LESS: Digital Signatures from Linear Code Equivalence

2nd Oxford Post-Quantum Cryptography Summit
Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse,
Andre Esser, Kris Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo
Persichetti, Markku-J. O. Saarinen, Paolo Santini, Robert Wallace
5 September 2023

TAT DEPARTMENT OF

FAU In This Talk

Roadmap

- Motivation and Background
- Code Equivalence
- LESS
- Considerations

Roadmap

- Motivation and Background

- Code Equivalence

- LESS
$>$ Considerations

FAU Error-Correcting Codes

1 Motivation and Background

$[n, k]$ Linear Code over \mathbb{F}_{q}

A subspace of dimension k of \mathbb{F}_{q}^{n}. Value n is called length.

Hamming Metric

$w t(x)=\left|\left\{i: x_{i} \neq 0,1 \leq i \leq n\right\}\right|, d(x, y)=w t(x-y)$.
Minimum distance (of \mathfrak{C}): $\min \{d(x, y): x, y \in \mathfrak{C}\}$.

Generator Matrix

$G \in \mathbb{F}_{q}^{k \times n}$ defines the code as : $x \in \mathfrak{C} \Longleftrightarrow x=u G$ for $u \in \mathbb{F}_{q}^{k}$.
Not unique: $S G, S \in G L(k, q)$; Systematic form: $\left(I_{k} \mid M\right)$.

Parity-check Matrix

$H \in \mathbb{F}_{q}^{(n-k) \times n}$ defines the code as: $x \in \mathfrak{C} \Longleftrightarrow H x^{T}=0$ (syndrome).
Not unique: $S H, S \in G L(n-k, q)$; Systematic form: $\left(M^{T} \mid I_{n-k}\right)$.
w-error correcting: \exists algorithm that corrects up to w errors.

Fâ Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

Fâ Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Fâ Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain equivalent code.

FaU Traditional Code-Based Cryptography
 1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

FaU Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

FaU Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)
...far less so for signature schemes.
(CFS, KKS, Stern,...)

FaU Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)
...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a little differently.

Roadmap

$>$ Motivation and Background

- Code Equivalence
$>$ LESS
$>$ Considerations

FâU Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of finding the mask itself?

FâU Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight distribution of the code.

FAU Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of isomorphism problem which recalls other similar ones (isomorphism of polynomials, isogenies, etc.)

FaUU Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of isomorphism problem which recalls other similar ones (isomorphism of polynomials, isogenies, etc.)

Could Code Equivalence be used as a stand-alone problem?

FAU Going Solo

2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness of finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of isomorphism problem which recalls other similar ones (isomorphism of polynomials, isogenies, etc.)

Could Code Equivalence be used as a stand-alone problem?

Possible to construct a ZK protocol based exclusively on the hardness of the code equivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., Santini, 2O2O)

FâU Isometries in the Hamming Metric

2 Code Equivalence
Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.

FAUU Isometries in the Hamming Metric

2 Code Equivalence

Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

FAUU Isometries in the Hamming Metric

2 Code Equivalence

Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism (we usually ignore this in cryptography).

FAU Isometries in the Hamming Metric

2 Code Equivalence

Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:

FAUU Isometries in the Hamming Metric

2 Code Equivalence

Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:

- $\mathcal{G}=M_{n}(q)$, the monomial group;

FAUU Isometries in the Hamming Metric

2 Code Equivalence

Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:

- $\mathcal{G}=M_{n}(q)$, the monomial group;
- $\mathcal{X} \subseteq \mathbb{F}_{q}^{k \times n}$, the set of generator matrices in RREF.

FAUU Isometries in the Hamming Metric

2 Code Equivalence
Three types:

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:

- $\mathcal{G}=M_{n}(q)$, the monomial group;
- $\mathcal{X} \subseteq \mathbb{F}_{q}^{k \times n}$, the set of generator matrices in RREF.

Code-based Group Action

$$
\begin{array}{cccc}
\star: \mathcal{X} \times \mathcal{G} & \rightarrow & \mathcal{X} \\
& \left(G_{0}, Q\right) & \mapsto & \operatorname{RREF}\left(G_{0} \cdot Q\right)
\end{array}
$$

FAU Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

FâU Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear (and semilinear) equivalence, respectively.

