LESS: Digital Signatures from Linear
Code Equivalence

2nd Oxford Post-Quantum Cryptography Summit

Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-Francois Biasse,
Andre Esser, Kris Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo
Persichetti, Markku-J. O. Saarinen, Paolo Santini, Robert Wallace

5 September 2023

FA DEPARTMENT OF
QXU MATHEMATICAL SCIENCES

mailto:epersichetti@fau.edu
mailto:epersichetti@fau.edu
mailto:epersichetti@fau.edu

E&U In This Talk

Roadmap

» Motivation and Background

» Code Equivalence

» LESS

» Considerations

2/24

Roadmap

» Motivation and Background

3/24

E&U Error-Correcting Codes

1 Motivation and Background

[n, k] Linear Code over I,

A subspace of dimension k of IE‘E. Value n is called length.

Hamming Metric

wt(x) = {i:x#0,1 <i<n}|dxy) =wtx—y).
Minimum distance (of €): min{d(x,y) : x,y € C}.

Generator Matrix

G e FZX" defines the code as : x€€ <= x = uGforu € IB‘Z.
Not unique: SG, S € GL(k, q); Systematic form: (I |M).

Parity-check Matrix

H e]Fé"fk)xn defines the code as: xe@ <= HxT = 0 (syndrome).

Not unique: SH, S € GL(n — k, q); Systematic form: (MT|I,_).

w-error correcting: 3 algorithm that corrects up to w errors.

4/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

5/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

5/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

5/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness is an assumption which depends on chosen code family.

5/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

5/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

5/24

E&U Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a little differently.

5/24

Roadmap

» Code Equivalence

6/24

FEa&U Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of
finding the mask itself?

7/24

FEa&U Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of
finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight
distribution of the code.

7/24

FEa&U Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of
finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight
distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of
isomorphism problem which recalls other similar ones (isomorphism of polynomials,

isogenies, etc.)

7/24

FEa&U Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of
finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight
distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of
isomorphism problem which recalls other similar ones (isomorphism of polynomials,

isogenies, etc.)

Could Code Equivalence be used as a stand-alone problem?

7/24

FEa&U Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of
finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight
distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of
isomorphism problem which recalls other similar ones (isomorphism of polynomials,
isogenies, etc.)

Could Code Equivalence be used as a stand-alone problem?

Possible to construct a ZK protocol based exclusively on the hardness of the code

equivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., Santini, 2020)

7/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:

e Permutations: 7((a1, az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-

8/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:
e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"

u((al,az, A ,an)) = (Vl . aﬂ(l),VQ : aﬂ(z), N aw(n))

Monomial matrix: permutation x diagonal.

8/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:
e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"
,U((ala as,... >an)) = (Vl “Or(1),V2 " Ar(2)y- -+ Vn " aﬂ(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism (we usually ignore this in cryptography).

8/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:
e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"
,U((ala as,... >an)) = (Vl “Or(1),V2 " Ar(2)y- -+ Vn " aﬂ(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:

8/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:
e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"
,U((ala as,... >an)) = (Vl “Or(1),V2 " Ar(2)y- -+ Vn " aﬂ(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:

e G = My(q), the monomial group;

8/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:
e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"
,U((ala as,... >an)) = (Vl “Or(1),V2 " Ar(2)y- -+ Vn " aﬂ(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:
e G = My(q), the monomial group;

o« X C IFZX”, the set of generator matrices in RREF.

8/24

E&U Isometries in the Hamming Metric

2 Code Equivalence

Three types:
e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"
,U((ala as,... >an)) = (Vl “Qr(1)>V2 - Ar(2)s- -5 Vn - aﬂ'(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:
e G = My(q), the monomial group;
o« X C IFZX”, the set of generator matrices in RREF.

Code-based Group Action

*x: AxG — X
(Go,Q) + RREF(Go-Q)

8/24

E&U Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

9/24

E&U Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

We talk about permutation, linear (and semilinear) equivalence, respectively.

9/24

E&U Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem,
according to the chosen notion of isometry.

9/24

E&U Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem,
according to the chosen notion of isometry.

The vectorization problem for our group action is the computational version of code
equivalence.

