

Jung Hee Cheon^{1,2}, Hyeongmin Choe¹, **Julien Devevey**³, Tim Güneysu^{4,5}, Dongyeon Hong², Markus Krausz⁴, Georg Land⁴, Marc Möller⁴, Damien Stehlé², MinJune Yi¹

Seoul National University
 Ruhr University Bochum

2. CryptoLab Inc.3. ENS de Lyon5. German Research Centre for Artifical Intelligence

Same framework as

• • • • • • • • • • • • • Fiat-Shamir with Aborts over lattices

Our goals:

Minimize signature size	Fixed-point arithmetic everywhere
Replace 💼 with 🌑	Careful analysis of the 🌑 sampler
Bimodal version of the scheme	

	FALCON			H/D
Level	1	2	2	
vk	897	1312	992	75.6%
$ \sigma $	666	2420	1463	60.5%
KG cycles (average)	60M	339K	1.832M	540%
Sign cycles (average)	17M	1.446M	8.903M	616%

	FALCON		HAETAE	H/D
Level	1	2	2	
vk	897	1312	992	75.6%
$ \sigma $	666	2420	1463	60.5%
KG cycles (average)	60M	339K	1.832M	540%
Sign cycles (average)	17M	1.446M	8.903M	616%

- Haetae works over $\mathcal{R} = \mathbb{Z}[x]/(x^{256}+1)$ and uses a modulus q = 64513 (16 bits)
- Between 1.5 and 2 \times less arithmetic operations than Dilithium

Fiat-Shamir with Aborts

KeyGen(1 $^{\lambda}$):

1: return A, s with $As = qj \mod 2q$ Sign($\mathbf{A}, \mathbf{s}, \mu$): do 1: $\mathbf{y} \leftrightarrow U(\mathbf{O})$ 2: $W = Ay \mod 2q$ 3: $c = H(HB(w), LSB(w), \mu)$ 4: $z = y + (-1)^b sc$ 5: w.p. $p(\mathbf{z})$, set $\mathbf{z} = \perp$ while $\mathbf{z} = \bot$ 6: $x = \text{compress}(\mathbf{z})$ 7: return (x, c)

 $\bullet \ \mathbf{Z} \hookleftarrow P$

- Verification relies on Az qcj = Ay mod 2q as As = -As = qj mod 2q
- Bimodal [DDLL13] is more compact [DFPS22]
- Compactness depends on $\|\mathbf{s}c\|$

Optimal Choice of Distribution

Our choice: continuous $U(\bigcirc)$

- Most compact [DFPS22]
- Easier rejection probability than Gaussians
- Rejection probability well-understood

 Rounding step before hashing A[y] and compressing compress([z])

Rejection Step

KeyGen (1^{λ}) :

1: return **A**, **s** with **As** = q**j** mod 2q Sign($\mathbf{A}, \mathbf{s}, \mu$):

do

1: $\mathbf{y} \leftarrow U(\bigcirc)$ 2: $W = \mathbf{A}\mathbf{y} \mod 2q$ 3: $c = H(HB(w), LSB(w), \mu)$ 4: $z = \mathbf{y} + (-1)^b \mathbf{s}c$ 5: w.p. $p(\mathbf{z})$, set $\mathbf{z} = \bot$ while $\mathbf{z} = \bot$ 6: $x = \text{compress}(\mathbf{z})$ 7: return (x, c)

Rejection Probability

Rejection Probability

J. Devevey - HAETAE

Hyperball Sampler

KeyGen (1^{λ}) :

1: return **A**, **s** with **As** = q**j** mod 2q Sign($\mathbf{A}, \mathbf{s}, \mu$):

do

1: $\mathbf{y} \leftrightarrow U(\bigcirc)$ 2: $W = \mathbf{A}\mathbf{y} \mod 2q$ 3: $c = H(HB(w), LSB(w), \mu)$ 4: $z = \mathbf{y} + (-1)^b \mathbf{s}c$ 5: w.p. $p(\mathbf{z})$, set $\mathbf{z} = \bot$ while $\mathbf{z} = \bot$ 6: $x = \text{compress}(\mathbf{z})$ 7: return (x, c)

Back to Gaussian sampling [VG17]

$$\frac{\underline{n}}{|\underline{n+2}||} =_D U(\textcircled{)}$$

• Works for continuous distributions

Back to Gaussian sampling [VG17]

$$\frac{\underline{n}}{|\underline{n+2}||} =_D U(\textcircled{)}$$

- Works for continuous distributions
- Adapted to work from discrete gaussian over $\frac{1}{N}\mathbb{Z}^{n+2}$ to $U(\bigcirc \cap \frac{1}{N}\mathbb{Z}^n)$
- Requires large enough standard deviation and N

Implementation with Fixed-point Arithmetic

- Reject from discrete
 to discrete
- New average rejection probability?
- Close enough to the previous one for large N
- Balanced out with the previous constraint

Hyperball Sampler

Sign

Up to 80% of signing runtime!

