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CROSS in a nutshell

Fiat-Shamir transformation of ZK interactive proof of knowledge
Main ingredients:

- Restricted Syndrome-Decoding Problem (R-SDP) and R-SDP(G)

, not so different from non-binary SDP
, compact messages and objects, especially with R-SDP(G)
, efficient arithmetic

- CVE-style ZK protocol

, simple and efficient
, good trade-off between signature size and computational overhead

- Optimizations to reduce signature size

, transparent from the security point of view
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Restricted Syndrome Decoding Problem

Let E ⊆ F∗q , with z = ∣E∣.
Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)
Given H ∈ F(n−k)×nq , s ∈ Fn−k

q , w ∈ N, find x ∈ ({0} ∪ E)n such that xH⊺ = s and wt(x) = w .

Baldi et al., 2023: study of ISD algorithms for R-SDP
Unique solution: decrease z Ô⇒ larger w
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R-SDP with restricted group and R-SDP(G)
The restriction used in CROSS
Let g ∈ Fq with ord(g) = z and E = {g i

∣i ∈ [0; z − 1]} = {1, g , g 2,⋯, g z−1}

We consider w = n and solution space En = {(g i1 , g i2 ,⋯, g in)∣ (i1, i2,⋯, in) ∈ Zn
z}

Let b1,⋯, bm ∈ En and
G = ⟨b1,⋯, bm⟩ = {b

c1
1 ⋆ b

c2
2 ⋆ ⋯ ⋆ b

cm
m ∣ (c1,⋯, cm) ∈ Fm

z } ≤ En

R-SDP(G): R-SDP with subgroup G

Given H ∈ F(n−k)×nq , s ∈ Fn−k
q and G ≤ En , find x ∈ G such that xH⊺ = s.

When G = En , R-SDP(G) is the same as R-SDP
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SDP vs R-SDP vs R-SDP(G)

With R-SDP(G), messages and codes get even shorter

SDP R-SDP R-SDP(G)

Solution space Hamming spherewith radius w ≤ n − k
En G ≤ En

Group
description - g ∈ F∗q MG ∈ Fm×n

z

Element size Positions and values:
w( log2(n) + log2(q − 1))

Exponents:
n log2(z)

m coeffs over Fz :
m log2(z)

Transitive maps

Monomial transformations d ∈ En d ∈ G

Map size

n( log2(n) + log2(q − 1)) n log2(z) m log2(z)

Code length

Less than SDP Less than R-SDP
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Cryptanalysis

For each security category, computationally-friendly parameters:
- for R-SDP: q = 127, g = 2, z = 7
- for R-SDP(G): q = 509, g = 16, z = 127

Considered attacks: R-SDP R-SDP(G)

Decoding
attacks

Tailor BJMM to
q = 127, g = 2

Use rank-deficient submatricesof MG forenumeration in Stern/Dumer ISD

Algebraic
attacks

Polynomial system(syndrome eqs + group eqs)

???

Personal communication by Briaud and Øygarden
” Our results seem to confirm that the algebraic modeling is solved at a degree which is

linear in n provided that the code rate R = k/n is a constant. This approach does not
threaten the current parameters of CROSS.”
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The CROSS ZK proof of knowledge

Private Key: restricted vector e ∈ G
Public Key: group G ≤ En , parity-check matrix H, syndrome s = He⊺

PROVER VERIFIER

Sample Seed
$
←Ð {0; 1}λ, (u′, e′)

Seed
←ÐÐFn

q × G \\RandomnessCompute d ∈ G such that d ⋆ e′ = e\\d is uniformly random over GSet u = d ⋆ u′ and s̃ = uH⊺Set c0 = Hash(̃s, d), c1 = Hash(u′, e′)\\Commitments
(c0,c1)
ÐÐÐÐ→
β
←ÐÐ Sample β

$
←Ð F∗qCompute y = u′ + βe′ \\Uniformly random over FqSet h = Hash(y) \\First response

h
ÐÐ→

Sample b
$
←Ð {0, 1}

b
←ÐÐIf b = 0, set rsp = (y, d) \\Second response (the larger one)If b = 1, set rsp = Seed\\Second response (the shorter one)
rsp
ÐÐ→ Verify cb using rsp

Standard optimizations: PRNG trees, fixed-weight challenges,...
Forgeries: attack by Kales and Zaverucha, 2020, adapted to fixed-weight challenges
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Why such a simple ZK protocol?

