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Error-Correc�ng Codes1 Mo�va�on and Background

[n, k] Linear Code over Fq

A subspace of dimension k of Fn
q. Value n is called length.

Hamming Metric
wt(x) = |{i : xi 6= 0, 1 ≤ i ≤ n}|, d(x, y) = wt(x− y).Minimum distance (of C): min{d(x, y) : x, y ∈ C}.

Generator Matrix
G ∈ Fk×n

q defines the code as : x∈C⇐⇒ x = uG for u ∈ Fk
q.Not unique: SG, S ∈ GL(k, q); Systema�c form: (Ik|M).

Parity-check Matrix
H ∈ F(n−k)×n

q defines the code as: x∈C⇐⇒ HxT = 0 (syndrome).Not unique: SH, S ∈ GL(n− k, q); Systema�c form: (MT|In−k).
w-error correc�ng: ∃ algorithm that corrects up to w errors.
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Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.
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Going Solo2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness offinding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weightdistribu�on of the code.
The problem of finding such a map is well-known in coding theory; indeed, it is a kind ofisomorphism problem which recalls other similar ones (isomorphism of polynomials,isogenies, etc.)
Could Code Equivalence be used as a stand-alone problem?
Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., San�ni, 2020)
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Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π( (a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:
• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.
Code-based Group Ac�on

? : X × G → X
(G0,Q) 7→ RREF(G0 · Q)
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Code-Based Group Ac�ons2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear (and semilinear) equivalence, respec�vely.
Deciding whether two codes are equivalent is known as the code equivalence problem,according to the chosen no�on of isometry.
The vectoriza�on problem for our group ac�on is the computa�onal version of codeequivalence.

Linear Equivalence Problem (LEP)
Given C0,C1 ⊆ Fn

q, find a monomial µ such that µ(C0) = C1.
Equivalently, given generators G0,G1 ∈ Fk×n

q , find Q ∈ Mn(q) such that
G1 = RREF(G0Q).
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The LESS ZKID3 LESS

Select hash func�on H.

Key Genera�on
• Choose random q-ary code C, given by generator matrix G0.
• sk: monomial matrix Q.
• pk: matrix G1 = RREF(G0Q).

Prover Verifier
Choose random monomial matrix Q̃ ∈ Mn(q).Compute G̃ = RREF(G0Q̃).
Set cmt = H(G̃) cmt−−−→

b←−−− Select random b ∈ {0, 1}.

If b = 0 set rsp = Q̃
rsp−−−→ Verify H(RREF(G0 · rsp)) = cmt.If b = 1 set rsp = Q−1Q̃ Verify H(RREF(G1 · rsp)) = cmt.
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LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.
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Security Considera�ons4 Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.
At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with �me O(q), we have
PEP Reduces to←−−−−−− LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.
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A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.
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A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.
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Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.
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Performance4 Considera�ons
Protocol parameters (t,w, s) infer performance profile:

pk = (s− 1)`Gi + `seed

sig = `salt + `seed tree + w · `mono + `digest

NIST Parameter Code Params Prot. Params pk sigCat. Set n k q t w s (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4LESS-1i 244 20 4 41.1 5.8LESS-1s 198 17 8 95.9 5.0

3 LESS-3b
400 200 127

759 33 2 34.5 16.8LESS-3s 895 26 3 68.9 13.4

5 LESS-5b
548 274 127

1352 40 2 64.6 29.8LESS-5s 907 37 3 129.0 26.6

Run�me is dominated by RREF computa�on, for both Sign and Verify.
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LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)
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Coming Up4 Considera�ons

Current parameters would change as follows.

NIST Parameter Code Params Prot. Params pk sig new sigCat. Set n k q t w s (KiB) (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4 2.5LESS-1i 244 20 4 41.1 5.8 1.9LESS-1s 198 17 8 95.9 4.9 1.6

3 LESS-3b
400 200 127

759 33 2 34.5 16.5 5.3LESS-3s 895 26 3 68.9 13.4 4.6

5 LESS-5b
548 274 127

1352 40 2 64.6 29.2 7.8LESS-5s 907 37 3 129.0 26.5 6.8

These are among the smallest sizes seen so far.
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More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.

High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Stay tuned!
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Thank you for listening!
Any ques�ons?

<

h�ps://www.less-project.com
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