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@ efficient arithmetic

- CVE-style ZK protocol

@ simple and efficient
@ good trade-off between signature size and computational overhead

- Optimizations to reduce signature size

@ transparent from the security point of view
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Restricted Syndrome Decoding Problem

Let E ¢ Fy, with z = |E|.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given H e F{" " s e Tk, w € N, find x € ({0} UE)" such that xH™ = s and wt(x) = w.
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Restricted Syndrome Decoding Problem

Let E ¢ Fy, with z = |E|.

Restricted Syndrome Decoding Problem (R-SDP) (Baldi et al., 2020)

Given H e F{" " s e Tk, w € N, find x € ({0} UE)" such that xH™ = s and wt(x) = w.

Baldi et al.,, 2023: study of ISD algorithms for R-SDP

Unique solution: decrease z = larger w

Stern'sISD, X =1, g =251

18 Hardest instance: w ~ n, z < g /"
: ,Z2<q

Smaller codes

R-SDP=SDP:z=q-1,E=F;

With respect to SDP, we can
use shorter codes (smaller n)

z (size of E) ®

Complexity coefficient
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R-SDP with restricted group and R-SDP(G)

The restriction used in CROSS

Let g e Fywithord(g) =zand E = {g'|i e [0;z-1]} = {1,g,8%, -, &%}
We consider w = nand solution space E" = { (g", g2, -, g")| (i1, i2, -+, in) € Z2}
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R-SDP with restricted group and R-SDP(G)

The restriction used in CROSS

Let g e Fywithord(g) =zand E = {g'|i e [0;z-1]} = {1,g,8%, -, &%}
We consider w = nand solution space E" = { (g", g2, -, g")| (i1, i2, -+, in) € Z2}

Let by, -, by € E” and

G = (b1, bm) = {b{ *b? x - x b7 | (c1,,cm) € FT} < E”

R-SDP(G): R-SDP with subgroup G

Given H ¢ }Ff,"’k)x", se Fg‘k and G <E”", find x € G such that xH™ ='s.

When G = E", R-SDP(G) is the same as R-SDP
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SDP vs R-SDP vs R-SDP(G)

With R-SDP(G), messages and codes get even shorter

SDP R-SDP R-SDP(G)
. Hamming sphere R R
Solution space with radius w < n — k E G<E
Group * mxn
description i gl Mq € Iz
. Positions and values: Exponents: m coeffs over ;.
Element size
w(logy(n) +log,(q -1)) nlog,(2) mlog,(2)

Transitive maps

Map size

| Code length
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SDP vs R-SDP vs R-SDP(G)

With R-SDP(G), messages and codes get even shorter

SDP R-SDP R-SDP(G)
. Hamming sphere R R
Solution space with radius w < n — k E G<E
Group . mxn
description i gl Mo € Iz
. Positions and values: Exponents: m coeffs over ;.
Element size
w(log,(n) +1log,(q -1)) nlog,(z) mlog,(z)
Transitive maps | Monomial transformations deE" deG
Map size n( log,(n) + log,(q - 1)) nlog,(z) mlog,(z)
Code length Less than SDP | Less than R-SDP
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__
Cryptanalysis

For each security category, computationally-friendly parameters:

- forR-SDP: q=127,g=2,z=7
- for R-SDP(G): g =509, g = 16, z = 127
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Cryptanalysis

For each security category, computationally-friendly parameters:

- forR-SDP: q=127,g=2,z=7

- for R-SDP(G): g =509, g = 16, z = 127
Considered attacks: RSDP R-SDP(G)
Decoding Tailor BJMM to Use rank-deficient submatrices
attacks g=127,g=2 of Mg for
' enumeration in Stern/Dumer ISD
Algebraic Polynomial system 9
attacks | (syndrome egs + group eqgs) o

Personal communication by Briaud and @ygarden

" Our results seem to confirm that the algebraic modeling is solved at a degree which is
linear in n provided that the code rate R = k/n is a constant. This approach does not

threaten the current parameters of CROSS."
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The CROSS ZK proof of knowledge

