT). IEEE, 2023
Ridoux, Loïc, and Philippe Gaborit. "Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the SD, MQ, PKP and RSD Problems." International Conference on Codes, Cryptology, and Information Security. Cham: Springer Nature Switzerland, 2023

R-SDP vs SDP: Information Set Decoding

Prange's ISD

1) choose an information set J
2) "hope" $x^{\prime}=x_{J}=(0, \cdots, 0)$
3) repeat until 2) is true

Running time is $T_{\text {ISD }}=N_{\text {Guess }}$

R-SDP vs SDP: Information Set Decoding

Prange's ISD

1) choose an information set J
2) "hope" $\mathbf{x}^{\prime}=\mathbf{x}_{J}=(0, \cdots, 0)$
3) repeat until 2) is true

Advanced ISD

1) choose a set $J,|J| \geq k$
2) "hope" $\mathbf{x}^{\prime}=\mathbf{x}_{J}$ has low weight
3) enumerate candidates for \mathbf{x}^{\prime}
4) repeat until 2) is true

Running time is $T_{I S D}=N_{\text {Guess }} \cdot T_{\text {Enumeration }}$

R-SDP is harder than SDP: the intuition

Any ISD requires to guess many entries of \mathbf{x} : with SDP, there are always at least k zeros. With full weight R-SDP, \mathbf{x}^{\prime} has always full weight!

Employing G to speed up ISD

We search for two rank-deficient matrices $\mathbf{M}^{\prime} \in \mathbb{F}_{z}^{m \times \ell^{\prime}}, \mathbf{M}^{\prime \prime} \in \mathbb{F}_{z}^{m \times \ell^{\prime \prime}}$:

We can build lists for Stern/Dumer ISD with reduced cost:

$$
\begin{aligned}
& \text { \# candidates for } \mathbf{x}^{\prime}=z^{m^{\prime}}<\min \left\{z^{m}, z^{\ell^{\prime}}\right\} \\
& \text { \# candidates for } \mathbf{x}^{\prime \prime}=z^{m^{\prime \prime}}<\min \left\{z^{m}, z^{\ell^{\prime \prime}}\right\}
\end{aligned}
$$

Example

Let $q=11$ and $g=4$, with $\operatorname{ord}(g)=z=5$:

$$
\mathbb{E}=\left\{1=g^{0}, \quad 4=g^{1}, \quad 5=g^{2}, \quad 9=g^{3}, \quad 3=g^{4}\right\}
$$

Let

$$
\left.\begin{array}{ccc}
\mathbf{b}_{1}=(1,4,9,5,3) & \mathbf{b}_{2}=(5,9,4,9,3) & \mathbf{b}_{3}=(9,9,4,1,1) \\
\ell\left(\mathbf{b}_{1}\right)=(0,1,3,2,4) & \ell\left(\mathbf{b}_{2}\right)=(2,3,1,3,4) & \ell\left(\mathbf{b}_{3}\right)=(3,3,1,0,0)
\end{array}\left(\text { entries over } \mathbb{F}_{q}\right)\right)
$$

Example

Let $q=11$ and $g=4$, with $\operatorname{ord}(g)=z=5$:

$$
\mathbb{E}=\left\{1=g^{0}, \quad 4=g^{1}, \quad 5=g^{2}, \quad 9=g^{3}, \quad 3=g^{4}\right\}
$$

Let

$$
\begin{array}{cccl}
\mathbf{b}_{1}=(1,4,9,5,3) & \mathbf{b}_{2}=(5,9,4,9,3) & \mathbf{b}_{3}=(9,9,4,1,1) & \left(\text { entries over } \mathbb{F}_{q}\right) \\
\ell\left(\mathbf{b}_{1}\right)=(0,1,3,2,4) & \ell\left(\mathbf{b}_{2}\right)=(2,3,1,3,4) & \ell\left(\mathbf{b}_{3}\right)=(3,3,1,0,0) & \left(\text { entries over } \mathbb{F}_{z}\right)
\end{array}
$$

The group $G=\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\rangle$ has maximum order $z^{3}=125$; its associated subspace is generated by

$$
\mathbf{M}=\left(\begin{array}{l}
\ell\left(\mathbf{b}_{1}\right) \\
\ell\left(\mathbf{b}_{2}\right) \\
\ell\left(\mathbf{b}_{3}\right)
\end{array}\right)=\left(\begin{array}{lllll}
0 & 1 & 3 & 2 & 4 \\
2 & 3 & 1 & 3 & 4 \\
3 & 3 & 1 & 0 & 0
\end{array}\right)
$$

