
: Shorter Fiat-Shamir with Aborts Signature

Jung Hee Cheon1,2, Hyeongmin Choe1, Julien Devevey3, Tim Güneysu4,5, Dongyeon Hong2,
Markus Krausz4, Georg Land4, Marc Möller4, Damien Stehlé2, MinJune Yi1

1. Seoul National University 2. CryptoLab Inc. 3. ENS de Lyon
4. Ruhr University Bochum 5. German Research Centre for Artifical Intelligence

High-level Overview

Same framework as : Fiat-Shamir with Aborts over lattices

Our goals:

Minimize signature size Fixed-point arithmetic everywhere
Replace with Careful analysis of the sampler
Bimodal version of the scheme

J. Devevey - HAETAE 1

Performances

H/D
Level 1 2 2
|vk| 897 1312 992 75.6%
|σ| 666 2420 1463 60.5%
KG cycles (average) 60M 339K 1.832M 540%
Sign cycles (average) 17M 1.446M 8.903M 616%

• Haetae works overR = Z[x]/(x256 + 1) and uses a modulus q = 64513 (16 bits)
• Between 1.5 and 2× less arithmetic operations than Dilithium

J. Devevey - HAETAE 2

Performances

H/D
Level 1 2 2
|vk| 897 1312 992 75.6%
|σ| 666 2420 1463 60.5%
KG cycles (average) 60M 339K 1.832M 540%
Sign cycles (average) 17M 1.446M 8.903M 616%

• Haetae works overR = Z[x]/(x256 + 1) and uses a modulus q = 64513 (16 bits)
• Between 1.5 and 2× less arithmetic operations than Dilithium

J. Devevey - HAETAE 2

Fiat-Shamir with Aborts

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U()

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)

J. Devevey - HAETAE 3

Fiat-Shamir with Aborts

do
y←↩ Q
c = H(Ay mod 2q, µ)
z = y+ (−1)U({0,1})sc
w.p. 2P(z)

(M(Q(z−sc)+Q(z+sc)))
z =⊥

while z =⊥
return (z, c)

• z←↩ P

• Verification relies on Az − qcj = Ay mod 2q
as As = −As = qj mod 2q

• Bimodal [DDLL13] is more compact [DFPS22]

• Compactness depends on ∥sc∥

J. Devevey - HAETAE 4

Optimal Choice of Distribution

Our choice: continuous U()

• Most compact [DFPS22]

• Easier rejection probability than Gaus-
sians

• Rejection probability well-understood

• Rounding step before hashing A⌊y⌉
and compressing compress(⌊z⌉)

J. Devevey - HAETAE 5

Rejection Step

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U()

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z) , set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)

J. Devevey - HAETAE 6

Rejection Probability

sc−sc

1
1/2
0

J. Devevey - HAETAE 7

Rejection Probability

sc−sc

1
1/2
0

Check ∥z∥ and ∥2z− y∥

z
2z− yy

J. Devevey - HAETAE 7

Hyperball Sampler

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U()

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)

J. Devevey - HAETAE 8

Main Theorem

Back to Gaussian sampling [VG17]
n∥∥ n+2∥∥ =D U()

• Works for continuous distributions

• Adapted to work from discrete gaussian over 1
NZ

n+2 to U(∩ 1
NZ

n)

• Requires large enough standard deviation and N

J. Devevey - HAETAE 9

Main Theorem

Back to Gaussian sampling [VG17]
n∥∥ n+2∥∥ =D U()

• Works for continuous distributions

• Adapted to work from discrete gaussian over 1
NZ

n+2 to U(∩ 1
NZ

n)

• Requires large enough standard deviation and N

J. Devevey - HAETAE 9

Implementation with Fixed-point Arithmetic

• Reject from discrete to discrete

• New average rejection probability?

• Close enough to the previous one for large N

• Balanced out with the previous constraint

J. Devevey - HAETAE 10

Performances

Hyperball Sampler

Sign

Up to 80% of signing runtime!

J. Devevey - HAETAE 11

Hashing to a Ball

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U()

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)

J. Devevey - HAETAE 12

Hash-related Choices

Challenge Ternary Binary
Entropy

(256
τ

)
+τ

(256
τ

)
Level II τ 39 58

NB: for Level V, to get 255 bits of entropy, we take τ with
Hamming weight < 128 and half of those with Ham-
ming weight 128

SampleInBall(τ):
1: c0 . . . c255 = 0256

2: For i = 256− τ to 255
3: j←↩ U({0 . . . i})
4: ci = cj
5: cj = 1
6: return c

J. Devevey - HAETAE 13

Key Generation

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U()

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+(−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)

J. Devevey - HAETAE 14

Key Generation

1: A0 ←↩ U(Rk×ℓ−1
q)

2: s0, e0 ←↩ U([−η . . . η])ℓ−1+k

3: b← A0s0 + e0 mod q
4: A← (−2b+ qj|2A0|2Ik) mod 2q
5: s← (1|s0

⊤|e0
⊤)⊤

6: restart if fτ (s) > nβ2/τ

7: return vk = A, sk = s

• j = (1,0 . . .0)⊤

• Add a trapdoor in the public matrix

• fτ ensures that ∥sc∥ ≤ β for any c
with Hamming weight τ

• Acceptance rate from 10 to 25%

J. Devevey - HAETAE 15

Signature Compression (Two Ways)

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U()

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)

J. Devevey - HAETAE 16

Low Bits Truncation

• Truncation technique from Bai and Galbraith

• Ay = A1z1 + 2z2 − qcj mod 2q for some A1

z2

Az− qcj mod 2q

HB(z2) LB(z2)

HB(Az− qcj mod 2q) LB LSB

×2

• Exclude LB(z2) from the signature

• Hash HB(w) and LSB(w)

J. Devevey - HAETAE 17

rANS

z1HB(z1) LB(z1)

Empirical distribution Incompressible

z2HB(z2) LB(z2)

Empirical distribution Not transmitted

• Similar to [ETWY22]
• range Asymmetric Numeral System used to encode/decode
• Swapped with tANS to reduce RAM usage
• Negligible cost in sign runtime (< 1%)

J. Devevey - HAETAE 18

Security Estimation

J. Devevey - HAETAE 19

Security

Theoretical Practical
Similar to Dilithium Similar to Dilithium

• Reduction in the QROM • Key Recovery attacks
depends on SelfTargetMSIS solve an LWE instance

• Lossy-soundness in • Forgery attacks
specific parameters regime solve a SIS instance

J. Devevey - HAETAE 20

Thank you!

J. Devevey - HAETAE 21

	Fiat-Shamir with Aborts
	Rejection Step
	Hyperball Sampler
	Hashing to a Ball
	Key Generation
	Signature Compression (Two Ways)
	Security Estimation

