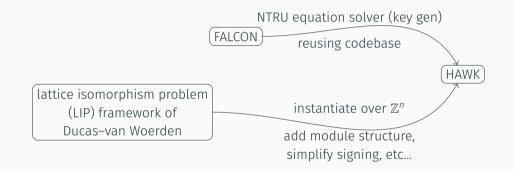
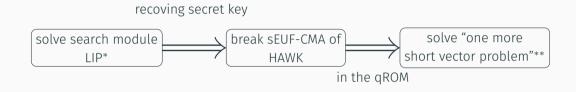
HAWK

Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr, Yu-Hsuan Huang, Thomas Pornin, Eamonn W. Postlethwaite, Thomas Prest, Ludo N. Pulles, Wessel van Woerden HAWK is a hash-and-sign signature scheme with (rough) pedigree



These simplifications come at some theoretical costs

These simplifications come at some theoretical costs



Throughout design HAWK our rationale was

- · formal reductions \Rightarrow robustness of *design*,
- · cryptanalysis (with experiments) \Rightarrow robustness of *parameters*.

They also bring some practical gains: isochronous, no floating points, and

	HAWK-512	HAWK-1024
Speed on x86 "Coffee Lake" with AVX2 (clock cycles)		
Key pair generation Signature generation Signature verification	$\begin{array}{c} 8.43 \times 10^{6} \\ 8.54 \times 10^{4} \; (4.37 \times 10^{4}) \\ 1.48 \times 10^{5} \; (1.24 \times 10^{5}) \end{array}$	$\begin{array}{c} 4.37 \times 10^{7} \\ 1.81 \times 10^{5} \ (8.54 \times 10^{4}) \\ 3.03 \times 10^{5} \ (2.55 \times 10^{5}) \end{array}$
Sizes of various objects in bytes		
Private key size	184	360
Public key size	1024	2440
Signature size	555	1221
RAM usage in bytes		
Key pair generation	14336	27648
Signature generation	4096 (5272)	7168 (9512)
Signature verification	6144 (8768)	11264 (16512)

randomly sample a lattice with a trapdoor,

release public description of the lattice,

hash a message to a target in ambient space,

sample a nearby lattice vector via trapdoor,

check distance to target and inclusion in lattice.

(FALCON: NTRU lattices via f, g) (FALCON: NTRU basis with h) (FALCON: hash to uniform in \mathbb{Z}_q^{2n}) (FALCON: use FALCON tree) (FALCON: use NTRU basis)

randomly sample a lattice with a trapdoor,

release public description of the lattice,

- hash a message to a target in ambient space,
- sample a nearby lattice vector via trapdoor,
- check distance to target and inclusion in lattice.

(FALCON: NTRU lattices via f, g) (FALCON: NTRU basis with h) (FALCON: hash to uniform in \mathbb{Z}_q^{2n}) (FALCON: use FALCON tree) (FALCON: use NTRU basis)

A problem: we must be able to sample nearby lattice vectors for any sampled lattice.

randomly sample a lattice with a trapdoor,

release public description of the lattice,

- hash a message to a target in ambient space,
- sample a nearby lattice vector via trapdoor,
- check distance to target and inclusion in lattice.

(FALCON: NTRU lattices via f, g) (FALCON: NTRU basis with h) (FALCON: hash to uniform in \mathbb{Z}_q^{2n}) (FALCON: use FALCON tree) (FALCON: use NTRU basis)

A solution (?): fix a single "simple" lattice that has "good" properties, e.g. \mathbb{Z}^n .

randomly sample a lattice with a trapdoor,

release public description of the lattice,

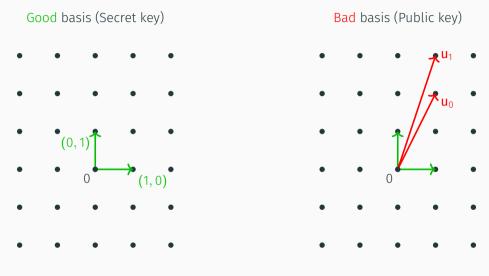
- hash a message to a target in ambient space,
- sample a nearby lattice vector via trapdoor,
- check distance to target and inclusion in lattice.

