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High-level Overview

Same framework as : Fiat-Shamir with Aborts over lattices

Our goals:

Minimize signature size Fixed-point arithmetic everywhere
Replace with Careful analysis of the sampler
Bimodal version of the scheme
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Performances

H/D
Level 1 2 2
|vk| 897 1312 992 75.6%
|σ| 666 2420 1463 60.5%
KG cycles (average) 60M 339K 1.832M 540%
Sign cycles (average) 17M 1.446M 8.903M 616%

• Haetae works overR = Z[x]/(x256 + 1) and uses a modulus q = 64513 (16 bits)
• Between 1.5 and 2× less arithmetic operations than Dilithium
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Fiat-Shamir with Aborts

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U( )

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)
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Fiat-Shamir with Aborts

do
y←↩ Q
c = H(Ay mod 2q, µ)
z = y+ (−1)U({0,1})sc
w.p. 2P(z)

(M(Q(z−sc)+Q(z+sc)))
z =⊥

while z =⊥
return (z, c)

• z←↩ P

• Verification relies on Az − qcj = Ay mod 2q
as As = −As = qj mod 2q

• Bimodal [DDLL13] is more compact [DFPS22]

• Compactness depends on ∥sc∥
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Optimal Choice of Distribution

Our choice: continuous U( )

• Most compact [DFPS22]

• Easier rejection probability than Gaus-
sians

• Rejection probability well-understood

• Rounding step before hashing A⌊y⌉
and compressing compress(⌊z⌉)
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Rejection Step

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U( )

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z) , set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)
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Rejection Probability

sc−sc

1
1/2
0
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Rejection Probability

sc−sc

1
1/2
0

Check ∥z∥ and ∥2z− y∥

z
2z− yy
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Hyperball Sampler

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U( )

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)
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Main Theorem

Back to Gaussian sampling [VG17]
n∥∥ n+2∥∥ =D U( )

• Works for continuous distributions

• Adapted to work from discrete gaussian over 1
NZ

n+2 to U( ∩ 1
NZ

n)

• Requires large enough standard deviation and N
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Implementation with Fixed-point Arithmetic

• Reject from discrete to discrete

• New average rejection probability?

• Close enough to the previous one for large N

• Balanced out with the previous constraint
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Performances

Hyperball Sampler

Sign

Up to 80% of signing runtime!
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Hashing to a Ball

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U( )

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)
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Hash-related Choices

Challenge Ternary Binary
Entropy

(256
τ

)
+τ

(256
τ

)
Level II τ 39 58

NB: for Level V, to get 255 bits of entropy, we take τ with
Hamming weight < 128 and half of those with Ham-
ming weight 128

SampleInBall(τ):
1: c0 . . . c255 = 0256

2: For i = 256− τ to 255
3: j←↩ U({0 . . . i})
4: ci = cj
5: cj = 1
6: return c
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Key Generation

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U( )

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+(−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)
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Key Generation

1: A0 ←↩ U(Rk×ℓ−1
q )

2: s0, e0 ←↩ U([−η . . . η])ℓ−1+k

3: b← A0s0 + e0 mod q
4: A← (−2b+ qj|2A0|2Ik) mod 2q
5: s← (1|s0

⊤|e0
⊤)⊤

6: restart if fτ (s) > nβ2/τ

7: return vk = A, sk = s

• j = (1,0 . . .0)⊤

• Add a trapdoor in the public matrix

• fτ ensures that ∥sc∥ ≤ β for any c
with Hamming weight τ

• Acceptance rate from 10 to 25%
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Signature Compression (Two Ways)

KeyGen(1λ):
1: return A, s

with As = qj mod 2q

Sign(A, s, µ):
do

1: y←↩ U( )

2: w = Ay mod 2q
3: c = H(HB(w), LSB(w), µ)
4: z = y+ (−1)bsc
5: w.p. p(z), set z =⊥

while z =⊥
6: x = compress(z)
7: return (x, c)
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Low Bits Truncation

• Truncation technique from Bai and Galbraith

• Ay = A1z1 + 2z2 − qcj mod 2q for some A1

z2

Az− qcj mod 2q

HB(z2) LB(z2)

HB(Az− qcj mod 2q) LB LSB

×2

• Exclude LB(z2) from the signature

• Hash HB(w) and LSB(w)
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rANS

z1HB(z1) LB(z1)

Empirical distribution Incompressible

z2HB(z2) LB(z2)

Empirical distribution Not transmitted

• Similar to [ETWY22]
• range Asymmetric Numeral System used to encode/decode
• Swapped with tANS to reduce RAM usage
• Negligible cost in sign runtime (< 1%)
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Security Estimation
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Security

Theoretical Practical
Similar to Dilithium Similar to Dilithium

• Reduction in the QROM • Key Recovery attacks
depends on SelfTargetMSIS solve an LWE instance

• Lossy-soundness in • Forgery attacks
specific parameters regime solve a SIS instance
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Thank you!
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