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E&U  Error-Correcting Codes

1 Motivation and Background

[n, k] Linear Code over I,

A subspace of dimension k of IE‘E. Value n is called length.

Hamming Metric

wt(x) = {i:x#0,1 <i<n}|dxy) =wtx—y).
Minimum distance (of €): min{d(x,y) : x,y € C}.

Generator Matrix

G e FZX" defines the code as : x€€ <= x = uGforu € IB‘Z.
Not unique: SG, S € GL(k, q); Systematic form: (I |M).

Parity-check Matrix

H e ]Fé"fk)xn defines the code as: xe@ <= HxT = 0 (syndrome).

Not unique: SH, S € GL(n — k, q); Systematic form: (MT|I,_).

w-error correcting: 3 algorithm that corrects up to w errors.
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1 Motivation and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a little differently.
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McEliece security requires to keep the private code secret (!); but, what is the hardness of
finding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weight
distribution of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind of
isomorphism problem which recalls other similar ones (isomorphism of polynomials,
isogenies, etc.)

Could Code Equivalence be used as a stand-alone problem?

Possible to construct a ZK protocol based exclusively on the hardness of the code

equivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., Santini, 2020)
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2 Code Equivalence

Three types:
e Permutations: 7( (a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v; ), withv € (Fg)"
,U( (ala as,... >an)) = (Vl “Qr(1)>V2 - Ar(2)s- -5 Vn - aﬂ'(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group action on linear codes by setting:
e G = My(q), the monomial group;
o« X C IFZX”, the set of generator matrices in RREF.

Code-based Group Action

*x: AxG — X
(Go,Q) + RREF(Go-Q)
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2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear (and semilinear) equivalence, respectively.

Deciding whether two codes are equivalent is known as the code equivalence problem,
according to the chosen notion of isometry.

The vectorization problem for our group action is the computational version of code
equivalence.

Linear Equivalence Problem (LEP)
Given €, €; C [y, find a monomial  such that w(€o) = €.
Equivalently, given generators Gg, G € IF’(;X", find Q € My, (q) such that

G, = RREF(GoQ).
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E&U  The LESS ZKID

3 LESS

Select hash function H.

Key Generation

e Choose random g-ary code &, given by generator matrix Gp.
e sk: monomial matrix Q.
e pk: matrix G; = RREF(G(0).

Prover Verifier
Choose random monomial matrix Q € My (q).
Compute G = RREF(Gy0Q).
Set emt = H(G)

cmt

L Select random b € {0, 1}.

= rsp

If b=0setrsp =0Q Verify H(RREF(Gy - rsp)) = cmt.
If b= 1setrsp=Q 1Q Verify H(RREF (G - rsp)) = cmt.
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3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 —> t = \ parallel repetitions.

The protocol can be greatly improved with the following modifications:

(Barenghi, Biasse, P., Santini, 2021)

e Use multiple public keys and non-binary challenges.
+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

Such modifications do not affect security, only requiring small tweaks in proofs or
switching to equivalent security assumptions.
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PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time O(q), we have

Reduces to

PEP +—— LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.
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* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for g > 5.

e Algebraic approaches of different nature, for example:

* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.
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Moderate w guarantees no spurious solution and sufficiently low number of codewords.
In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
¢ Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Ny)Cis¢(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

Probabilistic algorithm, advantageous when q is large.
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Ng(w)
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We select two parameter sets per category level (plus a third at level 1):
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
e Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function.

We compactly generate and transmit seeds using a seed tree structure.
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pk = (S - 1)€Gi + Lseed
sig = Csate + Lseed_tree + W * €mono + Edigest

NIST Parameter Code Params Prot. Params pk sig
Cat. Set n k q t w s | (KiB) (KiB)
LESS-1b 247 30 2| 13.7 84

1 LESS-1i 252 126 127 | 244 20 4| 41.1 5.8
LESS-1s 198 17 8| 959 5.0
LESS-3b 759 33 2| 345 16.8
3 LESS-3s 400200 127 895 26 3| 689 134
LESS-5b 1352 40 2| 64.6 29.8
> LESS-5s 548 274 127 907 37 3| 129.0 26.6

Runtime is dominated by RREF computation, for both Sign and Verify.
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!

LESS

P., Santini, Asiacrypt 2023: commit to information set to & halve the signatures (in current spec).

!
LESS

Chou, P., Santini, preprint: use canonical forms for compact representation (for next round).
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NIST Parameter Code Params Prot. Params pk sig  new sig
Cat. Set n k q t w s | (KiB) (KiB) (KiB)
LESS-1b 247 30 2| 13.7 8.4 2.5
1 LESS-1i 252 126 127 | 244 20 4| 41.1 5.8 1.9
LESS-1s 198 17 8| 959 49 1.6
LESS-3b 759 33 2| 345 16.5 5.3
3 LESS-3s 400 200 127 895 26 3| 689 134 4.6
LESS-5b 1352 40 2| 64.6 29.2 7.8
> LESS-5s 548 274 127 907 37 3|129.0 26.5 6.8

These are among the smallest sizes seen so far.
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High-performance hardware Implementation; first work, ~ 2 x speed-up over AVX2.

(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Particularly suitable to develop protocols with advanced functionalities, e.g.:

e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

e Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

e Blind signatures.
(Kuchta, LeGrow, P., preprint)

Stay tuned!
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Thank you for listening!
Any questions?

<

https://www.less-project.com
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