
LESS: Digital Signatures from LinearCode Equivalence
2nd Oxford Post-Quantum Cryptography Summit
Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse,
Andre Esser, Kris Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo
Persiche�, Markku-J. O. Saarinen, Paolo San�ni, Robert Wallace
5 September 2023

mailto:epersichetti@fau.edu
mailto:epersichetti@fau.edu
mailto:epersichetti@fau.edu

In This TalkRoadmap

I Mo�va�on and Background

I Code Equivalence

I LESS

I Considera�ons

2/24

Roadmap

I Mo�va�on and Background

I Code Equivalence

I LESS

I Considera�ons

3/24

Error-Correc�ng Codes1 Mo�va�on and Background

[n, k] Linear Code over Fq

A subspace of dimension k of Fn
q. Value n is called length.

Hamming Metric
wt(x) = |{i : xi 6= 0, 1 ≤ i ≤ n}|, d(x, y) = wt(x− y).Minimum distance (of C): min{d(x, y) : x, y ∈ C}.

Generator Matrix
G ∈ Fk×n

q defines the code as : x∈C⇐⇒ x = uG for u ∈ Fk
q.Not unique: SG, S ∈ GL(k, q); Systema�c form: (Ik|M).

Parity-check Matrix
H ∈ F(n−k)×n

q defines the code as: x∈C⇐⇒ HxT = 0 (syndrome).Not unique: SH, S ∈ GL(n− k, q); Systema�c form: (MT|In−k).
w-error correc�ng: ∃ algorithm that corrects up to w errors.

4/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryp�on, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.

Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.

This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Tradi�onal Code-Based Cryptography1 Mo�va�on and Background

Use hard problems from coding theory, such as SDP in the Hamming metric.
For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtainequivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.

5/24

Roadmap

I Mo�va�on and Background

I Code Equivalence

I LESS

I Considera�ons

6/24

Going Solo2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness offinding the mask itself?

The pair (S, P) is an isometry for the Hamming metric, as it preserves the weightdistribu�on of the code.
The problem of finding such a map is well-known in coding theory; indeed, it is a kind ofisomorphism problem which recalls other similar ones (isomorphism of polynomials,isogenies, etc.)
Could Code Equivalence be used as a stand-alone problem?
Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., San�ni, 2020)

7/24

Going Solo2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness offinding the mask itself?
The pair (S, P) is an isometry for the Hamming metric, as it preserves the weightdistribu�on of the code.

The problem of finding such a map is well-known in coding theory; indeed, it is a kind ofisomorphism problem which recalls other similar ones (isomorphism of polynomials,isogenies, etc.)
Could Code Equivalence be used as a stand-alone problem?
Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., San�ni, 2020)

7/24

Going Solo2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness offinding the mask itself?
The pair (S, P) is an isometry for the Hamming metric, as it preserves the weightdistribu�on of the code.
The problem of finding such a map is well-known in coding theory; indeed, it is a kind ofisomorphism problem which recalls other similar ones (isomorphism of polynomials,isogenies, etc.)

Could Code Equivalence be used as a stand-alone problem?
Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., San�ni, 2020)

7/24

Going Solo2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness offinding the mask itself?
The pair (S, P) is an isometry for the Hamming metric, as it preserves the weightdistribu�on of the code.
The problem of finding such a map is well-known in coding theory; indeed, it is a kind ofisomorphism problem which recalls other similar ones (isomorphism of polynomials,isogenies, etc.)
Could Code Equivalence be used as a stand-alone problem?

Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., San�ni, 2020)

7/24

Going Solo2 Code Equivalence

McEliece security requires to keep the private code secret (!); but, what is the hardness offinding the mask itself?
The pair (S, P) is an isometry for the Hamming metric, as it preserves the weightdistribu�on of the code.
The problem of finding such a map is well-known in coding theory; indeed, it is a kind ofisomorphism problem which recalls other similar ones (isomorphism of polynomials,isogenies, etc.)
Could Code Equivalence be used as a stand-alone problem?
Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem (then, apply Fiat-Shamir).
(Biasse, Micheli, P., San�ni, 2020)

7/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:
• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.
Code-based Group Ac�on

? : X × G → X
(G0,Q) 7→ RREF(G0 · Q)

8/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.