(FALCON: NTRU lattices via f, g) (FALCON: NTRU basis with h) (FALCON: hash to uniform in \mathbb{Z}_q^{2n}) (FALCON: use FALCON tree) (FALCON: use NTRU basis)

A solution (?): fix a single "simple" lattice that has "good" properties, e.g. \mathbb{Z}^n .

A new perspective: the lattice isomorphism framework of Ducas-van Woerden.

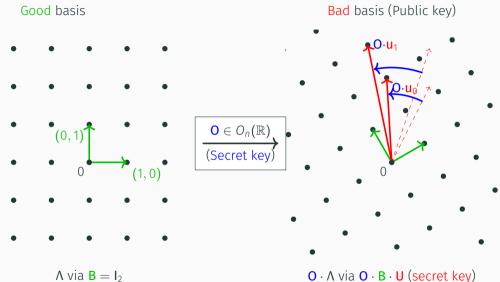
Intuition: put the randomness not in the *lattice*, but in its *rotation*.



 Λ via $\mathbf{B} = \mathbf{I}_2$

Λ via **B** · **U** (secret key)

Intuition: put the randomness not in the *lattice*, but in its *rotation*.



A via $\mathbf{B} = \mathbf{I}_2$

6

Lattice Isomorphism Problem (search)

Given $\mathbf{B}, \mathbf{B}' \in GL_n(\mathbb{R})$ for which $\Lambda(\mathbf{B}) \cong \Lambda(\mathbf{B}')$ find $\mathbf{O} \in O_n(\mathbb{R})$ and $\mathbf{U} \in GL_n(\mathbb{Z})$ such that

 $\mathsf{B}' = \mathbf{O} \cdot \mathsf{B} \cdot \mathbf{U}.$

Lattice Isomorphism Problem (search)

Given $\mathbf{B}, \mathbf{B}' \in GL_n(\mathbb{R})$ for which $\Lambda(\mathbf{B}) \cong \Lambda(\mathbf{B}')$ find $\mathbf{O} \in O_n(\mathbb{R})$ and $\mathbf{U} \in GL_n(\mathbb{Z})$ such that

 $\mathsf{B}' = \mathbf{O} \cdot \mathsf{B} \cdot \mathsf{U}.$

Problem: how to sample $O_n(\mathbb{R})$? It is large and contains reals!

Lattice Isomorphism Problem (search)

Given $\mathbf{B}, \mathbf{B}' \in GL_n(\mathbb{R})$ for which $\Lambda(\mathbf{B}) \cong \Lambda(\mathbf{B}')$ find $\mathbf{O} \in O_n(\mathbb{R})$ and $\mathbf{U} \in GL_n(\mathbb{Z})$ such that

 $\mathsf{B}' = \mathbf{O} \cdot \mathsf{B} \cdot \mathsf{U}.$

Problem: how to sample $O_n(\mathbb{R})$? It is large and contains reals! We move to the Gram setting, $\mathbf{B} \mapsto \mathbf{Q} = \mathbf{B}^t \mathbf{B}$ and therefore

 $B' \mapsto Q' = {B'}^t B' = U^t B^t O^t O B U = U^t Q U$, (we say $Q \cong Q'$).

Lattice Isomorphism Problem (search, Gram formulation) Given $\mathbf{Q}, \mathbf{Q}' \in S_n^{>0}(\mathbb{R})$ with $\mathbf{Q} \cong \mathbf{Q}'$ find $\mathbf{U} \in GL_n(\mathbb{Z})$ such that

 $\mathbf{Q}' = \mathbf{U}^t \mathbf{Q} \mathbf{U}.$

Let $[\mathbf{Q}] = { \mathbf{U}^t \mathbf{Q} \mathbf{U} : \mathbf{U} \in GL_n(\mathbb{Z}) }$, search LIP is within some $[\mathbf{Q}]$.

Let $[\mathbf{Q}] = {\mathbf{U}^t \mathbf{Q} \mathbf{U} : \mathbf{U} \in GL_n(\mathbb{Z})}$, search LIP is within some $[\mathbf{Q}]$.

In particular we consider the integer lattice \mathbb{Z}^n and therefore

 $[\mathsf{I}_n(\mathbb{Z})] = \{\mathsf{U}^t\mathsf{U} \colon \mathsf{U} \in GL_n(\mathbb{Z})\}.$

Let $[\mathbf{Q}] = {\mathbf{U}^t \mathbf{Q} \mathbf{U} : \mathbf{U} \in GL_n(\mathbb{Z})}$, search LIP is within some $[\mathbf{Q}]$.