J. Devevey - HAETAE

Hashing to a Ball

KeyGen (1^{λ}) :

1: return **A**, **s** with **As** = q**j** mod 2q Sign($\mathbf{A}, \mathbf{s}, \mu$):

do

1: $\mathbf{y} \leftarrow U(\bigcirc)$ 2: $W = \mathbf{A}\mathbf{y} \mod 2q$ 3: $\mathbf{C} = H(\mathrm{HB}(w), \mathrm{LSB}(w), \mu)$ 4: $z = \mathbf{y} + (-1)^b \mathbf{s}C$ 5: w.p. $p(\mathbf{z})$, set $\mathbf{z} = \bot$ while $\mathbf{z} = \bot$ 6: $x = \mathrm{compress}(\mathbf{z})$

7: return (*x*, *c*)

NB: for Level V, to get 255 bits of entropy, we take τ with Hamming weight $<\,$ 128 and half of those with Hamming weight 128

 $SampleInBall(\tau):$ $1: c_0 ... c_{255} = 0^{256}$ $2: For <math>i = 256 - \tau$ to 255 3: $j \leftrightarrow U(\{0 ... i\})$ 4: $c_i = c_j$ 5: $c_j = 1$ 6: return c

Key Generation

KeyGen (1^{λ}) :

1: return A, s with $As = qj \mod 2q$ Sign($\mathbf{A}, \mathbf{s}, \mu$):

do

1: $\mathbf{y} \leftrightarrow U(\bigcirc)$ 2: $W = \mathbf{A}\mathbf{y} \mod 2q$ 3: $c = H(HB(w), LSB(w), \mu)$ 4: $z = \mathbf{y} + (-1)^b \mathbf{s}c$ 5: w.p. $p(\mathbf{z})$, set $\mathbf{z} = \bot$ while $\mathbf{z} = \bot$ 6: $x = \text{compress}(\mathbf{z})$

7: return (*x*, *c*)

- 1: $\mathbf{A}_{0} \leftrightarrow U(\mathcal{R}_{q}^{k \times \ell-1})$ 2: $\mathbf{S}_{0}, \mathbf{e}_{0} \leftrightarrow U([-\eta \dots \eta])^{\ell-1+k}$ 3: $\mathbf{b} \leftarrow \mathbf{A}_{0}\mathbf{S}_{0} + \mathbf{e}_{0} \mod q$ 4: $\mathbf{A} \leftarrow (-2\mathbf{b} + q\mathbf{j}|2\mathbf{A}_{0}|2\mathbf{I}_{k}) \mod 2q$ 5: $\mathbf{s} \leftarrow (1|\mathbf{s}_{0}^{\top}|\mathbf{e}_{0}^{\top})^{\top}$ 6: restart if $f_{\tau}(\mathbf{s}) > n\beta^{2}/\tau$ 7: return vk = \mathbf{A} , sk = \mathbf{s}
- $\mathbf{j} = (1, 0 \dots 0)^\top$
- Add a trapdoor in the public matrix
- f_{τ} ensures that $\|\mathbf{sc}\| \leq \beta$ for any c with Hamming weight τ
- Acceptance rate from 10 to 25%

Signature Compression (Two Ways)

KeyGen (1^{λ}) :

1: return **A**, **s** with $\mathbf{As} = q\mathbf{j} \mod 2q$ Sign($\mathbf{A}, \mathbf{s}, \mu$):

do

1: $\mathbf{y} \leftrightarrow U(\bigcirc)$ 2: $W = \mathbf{Ay} \mod 2q$ 3: $c = H(\mathbf{HB}(w), \mathbf{LSB}(w), \mu)$ 4: $z = \mathbf{y} + (-1)^b \mathbf{s}c$ 5: w.p. $p(\mathbf{z})$, set $\mathbf{z} = \bot$ while $\mathbf{z} = \bot$ 6: $\mathbf{x} = \text{compress}(\mathbf{z})$

7: return (*x*, *c*)

Low Bits Truncation

- Truncation technique from Bai and Galbraith
- $\mathbf{A}\mathbf{y} = \mathbf{A}_1\mathbf{z}_1 + 2\mathbf{z}_2 qc\mathbf{j} \mod 2q$ for some \mathbf{A}_1

- Exclude *LB*(**z**₂) from the signature
- Hash *HB*(**w**) and *LSB*(**w**)

J. Devevey - HAETAE

- Similar to [ETWY22]
- range Asymmetric Numeral System used to encode/decode
- Swapped with tANS to reduce RAM usage
- Negligible cost in sign runtime (< 1%)

Security Estimation

Theoretical	Practical
Similar to Dilithium	Similar to Dilithium
 Reduction in the QROM depends on SelfTargetMSIS 	• Key Recovery attacks solve an LWE instance
• Lossy-soundness in specific parameters regime	 Forgery attacks solve a SIS instance

Thank you!