Example

Let $q=11$ and $g=4$, with $\operatorname{ord}(g)=z=5$:

$$
\mathbb{E}=\left\{1=g^{0}, \quad 4=g^{1}, \quad 5=g^{2}, \quad 9=g^{3}, \quad 3=g^{4}\right\}
$$

Let

$$
\begin{array}{rlll}
\mathbf{b}_{1}=(1,4,9,5,3) & \mathbf{b}_{2}=(5,9,4,9,3) & \mathbf{b}_{3}=(9,9,4,1,1) & \left(\text { entries over } \mathbb{F}_{q}\right) \\
\ell\left(\mathbf{b}_{1}\right)=(0,1,3,2,4) & \ell\left(\mathbf{b}_{2}\right)=(2,3,1,3,4) & \ell\left(\mathbf{b}_{3}\right)=(3,3,1,0,0) & \left(\text { entries over } \mathbb{F}_{z}\right)
\end{array}
$$

The group $G=\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\rangle$ has maximum order $z^{3}=125$; its associated subspace is generated by

$$
\mathbf{M}=\left(\begin{array}{l}
\ell\left(\mathbf{b}_{1}\right) \\
\ell\left(\mathbf{b}_{2}\right) \\
\ell\left(\mathbf{b}_{3}\right)
\end{array}\right)=\left(\begin{array}{lllll}
0 & 1 & 3 & 2 & 4 \\
2 & 3 & 1 & 3 & 4 \\
3 & 3 & 1 & 0 & 0
\end{array}\right)
$$

The vector $\mathbf{a}=(9,4,1,4,5)$ is in G and $\ell_{G}(\mathbf{a})=(3,0,2)$; indeed

$$
\begin{gathered}
(3,0,2) \cdot \mathbf{M}=(3,1,0,1,2) \\
\ell^{-1}((3,1,0,1,2))=\left(g^{3}, g^{1}, g^{0}, g^{1}, g^{2}\right)=(9,4,1,4,5)
\end{gathered}
$$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^{n}=\left\{g^{i} \mid i=0,1, \cdots, z-1\right\}^{n}$ such that $\mathbf{H x}^{\top}=\mathbf{s}$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^{n}=\left\{g^{i} \mid i=0,1, \cdots, z-1\right\}^{n}$ such that $\mathbf{H x}^{\top}=\mathbf{s}$
Treat x_{1}, \cdots, x_{n} as unknowns and build the following system:

$$
\begin{cases}\mathbf{H x}^{\top}=\mathbf{s} & \text { linear eqs in } n \text { unknowns, } \\ x_{i}^{z}=1, \forall i=1, \cdots, n & \text { nonlinear eqs in } n \text { unknowns }\end{cases}
$$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^{n}=\left\{g^{i} \mid i=0,1, \cdots, z-1\right\}^{n}$ such that $\mathbf{H x}^{\top}=\mathbf{s}$
Treat x_{1}, \cdots, x_{n} as unknowns and build the following system:

$$
\begin{cases}\mathbf{H x}^{\top}=\mathbf{s} & \text { linear eqs in } n \text { unknowns, } \\ x_{i}^{z}=1, \forall i=1, \cdots, n & \text { nonlinear eqs in } n \text { unknowns }\end{cases}
$$

Complexity of solving with F5 algorithm for Grobner basis:

$$
O\left(\binom{n+d_{\mathrm{reg}}}{d_{\mathrm{reg}}}^{\omega}\right)
$$

Algebraic attacks to R-SDP

Goal: find $\mathbf{x} \in \mathbb{E}^{n}=\left\{g^{i} \mid i=0,1, \cdots, z-1\right\}^{n}$ such that $\mathbf{H x}^{\top}=\mathbf{s}$
Treat x_{1}, \cdots, x_{n} as unknowns and build the following system:

$$
\begin{cases}\mathbf{H x}^{\top}=\mathbf{s} & \text { linear eqs in } n \text { unknowns, } \\ x_{i}^{z}=1, \forall i=1, \cdots, n & \text { nonlinear eqs in } n \text { unknowns }\end{cases}
$$

Complexity of solving with F5 algorithm for Grobner basis:

$$
O\left(\binom{n+d_{\mathrm{reg}}}{d_{\mathrm{reg}}}^{\omega}\right)
$$

For CROSS parameters, experiments suggest that d_{reg} is linear in n : complexity is exponential in n