• Monomials + field automorphism (we usually ignore this in cryptography).
Can be seen as a group ac�on on linear codes by se�ng:

• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.
Code-based Group Ac�on

? : X × G → X
(G0,Q) 7→ RREF(G0 · Q)

8/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:
• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.
Code-based Group Ac�on

? : X × G → X
(G0,Q) 7→ RREF(G0 · Q)

8/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:

• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.
Code-based Group Ac�on

? : X × G → X
(G0,Q) 7→ RREF(G0 · Q)

8/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:
• G = Mn(q), the monomial group;

• X ⊆ Fk×n
q , the set of generator matrices in RREF.

Code-based Group Ac�on
? : X × G → X

(G0,Q) 7→ RREF(G0 · Q)

8/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:
• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.

Code-based Group Ac�on
? : X × G → X

(G0,Q) 7→ RREF(G0 · Q)

8/24

Isometries in the Hamming Metric2 Code Equivalence
Three types:

• Permuta�ons: π((a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism (we usually ignore this in cryptography).

Can be seen as a group ac�on on linear codes by se�ng:
• G = Mn(q), the monomial group;
• X ⊆ Fk×n

q , the set of generator matrices in RREF.
Code-based Group Ac�on

? : X × G → X
(G0,Q) 7→ RREF(G0 · Q)

8/24

Code-Based Group Ac�ons2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear (and semilinear) equivalence, respec�vely.
Deciding whether two codes are equivalent is known as the code equivalence problem,according to the chosen no�on of isometry.
The vectoriza�on problem for our group ac�on is the computa�onal version of codeequivalence.

Linear Equivalence Problem (LEP)
Given C0,C1 ⊆ Fn

q, find a monomial µ such that µ(C0) = C1.
Equivalently, given generators G0,G1 ∈ Fk×n

q , find Q ∈ Mn(q) such that
G1 = RREF(G0Q).

9/24

Code-Based Group Ac�ons2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permuta�on, linear (and semilinear) equivalence, respec�vely.

Deciding whether two codes are equivalent is known as the code equivalence problem,according to the chosen no�on of isometry.
The vectoriza�on problem for our group ac�on is the computa�onal version of codeequivalence.

Linear Equivalence Problem (LEP)
Given C0,C1 ⊆ Fn

q, find a monomial µ such that µ(C0) = C1.
Equivalently, given generators G0,G1 ∈ Fk×n

q , find Q ∈ Mn(q) such that
G1 = RREF(G0Q).

9/24

Code-Based Group Ac�ons2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permuta�on, linear (and semilinear) equivalence, respec�vely.
Deciding whether two codes are equivalent is known as the code equivalence problem,according to the chosen no�on of isometry.

The vectoriza�on problem for our group ac�on is the computa�onal version of codeequivalence.
Linear Equivalence Problem (LEP)

Given C0,C1 ⊆ Fn
q, find a monomial µ such that µ(C0) = C1.

Equivalently, given generators G0,G1 ∈ Fk×n
q , find Q ∈ Mn(q) such that

G1 = RREF(G0Q).

9/24

Code-Based Group Ac�ons2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permuta�on, linear (and semilinear) equivalence, respec�vely.
Deciding whether two codes are equivalent is known as the code equivalence problem,according to the chosen no�on of isometry.
The vectoriza�on problem for our group ac�on is the computa�onal version of codeequivalence.

Linear Equivalence Problem (LEP)
Given C0,C1 ⊆ Fn

q, find a monomial µ such that µ(C0) = C1.
Equivalently, given generators G0,G1 ∈ Fk×n

q , find Q ∈ Mn(q) such that
G1 = RREF(G0Q).

9/24

Code-Based Group Ac�ons2 Code Equivalence

Two codes are equivalent if they are connected by an isometry.
We talk about permuta�on, linear (and semilinear) equivalence, respec�vely.
Deciding whether two codes are equivalent is known as the code equivalence problem,according to the chosen no�on of isometry.
The vectoriza�on problem for our group ac�on is the computa�onal version of codeequivalence.

Linear Equivalence Problem (LEP)
Given C0,C1 ⊆ Fn

q, find a monomial µ such that µ(C0) = C1.
Equivalently, given generators G0,G1 ∈ Fk×n

q , find Q ∈ Mn(q) such that
G1 = RREF(G0Q).

9/24

Roadmap

I Mo�va�on and Background

I Code Equivalence

I LESS

I Considera�ons

10/24

The LESS ZKID3 LESS

Select hash func�on H.

