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(1) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(11) To be able to prove analytically that the cryptosystem 1s indeed resistant towards
quantum computers;

(111) To utilize problems mentioned in point (1) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

' (1v) To use “simple” mathematics in order to achieve maximum simplicity in design,
>‘ such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

‘ 2O A0S
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(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;
(vi1) To have a sufficiently large signature space;

(vii1) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(1x) To be able to be mounted on hardware with ease;

'\‘ (x) The plaintext to signature expansion ratio 1s kept to a minimum.

-
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MODULAR REDUCTION PROBLEM (MRP)

Let N = ]_[;f:] pi be a composite number and n = /(N). Let p; be a factor of N. Choose

a € (2"1,N). Compute A= ¢ (mod py).

The MRP is, upon given the values (A, N, p;), one is tasked to determine o € (2"~ 1, N).
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COMPLEXITY OF SOLVING THE MRP

Let n,, = {(pi) be the bit length of p;. The complexity to obtain ¢ is O(2" "7« ). When de-

H— Hlf

ploying Grover’s algorithm on a quantum compuiter, the complexity to obtain ¢ is O(272 ).
In other words, if p;, ~ N°, for some § € (0,1), the complexity to obtain o is f)l[N' L”'J

‘Wth deluwnﬂ Grm er’s algorithm on a quantum computer, the complexity to obtain o 1s

)(N 7 ).

s
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THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and

inability to retrieve variables from a given modular multivariate linear equation. But before

that we will put forward a tamous theorem of Minkowski that relates the length of the
shortest vector 1n a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an w-dimensional lattice, there exists a non-zero vector v with
|
' vl <vow der(L]m
-

"~ In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector 1s known to be NP-hard under ran-

N o TN
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which 1s sufficient for many applications.

Remark 1. Let f(xy,x2,...,X;) = ay\x; + axxa + ... + apxy be a linear polynomial. One
can hope to solve the mudufﬂr linear equation f(,r[ X2,...,X) =0 (mod N), that is to be
able to find the set of solutions (y1,v2,...,Vx) € ZK., when the product of the unknowns are
smaller than the modulus. More precisely, let X; be upper bounds such that |y;| < X; for
l,....k. Then one can roughly expect a unique solution whenever the condition [[; X; <N
hm‘du (see Herrmann and May (2008)). It is common knowledge that under the same
.:r)ﬂd.!rmn [1:Xi < N the unique solution (yy,y2,...,yx) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,

this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
( 2006); Girault et al. (1990) and Nguyen (2004)).

TNV N
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We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have [1;X; > N' € then the linear equation f(xi,x JXg) =
‘:‘_1 aixi =0 (mud N] usually has NE many solutions, which is ci.p,-::rn{fnfmf in fhe* hn‘ size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

Narey
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System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {p;} }‘1:1- Let N = ]_[;le pi. As an example, if j =43, N 1s

256-bits. Let n = ¢(N) be the bit length of N. Choose a random prime in g € Zy of order

G, where at most G, ~ N° for a chosen value of 8 € (0.1) and & — 0. That is, ¢% = 1
g Wher g S 6
(mod N). Choose a random prime R € Zgy) of order Gg, where Gr =~ O(N)® for € — 1.

CONTINUE...
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That is, choose R with a large order in Zj ). Let ng, = {(GR) be the bit length of Gg. Such
R, has its own natural order in Z, ¢ ). Let that order be denoted as Gg,. We can observe the

natural relation given by R“*% =1 (mod G,) where ¢(N) =0 (mod G,) and ¢(G,) =0

(mod Ggg). Let Ny (G,) = = ((9(Gg)) be the blt length of ¢(G,) and 1§ (G -+ = ((@(Grg)) be

the bit length of ¢(Gge). Let g be a random k-bit prlmL where (g — 1)2 l'is a prime. The
system parameters are (g,k,q,N,R,Gg,Grg, 1,14, )-
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Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters l[:l_r_;'.k,.:g,N.RﬁG#? GRrg,n,1g(G,) ).
(}utput' Public verification key pair, V = (V1, V>), and private signing key, o

. Choose random @ € (2"¢(G% )72 2M(Ge )= 1 ).
. Compute public verification key, V; = a (mod GRiﬁqJ
. Compute public verification key, V> = H( ot (mod g~ ]}
. Output public verification key pair, V = (V},V>) and private signing key «.