9/24

E&U Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem,
according to the chosen notion of isometry.

The vectorization problem for our group action is the computational version of code
equivalence.

Linear Equivalence Problem (LEP)
Given €, €; C [y, find a monomial such that w(€o) = €.
Equivalently, given generators Gg, G € IF’(;X", find Q € My, (q) such that

G, = RREF(GoQ).

9/24

Roadmap

» LESS

10/24

E&U The LESS ZKID

3 LESS

Select hash function H.

11/24

E&U The LESS ZKID

3 LESS

Select hash function H.

Key Generation

e Choose random g-ary code €, given by generator matrix Gp.
e sk: monomial matrix Q.
e pk: matrix G; = RREF(G(0).

11/24

E&U The LESS ZKID

3 LESS

Select hash function H.

Key Generation

e Choose random g-ary code &, given by generator matrix Gp.
e sk: monomial matrix Q.
e pk: matrix G; = RREF(G(0).

Prover Verifier
Choose random monomial matrix Q € My (q).
Compute G = RREF(Gy0Q).
Set emt = H(G)

cmt

L Select random b € {0, 1}.

= rsp

If b=0setrsp =0Q Verify H(RREF(Gy - rsp)) = cmt.
If b= 1setrsp=Q 1Q Verify H(RREF (G - rsp)) = cmt.

11/24

E&U LESS Signatures

3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

12/24

E&U LESS Signatures

3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

Before Fiat-Shamir, reduce soundness error 1/2 —> t = \ parallel repetitions.

12/24

E&U LESS Signatures
3 LESS
It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 —> t = \ parallel repetitions.

The protocol can be greatly improved with the following modifications:

(Barenghi, Biasse, P., Santini, 2021)

12/24

E&U LESS Signatures
3 LESS
It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 —> t = \ parallel repetitions.

The protocol can be greatly improved with the following modifications:

(Barenghi, Biasse, P., Santini, 2021)

e Use multiple public keys and non-binary challenges.
+ Lower soundness error: 1/2 — 1/2°.
— Rapid increase in public key size.

12/24

E&U LESS Signatures

3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 —> t = \ parallel repetitions.

The protocol can be greatly improved with the following modifications:

(Barenghi, Biasse, P., Santini, 2021)

e Use multiple public keys and non-binary challenges.
+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

12/24

E&U LESS Signatures

3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 —> t = \ parallel repetitions.

The protocol can be greatly improved with the following modifications:

(Barenghi, Biasse, P., Santini, 2021)

e Use multiple public keys and non-binary challenges.
+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

Such modifications do not affect security, only requiring small tweaks in proofs or
switching to equivalent security assumptions.

12/24

Roadmap

» Considerations

13/24

E&U Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

14/24

E&U Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

14/24

E&U Security Considerations

4 Considerations
PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

14/24

E&U Security Considerations

4 Considerations
PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time O(q), we have

Reduces to

PEP +—— LEP

14/24

E&U Security Considerations

4 Considerations
PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time O(q), we have

Reduces to

PEP +—— LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

14/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

H(C)=¢cnet

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.
* Use (weakly) self-dual codes to avoid attack.

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for g > 5.

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for g > 5.

e Algebraic approaches of different nature, for example:

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for g > 5.

e Algebraic approaches of different nature, for example:
* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for g > 5.

e Algebraic approaches of different nature, for example:

* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

15/24

E&U Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7(€o), then H(€1) = m(H(€o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for g > 5.

e Algebraic approaches of different nature, for example:

* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.

15/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

¢ Finding codewords (use ISD).

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
¢ Finding codewords (use ISD).

e Matching to extract permutation.

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.
In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
¢ Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Ny)Cis¢(n, k, q, w) + linear algebra.

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.
In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
¢ Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Ny)Cis¢(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

16/24

E&U Attack Strategy 2: Codeword Search

4 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.
In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
¢ Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Ny)Cis¢(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

Probabilistic algorithm, advantageous when q is large.