Key Genera�on
• Choose random q-ary code C, given by generator matrix G0.
• sk: monomial matrix Q.
• pk: matrix G1 = RREF(G0Q).

Prover Verifier
Choose random monomial matrix Q̃ ∈ Mn(q).Compute G̃ = RREF(G0Q̃).
Set cmt = H(G̃) cmt−−−→

b←−−− Select random b ∈ {0, 1}.

If b = 0 set rsp = Q̃
rsp−−−→ Verify H(RREF(G0 · rsp)) = cmt.If b = 1 set rsp = Q−1Q̃ Verify H(RREF(G1 · rsp)) = cmt.

11/24

The LESS ZKID3 LESS

Select hash func�on H.
Key Genera�on

• Choose random q-ary code C, given by generator matrix G0.
• sk: monomial matrix Q.
• pk: matrix G1 = RREF(G0Q).

Prover Verifier
Choose random monomial matrix Q̃ ∈ Mn(q).Compute G̃ = RREF(G0Q̃).
Set cmt = H(G̃) cmt−−−→

b←−−− Select random b ∈ {0, 1}.

If b = 0 set rsp = Q̃
rsp−−−→ Verify H(RREF(G0 · rsp)) = cmt.If b = 1 set rsp = Q−1Q̃ Verify H(RREF(G1 · rsp)) = cmt.

11/24

The LESS ZKID3 LESS

Select hash func�on H.
Key Genera�on

• Choose random q-ary code C, given by generator matrix G0.
• sk: monomial matrix Q.
• pk: matrix G1 = RREF(G0Q).

Prover Verifier
Choose random monomial matrix Q̃ ∈ Mn(q).Compute G̃ = RREF(G0Q̃).
Set cmt = H(G̃) cmt−−−→

b←−−− Select random b ∈ {0, 1}.

If b = 0 set rsp = Q̃
rsp−−−→ Verify H(RREF(G0 · rsp)) = cmt.If b = 1 set rsp = Q−1Q̃ Verify H(RREF(G1 · rsp)) = cmt.

11/24

LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.

12/24

LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.

The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.

12/24

LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.

12/24

LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.

• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.

12/24

LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.

12/24

LESS Signatures3 LESS

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)

• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.

12/24

Roadmap

I Mo�va�on and Background

I Code Equivalence

I LESS

I Considera�ons

13/24

Security Considera�ons4 Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.
At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with �me O(q), we have
PEP Reduces to←−−−−−− LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

14/24

Security Considera�ons4 Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.

At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with �me O(q), we have
PEP Reduces to←−−−−−− LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

14/24

Security Considera�ons4 Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.
At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with �me O(q), we have
PEP Reduces to←−−−−−− LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

14/24

Security Considera�ons4 Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.
At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with �me O(q), we have
PEP Reduces to←−−−−−− LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

14/24

Security Considera�ons4 Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.
At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with �me O(q), we have
PEP Reduces to←−−−−−− LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

14/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)

Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.
H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).

Random codes tend to have small hulls, which makes a�ack prac�cal.
* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.

• Algebraic approaches of different nature, for example:
* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.

* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.

• Algebraic approaches of different nature, for example:
* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)

* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 1: Weak Instances4 Considera�ons
Exploit a variety of proper�es, give rise to (poten�ally) most efficient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, 2000)
Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C ∩ C⊥

If C1 = π(C0), thenH(C1) = π
(
H(C0)

); running inO(qh).
Random codes tend to have small hulls, which makes a�ack prac�cal.

* Use (weakly) self-dual codes to avoid a�ack.* To solve LEP, need to target closure of the code; these are always self-dual for q ≥ 5.
• Algebraic approaches of different nature, for example:

* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, 2017)* Exploit reduc�on to graph isomorphism. (Bardet et al., 2020)
These are only efficient (or applicable in the first place) if hull is trivial.

15/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.

In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The a�ack then consists of:
• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).

• Matching to extract permuta�on.
Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.

Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)

Probabilis�c algorithm, advantageous when q is large.

16/24

A�ack Strategy 2: Codeword Search4 Considera�ons

Ac�on of π can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solu�on and sufficiently low number of codewords.
In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.
The a�ack then consists of:

• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is≈ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.
Permuta�ons preserve mul�set of entries =⇒ no need to find all words of weight w.
(Beullens, 2020)
Probabilis�c algorithm, advantageous when q is large.