FaUU Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem, according to the chosen notion of isometry.

FâU Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem, according to the chosen notion of isometry.

The vectorization problem for our group action is the computational version of code equivalence.

FâU Code-Based Group Actions

2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem, according to the chosen notion of isometry.

The vectorization problem for our group action is the computational version of code equivalence.

Linear Equivalence Problem (LEP)

Given $\mathfrak{C}_{0}, \mathfrak{C}_{1} \subseteq \mathbb{F}_{q}^{n}$, find a monomial μ such that $\mu\left(\mathfrak{C}_{0}\right)=\mathfrak{C}_{1}$.
Equivalently, given generators $G_{0}, G_{1} \in \mathbb{F}_{q}^{k \times n}$, find $Q \in M_{n}(q)$ such that

$$
G_{1}=\operatorname{RREF}\left(G_{0} Q\right) .
$$

Roadmap

$>$ Motivation and Background

- Code Equivalence
\rightarrow LESS
$>$ Considerations

FAUU The LESS ZKID 3 LESS

Select hash function \mathbf{H}.

FAUU The LESS ZKID 3 LESS

Select hash function \mathbf{H}.

Key Generation

- Choose random q-ary code \mathfrak{C}, given by generator matrix \mathcal{G}_{0}.
- sk: monomial matrix Q.
- pk: matrix $G_{1}=\operatorname{RREF}\left(G_{0} Q\right)$.

FAUU The LESS ZKID
 3 LESS

Select hash function \mathbf{H}.

Key Generation

- Choose random q-ary code \mathfrak{C}, given by generator matrix \mathcal{G}_{0}.
- sk: monomial matrix Q.
- pk: matrix $G_{1}=\operatorname{RREF}\left(G_{0} Q\right)$.

Prover

Choose random monomial matrix $\tilde{Q} \in M_{n}(q)$.
Compute $\tilde{G}=\operatorname{RREF}\left(G_{0} \tilde{Q}\right)$.
Set $c m t=\mathbf{H}(\tilde{G})$

$\xrightarrow{r s p}$

Select random $b \in\{0,1\}$.

Verify $\mathbf{H}\left(\operatorname{RREF}\left(G_{0} \cdot r s p\right)\right)=c m t$. Verify $\mathbf{H}\left(\operatorname{RREF}\left(G_{1} \cdot r s p\right)\right)=c m t$.

FAU LESS Signatures
 3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

FAU LESS Signatures
 3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.

FâU LESS Signatures
 3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
(Barenghi, Biasse, P., Santini, 2021)

FâU LESS Signatures 3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
(Barenghi, Biasse, P., Santini, 2021)

- Use multiple public keys and non-binary challenges.
+ Lower soundness error: $1 / 2 \rightarrow 1 / 2^{\ell}$.
- Rapid increase in public key size.

FâU LESS Signatures 3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
(Barenghi, Biasse, P., Santini, 2021)

- Use multiple public keys and non-binary challenges.
+ Lower soundness error: $1 / 2 \rightarrow 1 / 2^{\ell}$.
- Rapid increase in public key size.
- Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
- Larger number of iterations.

FâU LESS Signatures
 3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
(Barenghi, Biasse, P., Santini, 2021)

- Use multiple public keys and non-binary challenges.
+ Lower soundness error: $1 / 2 \rightarrow 1 / 2^{\ell}$.
- Rapid increase in public key size.
- Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
- Larger number of iterations.

Such modifications do not affect security, only requiring small tweaks in proofs or switching to equivalent security assumptions.

Roadmap

$>$ Motivation and Background

- Code Equivalence
- LESS
- Considerations

FAU Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

FAU Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reductions in both ways!), solvable in quasi-polynomial time.

FAU Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reductions in both ways!), solvable in quasi-polynomial time.

At the same time, PEP is "not necessarily easy".
(Petrank, Roth, 1997)

FAUU Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reductions in both ways!), solvable in quasi-polynomial time.