Private Key: restricted vectore € G

Public Key: group G <E", parity-check matrix H, syndrome s = He"

PROVER
Sample Seed < {0;1}*,  (u',€’)<<F” x G \\Randomness

Computed e G suchthatd e’ = e\\d is uniformly random over G

Setu=d+u’ ands=uH"
Setqo = Hash(?,d), a = Hash(u',e’)\\Commitments

Compute y = u’ + Be’ \\Uniformly random over Fg
Set h = Hash(y) \\First response

Ifb=0,setrsp = (y7 d) \\Second response (the larger one)
If b=1, set rsp = Seed\\Second response (the shorter one)

(c0,e1)
—_—

rsp

VERIFIER

Sample 8 & Fq

Sample b & {0,1}

Verify ¢y USINg rsp
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The CROSS ZK proof of knowledge

Private Key: restricted vectore € G
Public Key: group G <E", parity-check matrix H, syndrome s = He"

PROVER VERIFIER

Seed

Sample Seed & {0;1}*, (u’,e’)<—TF2 x G \\Randomness
Computed e G suchthatd e’ = e\\d is uniformly random over G
Setu=d+u ands=uH"

Setqo = Hash(?,d), a = Hash(u',e’)\\Commitments

(c,e1)
—
B s .
— Sample g < Fy
Compute y = u’ + Be’ \\Uniformly random over Fg
Set h = Hash(y) \\First response
N
Sample b & {0,1}
P
Ifb=0,setrsp = (y7 d) \\Second response (the larger one)
If b=1, set rsp = Seed\\Second response (the shorter one)
rsp
—

Verify ¢y USINg rsp

Standard optimizations: PRNG trees, fixed-weight challenges,...
Forgeries: attack by Kales and Zaverucha, 2020, adapted to fixed-weight challenges
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Why such a simple ZK protocol?

Baldi et al., 2023: R-BG protocol, soundness error ¢ = max{ L. ﬁ}

El

Computational cost: one round of R-BG is ~ N rounds of CROSS

Signature size (kB)

28

21

14

- ‘ ‘ I P R-BG, R-SDP i
—— CROSS, R-SDP
......... R-BG, R-SDP(G)
o —— CROSS, R-SDP(G) a
S ———— — , | |
0 1,000 2,000 3,000 4,000 5,000 6,000

# CROSS rounds
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Why such a simple ZK protocol?

Baldi et al,, 2023: R-BG protocol, soundness error e ~ max {ﬁ, ﬁ}

Computational cost: one round of R-BG is ~ N rounds of CROSS

18
— 16 |- N
m
X
° 14 R-SDP fast |
N
N
%J 12 [ ®\ R-SDP small
= o
o 10 R-SDP(G) fast X) =
Rely \®\ R-SDP(G) small
wn = |

&
6 | | | |
200 400 600 800 1,000

# CROSS rounds
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Performances (NIST category 1)

Table: Parameter choices, signature sizes and timings for both CROSS-R-SDP and CROSS-R-SDP(G), for NIST security
category 1. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz.

. Sign. Size Sign Veri
Algorithm ID Type ‘ (n, k,m) # rounds ‘ g(kB) (!\/ICygdes) (MCycIfgs)

fast 256 129 6.8 3.2

CROSSRSDP short ‘ (127,76,2) 471 ‘ 103 220 103

fast 243 8.7 3.1 2.1

CROSSRSDP(G)  hort ‘ (42,23,24) 871 ‘ 7.6 110 7.8
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Performances (NIST category 1)

Table: Parameter choices, signature sizes and timings for both CROSS-R-SDP and CROSS-R-SDP(G), for NIST security
category 1. Measurements collected on an Intel Core i7-12700 clocked at 5.0 GHz.