Baldi et al., 2023: R-BG protocol, soundness error ε ≈ max { 1
N
; 1
q−1}

Computational cost: one round of R-BG is ≈ N rounds of CROSS
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Performances (NIST category 1)

Table: Parameter choices, signature sizes and timings for both CROSS-R-SDP and CROSS-R-SDP(G ), for NIST securitycategory 1. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz.
Algorithm ID Type (n, k,m) # rounds Sign. Size Sign Verify(kB) (MCycles) (MCycles)
CROSS-R-SDP fast

(127, 76,−)
256 12.9 6.8 3.2

short 871 10.3 22.0 10.3
CROSS-R-SDP(G) fast

(42, 23, 24)
243 8.7 3.1 2.1

short 871 7.6 11.0 7.8

, Elements of G are smaller than 2λ

, Computation time split in half between modular arithmetic and SHA-3/SHAKE computations
, Simple operations (basic symmetric primitives, vector/matrix operations among small elements) and nopermutations: straightforward constant-time implementation

, Ongoing AVX2 optimized implementation (around 4× boost expected)
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Thanks for the attention! Questions?

CROSS: Codes & Restricted Objects Signature Scheme

Brought to you by the wonderful CROSS team :)

https://www.cross-crypto.com/

9 / 9
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Appendix

R-SDP vs SDP: Information Set Decoding

Prange’s ISD
1) choose an information set J
2) ”hope” x′ = xJ = (0,⋯, 0)
3) repeat until 2) is true

Advanced ISD
1) choose a set J , ∣J ∣ ≥ k
2) ”hope” x′ = xJ has low weight
3) enumerate candidates for x′
4) repeat until 2) is true

x =

π(x) =

x′

x =

π(x) =

x′

Running time is TISD = NGuess

⋅TEnumeration

R-SDP is harder than SDP: the intuition
Any ISD requires to guess many entries of x: with SDP, there are always at least k zeros. With full weightR-SDP, x′ has always full weight!
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Appendix

Employing G to speed up ISD

We search for two rank-deficient matrices M′ ∈ Fm×ℓ′
z , M′′ ∈ Fm×ℓ′′

z :

We can build lists for Stern/Dumer ISD with reduced cost:
# candidates for x′ = zm

′

< min {zm, zℓ
′

}

# candidates for x′′ = zm
′′

< min {zm, zℓ
′′

}

9 / 9

Rank(M′
) = m′ < min{m, ℓ′}

Rank(M′′
) = m′′ < min{m, ℓ′′}

x = x′ x′′

M = M′′M′

ℓ′′ℓ′

Span(M′)

Candidatesfor x′
Span(M′′)

Candidatesfor x′′



Appendix

Example

Let q = 11 and g = 4, with ord(g) = z = 5:
E = {1 = g 0, 4 = g 1, 5 = g 2, 9 = g 3, 3 = g 4

} .

Let
b1 = (1, 4, 9, 5, 3) b2 = (5, 9, 4, 9, 3) b3 = (9, 9, 4, 1, 1) (entries over Fq )

ℓ(b1) = (0, 1, 3, 2, 4) ℓ(b2) = (2, 3, 1, 3, 4) ℓ(b3) = (3, 3, 1, 0, 0) (entries over Fz )

The group G = ⟨b1, b2, b3⟩ has maximum order z3 = 125; its associated subspace is generated by
M =

⎛
⎜
⎝

ℓ(b1)

ℓ(b2)

ℓ(b3)

⎞
⎟
⎠
=
⎛
⎜
⎝

0 1 3 2 4
2 3 1 3 4
3 3 1 0 0

⎞
⎟
⎠

The vector a = (9, 4, 1, 4, 5) is in G and ℓG(a) = (3, 0, 2); indeed
(3, 0, 2) ⋅M = (3, 1, 0, 1, 2)

ℓ−1((3, 1, 0, 1, 2)) = (g 3, g 1, g 0, g 1, g 2
) = (9, 4, 1, 4, 5)

9 / 9
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Appendix

Algebraic attacks to R-SDP

Goal: find x ∈ En = {g i ∣ i = 0, 1,⋯, z − 1}
n such that Hx⊺ = s

Treat x1,⋯, xn as unknowns and build the following system:
⎧⎪⎪
⎨
⎪⎪⎩

Hx⊺ = s linear eqs in n unknowns,
xz
i = 1, ∀i = 1,⋯, n nonlinear eqs in n unknowns

Complexity of solving with F5 algorithm for Grobner basis:
O
⎛

⎝

⎛

⎝

n + dreg
dreg

⎞

⎠

ω
⎞

⎠

For CROSS parameters, experiments suggest that dreg is linear in n: complexity is exponential in n
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