At the same time, PEP is "not necessarily easy".
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time $O(q)$, we have

$$
P E P \stackrel{\text { Reduces to }}{\leftrightarrows} L E P
$$

FAU Security Considerations

4 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reductions in both ways!), solvable in quasi-polynomial time.

At the same time, PEP is "not necessarily easy".
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time $O(q)$, we have

$$
P E P \stackrel{\text { Reduces to }}{\leftrightarrows} L E P
$$

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

FaU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

FaU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes. (Sendrier, 2000)

FaUU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes. (Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

FAU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes. (Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.

FaU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes. (Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

FaU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes. (Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.

FaU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for $q \geq 5$.

FaU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for $q \geq 5$.
- Algebraic approaches of different nature, for example:

FâU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for $q \geq 5$.
- Algebraic approaches of different nature, for example:
* Set up a system of equations, solve via Gröbner basis. (Saeed-Taha, 2017)

FâU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes. (Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for $q \geq 5$.
- Algebraic approaches of different nature, for example:
* Set up a system of equations, solve via Gröbner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

FâU Attack Strategy 1: Weak Instances

4 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

- Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

$$
\mathcal{H}(\mathfrak{C})=\mathfrak{C} \cap \mathfrak{C}^{\perp}
$$

If $\mathfrak{C}_{1}=\pi\left(\mathfrak{C}_{0}\right)$, then $\mathcal{H}\left(\mathfrak{C}_{1}\right)=\pi\left(\mathcal{H}\left(\mathfrak{C}_{0}\right)\right)$; running in $\mathcal{O}\left(q^{h}\right)$.
Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for $q \geq 5$.
- Algebraic approaches of different nature, for example:
* Set up a system of equations, solve via Gröbner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.

FAUU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

FâU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

FâU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

FÂU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

FâU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

- Finding codewords (use ISD).

FâU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

- Finding codewords (use ISD).
- Matching to extract permutation.

FâU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The attack then consists of:

- Finding codewords (use ISD).
- Matching to extract permutation.

Cost is $\approx 2 \log \left(N_{w}\right) \mathcal{C}_{\text {isd }}(n, k, q, w)+$ linear algebra.

FaUU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

- Finding codewords (use ISD).
- Matching to extract permutation.

Cost is $\approx 2 \log \left(N_{w}\right) \mathcal{C}_{\text {isd }}(n, k, q, w)+$ linear algebra.

Permutations preserve multiset of entries \Longrightarrow no need to find all words of weight w.
(Beullens, 2020)

FAU Attack Strategy 2: Codeword Search

4 Considerations

Action of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The attack then consists of:

- Finding codewords (use ISD).
- Matching to extract permutation.

Cost is $\approx 2 \log \left(N_{w}\right) C_{\text {isd }}(n, k, q, w)+$ linear algebra.
Permutations preserve multiset of entries \Longrightarrow no need to find all words of weight w.
(Beullens, 2020)
Probabilistic algorithm, advantageous when q is large.

FAU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

FAU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

The design of LESS allows for high degree of flexibility and customizable features according to goal.

FAUU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

The design of LESS allows for high degree of flexibility and customizable features according to goal.

We select two parameter sets per category level (plus a third at level 1):

FâU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

The design of LESS allows for high degree of flexibility and customizable features according to goal.

We select two parameter sets per category level (plus a third at level 1):

- Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

FâU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

The design of LESS allows for high degree of flexibility and customizable features according to goal.

We select two parameter sets per category level (plus a third at level 1):

- Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
- Short: sacrifices PK size to push for smallest signature.

FâU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda}
$$

The design of LESS allows for high degree of flexibility and customizable features according to goal.

We select two parameter sets per category level (plus a third at level 1):

- Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
- Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function.

FâU Design Considerations

4 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we pick n, k, q so that, for any d and any w, we have:

$$
\frac{1}{\sqrt{N_{d}(w)}} \cdot C_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

The design of LESS allows for high degree of flexibility and customizable features according to goal.

We select two parameter sets per category level (plus a third at level 1):

- Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
- Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function.
We compactly generate and transmit seeds using a seed tree structure.