16/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.

17/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.

We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.

17/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.

17/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

• Short: sacrifices PK size to push for smallest signature.
We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.

17/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.

17/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.

We compactly generate and transmit seeds using a seed tree structure.

17/24

Design Considera�ons4 Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, wepick n, k, q so that, for any d and any w, we have:
1√

Nd(w)
· C(d)ISD(n, k, q,w) > 2λ.

The design of LESS allows for high degree of flexibility and customizable featuresaccording to goal.
We select two parameter sets per category level (plus a third at level 1):

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash func�on.
We compactly generate and transmit seeds using a seed tree structure.

17/24

Performance4 Considera�ons
Protocol parameters (t,w, s) infer performance profile:

pk = (s− 1)`Gi + `seed

sig = `salt + `seed tree + w · `mono + `digest

NIST Parameter Code Params Prot. Params pk sigCat. Set n k q t w s (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4LESS-1i 244 20 4 41.1 5.8LESS-1s 198 17 8 95.9 5.0

3 LESS-3b
400 200 127

759 33 2 34.5 16.8LESS-3s 895 26 3 68.9 13.4

5 LESS-5b
548 274 127

1352 40 2 64.6 29.8LESS-5s 907 37 3 129.0 26.6

Run�me is dominated by RREF computa�on, for both Sign and Verify.

18/24

Performance4 Considera�ons
Protocol parameters (t,w, s) infer performance profile:

pk = (s− 1)`Gi + `seed

sig = `salt + `seed tree + w · `mono + `digest

NIST Parameter Code Params Prot. Params pk sigCat. Set n k q t w s (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4LESS-1i 244 20 4 41.1 5.8LESS-1s 198 17 8 95.9 5.0

3 LESS-3b
400 200 127

759 33 2 34.5 16.8LESS-3s 895 26 3 68.9 13.4

5 LESS-5b
548 274 127

1352 40 2 64.6 29.8LESS-5s 907 37 3 129.0 26.6

Run�me is dominated by RREF computa�on, for both Sign and Verify.

18/24

Performance4 Considera�ons
Protocol parameters (t,w, s) infer performance profile:

pk = (s− 1)`Gi + `seed

sig = `salt + `seed tree + w · `mono + `digest

NIST Parameter Code Params Prot. Params pk sigCat. Set n k q t w s (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4LESS-1i 244 20 4 41.1 5.8LESS-1s 198 17 8 95.9 5.0

3 LESS-3b
400 200 127

759 33 2 34.5 16.8LESS-3s 895 26 3 68.9 13.4

5 LESS-5b
548 274 127

1352 40 2 64.6 29.8LESS-5s 907 37 3 129.0 26.6

Run�me is dominated by RREF computa�on, for both Sign and Verify.

18/24

Performance4 Considera�ons
Protocol parameters (t,w, s) infer performance profile:

pk = (s− 1)`Gi + `seed

sig = `salt + `seed tree + w · `mono + `digest

NIST Parameter Code Params Prot. Params pk sigCat. Set n k q t w s (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4LESS-1i 244 20 4 41.1 5.8LESS-1s 198 17 8 95.9 5.0

3 LESS-3b
400 200 127

759 33 2 34.5 16.8LESS-3s 895 26 3 68.9 13.4

5 LESS-5b
548 274 127

1352 40 2 64.6 29.8LESS-5s 907 37 3 129.0 26.6

Run�me is dominated by RREF computa�on, for both Sign and Verify.
18/24

LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Chou, P., San�ni, preprint: use canonical forms for compact representa�on (for next round).

19/24

LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Chou, P., San�ni, preprint: use canonical forms for compact representa�on (for next round).

19/24

LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Chou, P., San�ni, preprint: use canonical forms for compact representa�on (for next round).

19/24

LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Chou, P., San�ni, preprint: use canonical forms for compact representa�on (for next round).

19/24

LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Chou, P., San�ni, preprint: use canonical forms for compact representa�on (for next round).

19/24

LESS Keeps Ge�ng...LESS!4 Considera�ons

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Barenghi, Biasse, P., San�ni, PQCrypto 2021: original LESS-FM work with tweaks.

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

P., San�ni, Asiacrypt 2023: commit to informa�on set to≈ halve the signatures (in current spec).