\n/\
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2nd Oxford
Post-Quantum

Cryptography

KAZ-SIGN SIGNING

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,k,q, N,R,Gg,Ggg,n,ny (Gy) ), private signing key, o, and

message to be signed, m € Zy
QOutput: Signature pair, § = (51.95>).
1: Compute the hash value of the message, h = H(m).
2: Choose random r € {:E”‘?":‘:"-E-”_;2”‘*“'5‘-"'-&-"_l:}.
3: Compute S| = r (mod Gﬁng}.
4: Compute GS; = ged(S [.Gﬁg ).
5: Compute GS12 = ged(r, ¢ (Greq?(Gg'))).

CONTINUE...
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- if GS1» < 100 then
Repeat from Step 2.
- end if
. Compute S> = GS1 (o’ +h)r~! (mod Ggreq?).

10: if §5 does not exist then

11: Repeat from Step 2.

12: end if

13 Output signature pair, § = (S,5>), and destroy r.

s
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Algorithm 3 KAZ-SIGN Verification Algorithm
Input: System parameters (g.k,q,N ._R,GquRg,n._anE]}} public verification key pair,

V = (Vi1,V5), message, m, and, signature pair, S = (51,5,).
Output: Accept or reject
Compute the hash value of the message to be verified, h = H(m).
Compute GS;, = ged(Sy, Ggy).
Compute o =V (mod Ggg).

Compute wg = GSIr(VIS‘ + h}SI_' (mod Ggng}.

nral e A

5: Compute wy = wg — 5.

! 6: if w; = 0 then

' 7: Reject signature |

‘ 8: else Continue step 10 CONTINUE...
9: end if

N T Y
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. Compute wa = GS1,-(0 +h)51_1 (mod G,eng).
. Compute w3z = wa — 5.
- if w3 = 0 then
Reject signature |
- else Continue step 16
. end if
. Compute wy = 5152 — GS1,h (mod q)
. Compute ws = GS“VIS] (mod gq)
18: Compute wg = wyq — ws
19: if wg # O then
20: Reject signature |

21: else Continue step 23 CONTINUE
22: end if _

R E\VANS S
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. Compute wy = E.Sl_l (mod

] T

. Compute wgg = ((5152 — GS1,h)(GS “_:)—1)&“? (mod ¢?) and wg = H(wg).
. Compute wg = wg — V>.
. if wg # 0 then
Reject signature |
. else Continue step 30
. end if

CONTINUE...
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30: Compute zo = R>%2 (mod Gg).
. Compute y; = g% {"nma:l N).

32: Compute 7| = Rc:?,,:l '+h) (mod Gg,) {:de G.E:]‘
3: Compute yr» = ¢! (mod N). |
. if y; = y, then
accept signature
. else reject signature L
- end if

75
% LA A
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Steps 4, 5, 6, 7, 8, and 9 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type - 1, steps 10, 11, 12, 13, 14 and 15 during verification
are known as the KAZ-SIGN digital signature forgery detection procedure type — 2,
steps 16, 17, 18, 19, 20 and 22 during verification are known as the KAZ-SIGN

?

digital signature forgery detection procedure type — 3, and steps 23, 24, 25, 26, 27, 28,
and 29 are known as the KAZ-SIGN digital signature forgery detection procedure type
-4
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Proof of correctness (Verification steps 30, 31, 32, 33, 34, 35, 36 and 37)

We begin by discussing the rationale behind steps 30, 31, 32, 33, 34, 35, 36 and 37 with re-
lation to the verification process. Observe the following,

RS152 RIGS| (01 +h)(r) 7! RGS1 (V) i
RS152

gr=g" =g =g =g¢" (mod N).

because & =V (mod Ggg). As such the verification process does indeed provide an indi-
cation that the signature 1s indeed from an authorized sender with the private signing key

g
Swrze

Q
S N\
T2 A

CONTINUE...
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Proof of correctness (Verification steps 4, 5, 6, 7, 8, and 9: KAZ-SIGN digital
signature forgery detection procedure type — 1)

In order to comprehend the rationale behind steps 4, 5, 6, 7, 8, and 9, one has to observe
the following,