Performance

4 Considerations

Protocol parameters (t, w, s) infer performance profile:

FAU Performance

4 Considerations
Protocol parameters (t, w, s) infer performance profile:

$$
\begin{gathered}
p k=(s-1) \ell_{G_{i}}+\ell_{\text {seed }} \\
\text { sig }=\ell_{\text {salt }}+\ell_{\text {seed_tree }}+w \cdot \ell_{\text {mono }}+\ell_{\text {digest }}
\end{gathered}
$$

Performance

4 Considerations
Protocol parameters (t, w, s) infer performance profile:

$$
\begin{gathered}
p k=(s-1) \ell_{G_{i}}+\ell_{\text {seed }} \\
\text { sig }=\ell_{\text {salt }}+\ell_{\text {seed_tree }}+w \cdot \ell_{\text {mono }}+\ell_{\text {digest }}
\end{gathered}
$$

NIST Cat.	Parameter Set	Code Params			Prot. Params			pk (KiB)	$\begin{gathered} \hline \boldsymbol{\operatorname { s i g }} \\ (\mathrm{KiB}) \end{gathered}$
		n	k	q	t	w	s		
1	LESS-1b	252	126	127	247	30	2	13.7	8.4
	LESS-1i				244	20	4	41.1	5.8
	LESS-1s				198	17	8	95.9	5.0
3	LESS-3b	400	200	127	759	33	2	34.5	16.8
	LESS-3s				895	26	3	68.9	13.4
5	LESS-5b	548	274	127	1352	40	2	64.6	29.8
	LESS-5s				907	37	3	129.0	26.6

Performance

4 Considerations
Protocol parameters (t, w, s) infer performance profile:

$$
\begin{gathered}
p k=(s-1) \ell_{G_{i}}+\ell_{\text {seed }} \\
\text { sig }=\ell_{\text {salt }}+\ell_{\text {seed_tree }}+w \cdot \ell_{\text {mono }}+\ell_{\text {digest }}
\end{gathered}
$$

NIST Cat.	Parameter Set	Code Params			Prot. Params			pk (KiB)	$\begin{gathered} \text { sig } \\ (\mathrm{KiB}) \end{gathered}$
		n	k	q	t	w	s		
1	LESS-1b	252	126	127	247	30	2	13.7	8.4
	LESS-1i				244	20	4	41.1	5.8
	LESS-1s				198	17	8	95.9	5.0
3	LESS-3b	400	200	127	759	33	2	34.5	16.8
	LESS-3s				895	26	3	68.9	13.4
5	LESS-5b	548	274	127	1352	40	2	64.6	29.8
	LESS-5s				907	37	3	129.0	26.6

Runtime is dominated by RREF computation, for both Sign and Verify.

FâU LESS Keeps Getting...LESS!
4 Considerations

LESS

FAUU LESS Keeps Getting...LESS!
4 Considerations

LESS

LESS

FAUU LESS Keeps Getting...LESS!
4 Considerations

LESS

LESS

LESS

FAAU LESS Keeps Getting...LESS!
4 Considerations
LESS

Barenghi, Biasse, P., Santini, PQCrypto 2021: original LESS-FM work with tweaks.

\downarrow
 LESS

LESS

FAAU LESS Keeps Getting...LESS!
4 Considerations

LESS

Barenghi, Biasse, P., Santini, PQCrypto 2021: original LESS-FM work with tweaks.

\downarrow
 LESS

P., Santini, Asiacrypt 2023: commit to information set to \approx halve the signatures (in current spec).

LESS

FâU LESS Keeps Getting...LESS!
4 Considerations

LESS

Barenghi, Biasse, P., Santini, PQCrypto 2021: original LESS-FM work with tweaks.

\downarrow
 LESS

P., Santini, Asiacrypt 2023: commit to information set to \approx halve the signatures (in current spec).

LESS

Chou, P., Santini, preprint: use canonical forms for compact representation (for next round).

FAU Coming Up
 4 Considerations

Current parameters would change as follows.

FâU Coming Up
4 Considerations

Current parameters would change as follows.