. Sign. Size Sign Veri
Algorithm ID Type ‘ (n, k,m) # rounds ‘ g(kB) (!\/ICygdes) (MCycIfgs)

fast 256 129 6.8 3.2

CROSSRSDP short ‘ (127,76,2) 471 ‘ 103 220 103

fast 243 8.7 3.1 2.1

CROSSRSDP(G)  hort ‘ (42,23,24) 871 ‘ 7.6 110 7.8

® Elements of G are smaller than 2\
® Computation time split in half between modular arithmetic and SHA-3/SHAKE computations

® Simple operations (basic symmetric primitives, vector/matrix operations among small elements) and no
permutations: straightforward constant-time implementation

@ Ongoing AVX2 optimized implementation (around 4x boost expected)



Thanks for the attention! Questions?

CROSS: Codes & Restricted Objects Signature Scheme

Brought to you by the wonderful CROSS team :)

https://www.cross-crypto.com/
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R-SDP vs SDP: Information Set Decoding

Prange’s ISD

1) choose an information set J
2) "hope”x’ =xy = (0,--,0)

3) repeat until 2)is true

Running time is Tisp = Ngyess
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R-SDP vs SDP: Information Set Decoding

Prange’s ISD Advanced ISD

1) choose an information set J 1) choose aset J, [J| > k

2) "hope”x’ = x; = (0,-,0) 2) "hope”x’ = x, has low weight
3) repeat until 2) is true 3) enumerate candidates for x’

4) repeat until 2) is true

Running time is TISD = NGuess"TEnumeration

R-SDP is harder than SDP: the intuition

Any ISD requires to guess many entries of x: with SDP, there are always at least k zeros. With full weight
R-SDP, x" has always full weight!
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Employing G to speed up ISD

We search for two rank-deficient matrices M’ e F7*¢, M” e F7*¢":

TR
! ! . !
Candidates Candidates Rank(M’) = m’ < min{m, £’}
for x’ for x” " ” ) o
A BN Rank(M") = m" < min{m, ¢"}
Span(M’) Span(M"")

We can build lists for Stern/Dumer ISD with reduced cost:

X ’ ) ’
# candidates for x' = z™ < min {z’", z* }

. " . ”
# candidates for x” = z™ < min {z’", z* } ®



Example

Letg=11and g = 4 withord(g) = z=5:

E={1=g° 4=g' 5=g° 9=g°, 3=g".

Let
b, = (1,4,9,5,3) b, = (5,9,4,9,3) bs = (9,9,4,1,1)

Z(bl) = (Ov 1737254) ‘g(b2) = (2737 15374) e(b3) = (3537 1’070)

(entries over Fy)

(entries over F,)
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Example

Letg=11and g = 4 withord(g) = z=5:
]E:{l:go’ 4:g17 5=g° 9=g°, 3=g4}.

Let
b, = (1,4,9,5,3) b, = (5,9,4,9,3) bs; = (9,9,4,1,1)  (entries over Fy)

£(b1) = (0,1,3,2,4) £(by) =(2,3,1,3,4) £(bs)=(3,3,1,0,0) (entriesoverF,)

The group G = (by, by, b3) has maximum order z* = 125; its associated subspace is generated by

(b)) (0 1 3 2 4
M_(m,z))_(z 13 )
tby)) \3 3 1 0 0

The vector a = (9,4,1,4,5) isin G and £¢(a) = (3,0, 2); indeed
(3,0,2)-M = (3,1,0,1,2)

%((3,1,0,1,2)) = (g°,g",&°% &', &%) = (9,4,1,4,5) @
e 9/9



Algebraic attacks to R-SDP

Goal: findx e E" = {g' | i =0,1,+,z-1}" such that Hx" = s
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Algebraic attacks to R-SDP

Goal: findx e E" = {g' | i =0,1,+,z-1}" such that Hx" = s
Treat xi, -+, x, a5 unknowns and build the following system:

Hx" =s linear egs in n unknowns,
xf =1, Vi=1,---,n nonlinear egsin n unknowns
Complexity of solving with F5 algorithm for Grobner basis:

n+ dreg N
O (( dreg ) )

For CROSS parameters, experiments suggest that dreg is linear in n: complexity is exponential in n
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