:rifl'[

wo = GS1,(V)' +h)S7! # GS1,(a® +h)S7! (mod Greq?)

because o # V| (mod GRE.:; ). Hence, w; # 0.

s
% LA A

CONTINUE...
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Proof of correctness (Verification steps 10, 11, 12, 13, 14 and 15: KAZ-SIGN
digital signature forgery detection procedure type — 2)

In order to comprehend the rationale behind steps 10, 11, 12, 13, 14 and 15, one has to
observe the following;

wa = GSi(ap +h)S; ' # GS1,(a% +h)S;! (mod Greq?).

because @ # o (mod Gqug) where o = V| (mod Gg,). Hence, w3y # 0.

CONTINUE...




2nd Oxford
Post-Quantum

THE DESIGN RATIONALE CrypLogTRy

Proof of correctness (Verification steps 16, 17, 18, 19, 20, 21, and 22: KAZ-SIGN
digital signature forgery detection procedure type — 3)

In order to comprehend the rationale behind steps 16, 17, 18, 19, 20, 21, and 22, one has to
observe

$18, — GS1,h = GS, V' (mod q)

bccausc o =V (mod g). Hence, wg = 0.

CONTINUE...

Eorss
% LA A




2nd Oxford
Post-Quantum

THE DESIGN RATIONALE CrypLogTRy

Proof of correctness (Verification steps 23, 24, 25, 26, 27, 28, and 29 : KAZ-SIGN
digital signature forgery detection procedure type — 4)

In order to comprehend the rationale behind steps 23, 24, 25, 26, 27, 28, and 29, one has to
observe
.

wgo = (5182 — GS1,1)(GS),) ™')™ = (@)™ =a*  (mod ¢°).

By computing wg = H(wgg), we finally have wg = 0.

CONTINUE...

s
% LA A
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Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type — 1 and KAZ-SIGN digital signature forgery detection
procedure type — 2.

An adversary utilizing a random rg computes the corresponding parameter pair given by
(S1 (mod Ggreq®),GS1,). Next, the adversary could compute either one of the following:

1. S, =GS,(V;'+h)S7! (mod Ggeg?); or
2. 8, =GSy,(0p' +h)S;" (mod Ggreq?)

Since a =V = oy (mod G,qg), the forged signature pair will pass steps 30, 31, 32, 33, 34,
35, 36 and 37. However, the signature pair will fail KAZ-SIGN digital signature forgery
detection procedure type — 1 or KAZ-SIGN digital signature forgery detection procedure

type —2. CONTINUE...
AR N

¢\ L\
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Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type — 3

An adversary utilizing a random r computes the corresponding parameter pair given by

(S; (mod Gﬁng),GSIr}. Next, with a random x € Z, ,» and random unknown prime

p =~ g, the adversary could compute either one of the following:
i) S = GSl,.(‘i.f’l‘gl +h+Grex)S; ' (mod Greg?); or
i) Sr = GSl,.(VIS‘ +h+ G,qg;:)Sl_l (mod Ggepq):; or

i iii) S = GS1,(0 +h+ Grex)S7! (mod Greq?): or

iv) S2 = GS1(a) +h+Grex)S;' (mod Grepq).
N T Y

CONTINUE...
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The forged signature pair will not be able to be detected by either the KAZ-SIGN digi-
tal signature tforgery detection procedure type — 1 or KAZ-SIGN digital signature forgery
detection procedure type — 2. It will also pass steps 30, 31, 32, 33, 34, 35, 36 and 37. How-
ever, the signature pair will fail KAZ-SIGN digital signature forgery detection procedure
type — 3. This 1s because, one would obtain either:

) $152— GS1h = GS1,(Vi' 4 Grex) £ GS1,V;' (mod q); or

i) 15, — GS1,h = GS1,(0 + Grex) £ GS1,V;' (mod g).