NIST Cat.	Parameter Set	Code Params			Prot. Params			pk (KiB)	$\begin{gathered} \text { sig } \\ (\mathrm{KiB}) \end{gathered}$	new sig (KiB)
		n	k	q	t	w	s			
1	LESS-1b	252	126	127	247	30	2	13.7	8.4	2.5
	LESS-1i				244	20	4	41.1	5.8	1.9
	LESS-1s				198	17	8	95.9	4.9	1.6
3	LESS-3b	400	200	127	759	33	2	34.5	16.5	5.3
	LESS-3s				895	26	3	68.9	13.4	4.6
5	LESS-5b	548	274	127	1352	40	2	64.6	29.2	7.8
	LESS-5s				907	37	3	129.0	26.5	6.8

FâU Coming Up
4 Considerations

Current parameters would change as follows.

NIST Cat.	Parameter Set	Code Params			Prot. Params			pk (KiB)	$\begin{gathered} \text { sig } \\ (\mathrm{KiB}) \end{gathered}$	new sig (KiB)
		n	k	q	t	w	s			
1	LESS-1b	252	126	127	247	30	2	13.7	8.4	2.5
	LESS-1i				244	20	4	41.1	5.8	1.9
	LESS-1s				198	17	8	95.9	4.9	1.6
3	LESS-3b	400	200	127	759	33	2	34.5	16.5	5.3
	LESS-3s				895	26	3	68.9	13.4	4.6
5	LESS-5b	548	274	127	1352	40	2	64.6	29.2	7.8
	LESS-5s				907	37	3	129.0	26.5	6.8

These are among the smallest sizes seen so far.

FAUU More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

FãU More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2O23)

Fâd More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

Fâd More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

FAU More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2O23)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

Fad More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2O23)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)

Fad More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2O23)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)
- ...

Fad More Current and Future Work

4 Considerations
Full-fledged optimized implementation (AVX2), in progress.

High-performance hardware Implementation; first work, $\approx 2 \times$ speed-up over AVX2. (Beckwith, Wallace, Mohajerani, Gaj, 2O23)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)

Stay tuned!

Thank you for listening!

Any questions?

https://www.less-project.com
J. J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini

LESS is More: Code-Based Signatures Without Syndromes.
AFRICACRYPT 2020.
A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem.
PQCRYPTO 2021.

E. Petrank and M. R. Roth

Is code equivalence easy to decide?
IEEE Transactions on Information Theory, 43(5):1602-1604, 1997.

N. Sendrier

The Support Splitting Algorithm.
IEEE Transactions on Information Theory, 1193-1203, 2000.

M. A. Saeed-Taha

Algebraic Approach for Code Equivalence.
PhD Thesis.

M. Bardet and A. Otmani and M. A. Saeed-Taha

Permutation Code Equivalence is Not Harder Than Graph Isomorphism When Hulls Are Trivial. IEEE ISIT 2019.
宔
J. Leon

Computing automorphism groups of error-correcting codes.
IEEE Transactions on Information Theory, 28(3):496-511, 1982.

W．Beullens
Not Enough LESS：An Improved Algorithm for Solving Code Equivalence Problems over \mathbb{F}_{q} ． SAC 2020.

E．Persichetti，and P．Santini
A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures．
ASIACRYPT 2023.
圊
T．Chou，E．Persichetti，and P．Santini
On Linear Equivalence，Canonical Forms，and Digital Signatures．
preprint，available at https：／／tungchou．github．io／papers／leq．pdf．L．Beckwith，R．Wallace，K．Mohajerani and K．Gaj
A High－Performance Hardware Implementation of the LESS Digital Signature Scheme．
PQCRYPTO 2023.
國 A．Barenghi，J．－F．Biasse，T．Ngo，E．Persichetti，and P．Santini
Advanced Signature Functionalities from the Code Equivalence Problem．
International Journal of Computer Mathematics：Computer Systems Theory， 2022.
苞
M．Battagliola，G．Borin，A．Meneghetti and E．Persichetti
Cutting the GRASS：Threshold GRoup Action Signature Schemes．
preprint，available at https：／／eprint．iacr．org／2023／859．