In particular we consider the integer lattice \mathbb{Z}^n and therefore

 $[\mathsf{I}_n(\mathbb{Z})] = \{\mathsf{U}^t\mathsf{U} \colon \mathsf{U} \in GL_n(\mathbb{Z})\}.$

Idea: sample a **U** to use as a trapdoor, and let $\mathbf{Q} = \mathbf{U}^{t}\mathbf{U}$ be public.

Let $[\mathbf{Q}] = {\mathbf{U}^t \mathbf{Q} \mathbf{U} : \mathbf{U} \in GL_n(\mathbb{Z})}$, search LIP is within some $[\mathbf{Q}]$.

In particular we consider the integer lattice \mathbb{Z}^n and therefore

 $[\mathsf{I}_n(\mathbb{Z})] = \{\mathsf{U}^t\mathsf{U} \colon \mathsf{U} \in GL_n(\mathbb{Z})\}.$

Idea: sample a **U** to use as a trapdoor, and let $\mathbf{Q} = \mathbf{U}^{t}\mathbf{U}$ be public.

Recovering trapdoor U is search LIP in $[I_n(\mathbb{Z})]$. Given $I_n(\mathbb{Z}), Q$ with $I_n(\mathbb{Z}) \cong Q$ find $U \in GL_n(\mathbb{Z})$ such that

 $\mathbf{Q} = \mathbf{U}^t \mathbf{I}_n(\mathbb{Z}) \mathbf{U} = \mathbf{U}^t \mathbf{U}.$

(HAWK: sample (structured) $U \in GL_n(\mathbb{Z})$, set $Q = U^t U$)

Kg release public description of element of $[I_n(\mathbb{Z})]$,

(HAWK: release **Q**)

Let $Q = U^t U$. Vectors of $\Lambda(U)$ are represented under Q by their integer coordinates.

- $\mathbf{Q} \in S_n^{>0}$ defines a norm, $\|\cdot\|_{\mathbf{Q}}^2 \colon \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \ \mathbf{w} \mapsto \mathbf{w}^t \mathbf{Q} \mathbf{w}$,
- \cdot let $\mathbf{x} = \mathbf{U}\mathbf{w}$ for $\mathbf{w} \in \mathbb{Z}^n$, then

$$\|\mathbf{x}\|^{2} = \|\mathbf{w}\|_{\mathbf{Q}}^{2} = \|\mathbf{U}^{-1}\mathbf{x}\|_{\mathbf{Q}}^{2}$$

(HAWK: sample (structured) $U \in GL_n(\mathbb{Z})$, set $Q = U^t U$)

release public description of element of $[I_n(\mathbb{Z})]$,

(HAWK: release **Q**)

hash a message to a target in ambient space,

(HAWK: hash message (with salt) to $\mathbf{h} \in \{0, 1/2\}^n$)

Sgn sample a short vector (under $\|\cdot\|_Q$) in the coset of **h** via trapdoor, (HAWK: sample $\mathbf{x} \leftarrow D_{\mathbb{Z}^n + \mathbf{U}\mathbf{h},\sigma}$ and set $\mathbf{w} = \mathbf{U}^{-1}\mathbf{x} \in \mathbb{Z}^n + \mathbf{h}$, return (salt, w))

(HAWK: sample (structured) $U \in GL_n(\mathbb{Z})$, set $Q = U^t U$)

release public description of element of $[I_n(\mathbb{Z})]$,

(HAWK: release **Q**)

hash a message to a target in ambient space,

(HAWK: hash message (with salt) to $\mathbf{h} \in \{0, 1/2\}^n$)

Sgn sample a short vector (under $\|\cdot\|_Q$) in the coset of **h** via trapdoor, (HAWK: sample $\mathbf{x} \leftarrow D_{\mathbb{Z}^n + \mathsf{U}\mathbf{h},\sigma}$ and set $\mathbf{w} = \mathbf{U}^{-1}\mathbf{x} \in \mathbb{Z}^n + \mathbf{h}$, return (salt, **w**))

Here is the wonder of \mathbb{Z}^n !

- We may (regardless of U) sample $D_{\mathbb{Z}^n+Uh,\sigma}$ coordinatewise from $D_{\mathbb{Z},\sigma}$ and $D_{\mathbb{Z}+1/2,\sigma}$,
- $\cdot \ \mathbb{Z}$ has small smoothing parameter.