C LV

As a note, the corresponding parameter § could also be modulo Gg,pg. Nevertheless, the

above output will remain. CONTINUE...
AR S
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. - . . . 7
An alternative for the adversary would be to derive the corresponding S1 modulo Gg,g~ by
solving the following relation:

515> — GS1/h = GS; ,1-1*"15] (mod G,elqu:} (1)

However, to solve equation (1), the complexity is is O(g). When deploying Grover’s al-
gorithm on a quantum computer, the complexity will be O(g" h'__}. Furthermore ¢ 1s a k-bit
prime number (where k 1s either 128 or 192 or 256 bits). The adversary will not be able to
execute the Chinese Remainder Theorem to reduce this complexity.

s
% LA A
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Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type — 4

An adversary utilizing a random rp and random unknown prime p =~ g computes the corre-
sponding parameter pair (S1 (mod Ggepq),GS1,). Next, the adversary could compute the
following:
_ S ~1
S$> =GS(Vy'+h)S7  (mod Grepg)

The forged signature pair will not be able to be detected by either the KAZ-SIGN digital
signature forgery detection procedure type — 1 or KAZ-SIGN digital signature forgery de-
. tection procedure type — 2 or KAZ-SIGN digital signature forgery detection procedure type
i{ — 3. It will also pass steps 30, 31, 32, 33, 34, 35, 36 and 37. However, the signature pair
‘ will fail KAZ-SIGN digital signature forgery detection procedure type — 4. This 1s because

of the different groups Zgy,pq and Zg,, .. CONTINUE

AR S
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Note that, by replacing V| with o for the above forgery strategy in this section, the forged
signature will not pass KAZ-SIGN digital signature forgery detection procedure type — 3.

This is because o Z V, (mod g).
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Extracting & (mod Gg.q”) from S,.

Observe that,

21 =515, — GS1,h = GS1,&”"  (mod Ggeq®).
),

Since Ggg =0 (mod GSj,), we can have

2=2GS;' =a®  (mod Greg?) (2)

where Gryr = G GS;,!. However, ged(S1, 9(Gre2g?)) # 1. Suppose z3 = ged (S, ¢ (Gre2g?)).
One can then proceed to compute z4 = 235 (mod ¢(Gre2g?®)). As a result, one can ob-
tain:

AN
l\‘.‘ ' =0% (mod Grerq?) 3)

Thus, for both cases (2) and (3), the complexity to obtain & modulo GRgng 1S O(Gﬁ-ggqg).

Y = == Y =
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Extracting o via KAZ-SIGN digital signature forgery detection procedure type
-4

Through the KAZ-SIGN digital signature forgery detection procedure type — 4, the adver-
sary can proceed to obtain the value wg; = o (mod qg) from the extracted value wgy = a*
(mod g?) from a valid signature.

Then, the challenge faced the adversary is to retrieve & from wg; = @ (mod ¢?). This is

the MRP. Since Gg,q < g, the complexity of solving the MRP via V; is much higher than
. the complexity of solving the MRP via o¢ (mod qz).

g
‘. As such, the complexity of solving the MRP via a (mod g*) will be the determining factor
in 1identifying the suitable key length for each security level.

B N
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Modular linear equation of S,.

In this direction we obtain rp = §; (mod Gg,).

From the above, observe that one can analyze S, as follows,
S» = GS1 (> +h)r ' = GS, (V' +h)rr' (mod Ggy)
Since Gge =0 (mod GSj,), it implies

(&5 +h)r ' = (V2 4 h)rr' (mod Ggeo)

{

o)V

where Gge2 = GRgGSI_FI. Moving forward we have,

e

rEa® — (Vo' h)r+hrr =0 (mod Greo)

(4CONTINUE...
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Let & be the upper bound for [:Ejl and 7 be the upper bound for r. From Conjecture 1, 1f
one has the situation where &7 > Ggg2, then there is no efficient algorithm to output all
the roots of (4). That 1s, (4) llHll"ill“r’ has Ggg2 many solutions, which 1s exponential in the
bit-size of Gge.

To this end, since a°! is exponentially large, it is clear to conclude that &7 > GRe2. This
1mp11u~,, there 1s no efficient algorithm to output all the roots of (4).

\n/\
% LA A
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Another “Expensive’ Problem Related To KAZ-SIGN: The Second Order Dis-
crete Logarithm Problem (2-DLP)

Let N be a composite number, g a random prime in Zy of order G, where at most G, =~ N 5
for § € (0,1) and § — 0. That is, g8 =1 (mod N). Choose a random prime Q € Z(N)
of order Gy, where Gg =~ ¢(N)* for € — 1. That is, choose Q with a large order in Z .
Such Q, has it own natural order in Z; ). Let that order be denoted as Gg,. We can

observe the natural relation given by Q92 =1 (mod G,) and ¢(N) =0 (mod Gy).