16/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1
Ng(w)

. Cl(sdD)(n,k,q,w) > 2N,

17/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1 (d) A
- Cep(n,k,q,w) > 27,
Na(w) ol W)

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

17/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1 (d) A
- Cep(n,k,q,w) > 27,
Na(w) ol W)

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level (plus a third at level 1):

17/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1 (d) A
- Ciopy(n,k,q,w) > 27,
Na(w) 150 (q,w)

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level (plus a third at level 1):

e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

17/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1 (d) A
- Cep(n,k,q,w) > 27,
Na(w) ol W)

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level (plus a third at level 1):
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
e Short: sacrifices PK size to push for smallest signature.

17/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1 (d) A
- Ciopy(n,k,q,w) > 27,
Na(w) 150 (q,w)

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level (plus a third at level 1):
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
e Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function.

17/24

E&U Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

1 (d) A
- Ciopy(n,k,q,w) > 27,
Na(w) 150 (q,w)

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level (plus a third at level 1):
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
e Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function.

We compactly generate and transmit seeds using a seed tree structure.

17/24

E&U Performance

4 Considerations

Protocol parameters (t, w, s) infer performance profile:

18/24

E&U Performance

4 Considerations

Protocol parameters (t, w, s) infer performance profile:

pk = (S - 1)€Gi + Lseed
sig = Csate + Lseed_tree + W * €mono + Edigest

18/24

EAU Performance

4 Considerations

Protocol parameters (t, w, s) infer performance profile:

pk = (S - 1)€Gi + Lseed
sig = Csate + Lseed_tree + W * €mono + Edigest

NIST Parameter Code Params Prot. Params pk sig
Cat. Set n k q t w s | (KiB) (KiB)
LESS-1b 247 30 2| 13.7 84

1 LESS-1i 252 126 127 | 244 20 4| 41.1 5.8
LESS-1s 198 17 8| 959 5.0
LESS-3b 759 33 2| 345 16.8
3 LESS-3s 400200 127 895 26 3| 689 134
LESS-5b 1352 40 2| 64.6 29.8
> LESS-5s 548 274 127 907 37 3| 129.0 26.6

18/24

EAU Performance

4 Considerations

Protocol parameters (t, w, s) infer performance profile:

pk = (S - 1)€Gi + Lseed
sig = Csate + Lseed_tree + W * €mono + Edigest

NIST Parameter Code Params Prot. Params pk sig
Cat. Set n k q t w s | (KiB) (KiB)
LESS-1b 247 30 2| 13.7 84

1 LESS-1i 252 126 127 | 244 20 4| 41.1 5.8
LESS-1s 198 17 8| 959 5.0
LESS-3b 759 33 2| 345 16.8
3 LESS-3s 400200 127 895 26 3| 689 134
LESS-5b 1352 40 2| 64.6 29.8
> LESS-5s 548 274 127 907 37 3| 129.0 26.6

Runtime is dominated by RREF computation, for both Sign and Verify.

18/24

E&U LESS Keeps Getting...LESS!

4 Considerations

19/24

E&U LESS Keeps Getting...LESS!

4 Considerations

!

LESS

19/24

E&U LESS Keeps Getting...LESS!

4 Considerations

!

LESS

LESS

19/24

E&U LESS Keeps Getting...LESS!

4 Considerations

Barenghi, Biasse, P., Santini, PQCrypto 2021: original LESS-FM work with tweaks.

!

LESS

LESS

19/24

E&U LESS Keeps Getting...LESS!

4 Considerations

Barenghi, Biasse, P., Santini, PQCrypto 2021: original LESS-FM work with tweaks.

!

LESS

P., Santini, Asiacrypt 2023: commit to information set to & halve the signatures (in current spec).

!
LESS

19/24

E&U LESS Keeps Getting...LESS!

4 Considerations

Barenghi, Biasse, P., Santini, PQCrypto 2021: original LESS-FM work with tweaks.

!

LESS

P., Santini, Asiacrypt 2023: commit to information set to & halve the signatures (in current spec).

!
LESS

Chou, P., Santini, preprint: use canonical forms for compact representation (for next round).

19/24

FaU Coming Up

4 Considerations

Current parameters would change as follows.

20/24

FaU Coming Up

4 Considerations

Current parameters would change as follows.