(HAWK: sample (structured) $U \in \textit{GL}_n(\mathbb{Z}),$ set $Q = U^t U)$

(HAWK: release **Q**)

hash a message to a target in ambient space,

(HAWK: hash message (with salt) to $\mathbf{h} \in \{0, 1/2\}^n$)

gn sample a short vector in the coset of **h** via trapdoor, (HAWK: sample $\mathbf{x} \leftarrow D_{\mathbb{Z}^n + \mathbf{U}\mathbf{h},\sigma}$ and set $\mathbf{w} = \mathbf{U}^{-1}\mathbf{x} \in \mathbb{Z}^n + \mathbf{h}$, return salt and \mathbf{w})

/f check length of signature and correctness of coset.

(HAWK: recompute **h**, check length of $\|\mathbf{w}\|_{\mathbf{Q}}^2$ and that $\mathbf{h} - \mathbf{w} \in \mathbb{Z}^n$)

The structure and sampling of ${\bf U}$

 \cdot we choose a rank two **U** over a power of two cyclotomic field *K*

rank 2*n* lattices \mapsto rank 2 module lattices over *K* $U \in GL_{2n}(\mathbb{Z}) \mapsto U \in GL_2(O_K)$ $(U^t, O^t) \mapsto (U^*, O^*)$ $O \in O_{2n}(\mathbb{R})$ "orthogonal" $\mapsto O \in U_2(K)$ "unitary" The structure and sampling of ${\bf U}$

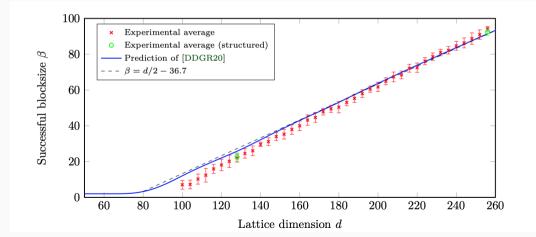
 \cdot we choose a rank two U over a power of two cyclotomic field K

rank 2*n* lattices \mapsto rank 2 module lattices over *K* $U \in GL_{2n}(\mathbb{Z}) \mapsto U \in GL_2(O_K)$ $(U^t, O^t) \mapsto (U^*, O^*)$ $O \in O_{2n}(\mathbb{R})$ "orthogonal" $\mapsto O \in U_2(K)$ "unitary"

- we sample **U** as in NTRU with q = 1
 - sample entries of first column $(f g)^t \in O_k^2$ from a centred binomial distribution,
 - "complete" by finding second column $(F G)^t \in O_K^2$ with fG gF = 1.

Cryptanalysis?

Key recovery: lattice reduction $Q \mapsto V^t Q V = I_{2n}(\mathbb{Z})$. In particular we must find at least one length one vector.



14

Cryptanalysis?

Signature forgery is equivalent to

- finding some $\mathbf{y} \in \mathbb{Z}^n$ (equal to $\mathbf{h} \mathbf{w}$ in honest signatures),
- such that **y** is close to **h** under $\|\cdot\|_{Q}$.

This is an approximate CVP instance, we use the nearest colattice algorithm of Espitau–Kirchner to estimate its complexity.

Thanks

SAMPLE_{ac-omSVP, $\mathcal{A}(1^{\lambda})$}

- 1: $\mathcal{L}_{samples} \leftarrow \{\mathbf{0}\}$
- 2: $(\mathbf{Q}, L, \sigma) \leftarrow \text{Init}(1^{\lambda})$
- 3: $\mathbf{W}^{\star} \leftarrow \mathcal{A}^{samp}(\mathbf{1}^{\lambda}, \mathbf{Q}, L, \sigma)$
- 4: return $\llbracket \mathbf{w}^{\star} \in \mathbb{Z}^{2n} \land \lVert \mathbf{w}^{\star} \rVert_{\mathbf{Q}} \leq L \land \mathbf{w}^{\star} \not\in \mathcal{L}_{samples} \rrbracket$

samp

- 1: $\mathbf{W} \leftarrow D_{\mathbf{Q},\sigma}$
- 2: $\mathcal{L}_{samples} \leftarrow \mathcal{L}_{samples} \cup \{W\}$
- 3: return w