Then choose a random integer x € Zy(g,) wWhere x ~ ¢®(Gg). Suppose from the relation
given by

gQ\‘ (mod (p(N)] = A (mod N) (5)

. one has solved the Discrete Logarithm Problem (DLP) upon equation (5) in polynomial

=
' time on a classical computer and obtained the value X where O # X (mod ¢(N)) and

gX =A (mod N), The relation @* # X (mod ¢(N)) would result in the non-existence of
the discrete logarithm solution for Q* =X (mod ¢(N)).
_ CONTINUE...

S
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The 2-DLP is, upon given the values (A,g,N,Q), one is tasked to determine .
where x =~ ¢ (G, ) such that equation (5) holds.

X "_: “"’{l‘”f; I

Let 0 =T (mod ¢(N). From the predetermined order of g € Zy, during the process of
solving the DLP upon equation (5), a collision would occur prior to the tull cycle of g. As

such, the process of solving the DLP upon equation (5) to obtain X ~ N° would occur in
polynomial time on a classical computer. And since 77 < ¢(N) and 7 = N, the relation
I Q' #X (mod ¢(N)) will hold.

7 gy
"' 7 “\ CONTINUE...




2nd Oxford
Post-Quantum

THE DESIGN RATIONALE CrypLogTRy

Furthering on the discussion, one has the relation g% =1 (mod N). As such, from the
value X < G, obtained from equation (5), one can construct the set of solutions given by
To =X+ GE.’ fort =0, l,._, 3,.... Now let * =T} (mod ¢(N)). Following through,since
T 1s an element from the set of solutions, one can have the relation

T, — X
G,

5

I, =

Since G4, X ~ N?, and ¢(N) =~ N, the complexity to obtain 77, is O(N'=9). When deluy—

.a
ing Grover’s algorithm on a quantum computer, the complexity to obtain .f;rl 1S U{,__N 7).

N
./‘\‘ N[, “\ CONTINUE...
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To this end, note that if one proceeds to solve the DLP upon Q* =X (mod G,), one can
obtain the value xo = x (mod Gy,). From the preceding sections, this is in fact the MRP.
It is easy to see that with correct choice of parameters (x,Gp,), the complexity of 2-DLP

and MRP can be made the same. Hence, a more “non-expensive” method in discussing the
needs of the KAZ-SIGN 1s directly via the MRP.
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We provide here information on size of the key and signature based on security level infor-

mation from Table 1 (for 6 = 0.23) where £(V) is the length of an output generated by a
256-bit hash function.

NIST | Number of | Security | Length of Public Private | Signature Size | ECC key
Security primes level, | parameter key size, key size, (S1,957) size
Level in P k N (bits) | (V1,V2) (bits) | o (bits) (bits) (bits)
1 195 128 1662 ~ 2ii;|—4256 ~ 384 ~ 700 256
3 290 192 2667 ~ 3325;_8256 ~ 576 ~ 1046 384
5 390 256 3783 | 4f%6256 ~ 768 ~ 1409 521

TN NS
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D. J. Bernstein 08:19 “
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With high probability, a public key and
signed message for KAZ-SIGN v1.3
allow the following script to forge
signatures on attacker-chosen
messages under that public key. The
script checks that the signatures
pass verification with the reference
software. The success probability
is 93/100, 90/100, 90/100 for the KATs
@ in the kaz1662, kaz2667, kaz3783
directories respectively.

---D. J. Bernstein
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1) To identify the algebraic structures of thel0% KAZ-SIGN valid sighature
parameters (S;, S,) that could not be utilized to forge signatures under
attacker chosen-message for the corresponding public verification key set.

2) To utilize these algebraic structures upon all KAZ-SIGN valid signature
parameters (S, , S,) to be generated — with minimum amendment on KAZ-
SIGN v1.3. That is, to aspire to only include additional “filtering” procedures
during signing and verification and no changes upon keygen and no additional
garameters to be introduced (no new keys and signature parameters) and not
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