NIST Parameter Code Params Prot. Params pk sig new sig
Cat. Set n k q t w s | (KiB) (KiB) (KiB)
LESS-1b 247 30 2| 13.7 8.4 2.5
1 LESS-1i 252 126 127 | 244 20 4| 41.1 5.8 1.9
LESS-1s 198 17 8| 959 49 1.6
LESS-3b 759 33 2| 345 16.5 5.3
3 LESS-3s 400 200 127 895 26 3| 689 134 4.6
LESS-5b 1352 40 2| 64.6 29.2 7.8
> LESS-5s 548 274 127 907 37 3|129.0 26.5 6.8

20/24

FaU Coming Up

4 Considerations

Current parameters would change as follows.

NIST Parameter Code Params Prot. Params pk sig new sig
Cat. Set n k q t w s | (KiB) (KiB) (KiB)
LESS-1b 247 30 2| 13.7 8.4 2.5
1 LESS-1i 252 126 127 | 244 20 4| 41.1 5.8 1.9
LESS-1s 198 17 8| 959 49 1.6
LESS-3b 759 33 2| 345 16.5 5.3
3 LESS-3s 400 200 127 895 26 3| 689 134 4.6
LESS-5b 1352 40 2| 64.6 29.2 7.8
> LESS-5s 548 274 127 907 37 3|129.0 26.5 6.8

These are among the smallest sizes seen so far.

20/24

E&U More Current and Future Work

4 Considerations

Full-fledged optimized implementation (AVX2), in progress.

21/24

E&U More Current and Future Work

4 Considerations

Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

21/24

E&U More Current and Future Work

4 Considerations

Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

21/24

E&U More Current and Future Work

4 Considerations

Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

21/24

E&U More Current and Future Work

4 Considerations

Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

e Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

21/24

E&U More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.

(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

e Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

e Blind signatures.
(Kuchta, LeGrow, P., preprint)

21/24

E&U More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.

(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

e Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

e Blind signatures.
(Kuchta, LeGrow, P., preprint)

21/24

E&U More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.

(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

e Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

e Blind signatures.
(Kuchta, LeGrow, P., preprint)

Stay tuned!

21/24

Thank you for listening!
Any questions?

<

https://www.less-project.com

22/24

EAU References

E

B b B D D

J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini
LESS is More: Code-Based Signatures Without Syndromes.
AFRICACRYPT 2020.

A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini
LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem.
PQCRYPTO 2021.

E. Petrank and M. R. Roth
Is code equivalence easy to decide?
IEEE Transactions on Information Theory, 43(5):1602-1604, 1997.

N. Sendrier
The Support Splitting Algorithm.
IEEE Transactions on Information Theory, 1193-1203, 2000.

M. A. Saeed-Taha
Algebraic Approach for Code Equivalence.
PhD Thesis.

M. Bardet and A. Otmani and M. A. Saeed-Taha

Permutation Code Equivalence is Not Harder Than Graph Isomorphism When Hulls Are Trivial.

IEEE ISIT 2019.

J. Leon
Computing automorphism groups of error-correcting codes.
IEEE Transactions on Information Theory, 28(3):496-511, 1982.

23/24

EAU References

[
[

A T N P!

W. Beullens

Not Enough LESS: An Improved Algorithm for Solving Code Equivalence Problems over [Fg.

SAC 2020.

E. Persichetti, and P. Santini
A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures.
ASIACRYPT 2023.

T. Chou, E. Persichetti, and P. Santini
On Linear Equivalence, Canonical Forms, and Digital Signatures.
preprint, available at https://tungchou.github.io/papers/leq.pdf.

L. Beckwith, R. Wallace, K. Mohajerani and K. Gaj

A High-Performance Hardware Implementation of the LESS Digital Signature Scheme.

PQCRYPTO 2023.

A. Barenghi, J.-F. Biasse, T. Ngo, E. Persichetti, and P. Santini
Advanced Signature Functionalities from the Code Equivalence Problem.
International Journal of Computer Mathematics: Computer Systems Theory, 2022.

M. Battagliola, G. Borin, A. Meneghetti and E. Persichetti
Cutting the GRASS: Threshold GRoup Action Signature Schemes.
preprint, available at https://eprint.iacr.org/2023/859.

24/24

	Motivation and Background
	Code Equivalence
	LESS
	Considerations