↓

New Developments� Considera�ons

LESS

LESS
(P., San�ni, Asiacrypt ����)LESS
(Chou, P., San�ni, preprint)

��/��

Chou, P., San�ni, preprint: use canonical forms for compact representa�on (for next round).

19/24

Coming Up4 Considera�ons

Current parameters would change as follows.

NIST Parameter Code Params Prot. Params pk sig new sigCat. Set n k q t w s (KiB) (KiB) (KiB)
1 LESS-1b

252 126 127
247 30 2 13.7 8.4 2.5LESS-1i 244 20 4 41.1 5.8 1.9LESS-1s 198 17 8 95.9 4.9 1.6

3 LESS-3b
400 200 127

759 33 2 34.5 16.5 5.3LESS-3s 895 26 3 68.9 13.4 4.6

5 LESS-5b
548 274 127

1352 40 2 64.6 29.2 7.8LESS-5s 907 37 3 129.0 26.5 6.8

These are among the smallest sizes seen so far.

20/24

Coming Up4 Considera�ons

Current parameters would change as follows.
NIST Parameter Code Params Prot. Params pk sig new sigCat. Set n k q t w s (KiB) (KiB) (KiB)

1 LESS-1b
252 126 127

247 30 2 13.7 8.4 2.5LESS-1i 244 20 4 41.1 5.8 1.9LESS-1s 198 17 8 95.9 4.9 1.6

3 LESS-3b
400 200 127

759 33 2 34.5 16.5 5.3LESS-3s 895 26 3 68.9 13.4 4.6

5 LESS-5b
548 274 127

1352 40 2 64.6 29.2 7.8LESS-5s 907 37 3 129.0 26.5 6.8

These are among the smallest sizes seen so far.

20/24

Coming Up4 Considera�ons

Current parameters would change as follows.
NIST Parameter Code Params Prot. Params pk sig new sigCat. Set n k q t w s (KiB) (KiB) (KiB)

1 LESS-1b
252 126 127

247 30 2 13.7 8.4 2.5LESS-1i 244 20 4 41.1 5.8 1.9LESS-1s 198 17 8 95.9 4.9 1.6

3 LESS-3b
400 200 127

759 33 2 34.5 16.5 5.3LESS-3s 895 26 3 68.9 13.4 4.6

5 LESS-5b
548 274 127

1352 40 2 64.6 29.2 7.8LESS-5s 907 37 3 129.0 26.5 6.8

These are among the smallest sizes seen so far.

20/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.

High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:

• Ring signatures.
(Barenghi, Biasse, Ngo, P., San�ni, 2022)

• Threshold signatures.
(Ba�agliola, Borin, Meneghe�, P., preprint)

• Blind signatures.
(Kuchta, LeGrow, P., preprint)

• ...
Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)

• Threshold signatures.
(Ba�agliola, Borin, Meneghe�, P., preprint)

• Blind signatures.
(Kuchta, LeGrow, P., preprint)

• ...
Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)

• Blind signatures.
(Kuchta, LeGrow, P., preprint)

• ...
Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)

• ...
Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Stay tuned!

21/24

More Current and Future Work4 Considera�ons
Full-fledged op�mized implementa�on (AVX2), in progress.
High-performance hardware Implementa�on; first work,≈ 2× speed-up over AVX2.
(Beckwith, Wallace, Mohajerani, Gaj, 2023)

Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Stay tuned!
21/24

Thank you for listening!
Any ques�ons?

<

h�ps://www.less-project.com

22/24

References
J.-F. Biasse, G. Micheli, E. Persiche�, and P. San�niLESS is More: Code-Based Signatures Without Syndromes.
AFRICACRYPT 2020.
A. Barenghi, J.-F. Biasse, E. Persiche�, and P. San�niLESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem.
PQCRYPTO 2021.
E. Petrank and M. R. RothIs code equivalence easy to decide?
IEEE Transac�ons on Informa�on Theory, 43(5):1602–1604, 1997.
N. SendrierThe Support Spli�ng Algorithm.
IEEE Transac�ons on Informa�on Theory, 1193–1203, 2000.
M. A. Saeed-TahaAlgebraic Approach for Code Equivalence.
PhD Thesis.
M. Bardet and A. Otmani and M. A. Saeed-TahaPermuta�on Code Equivalence is Not Harder Than Graph Isomorphism When Hulls Are Trivial.
IEEE ISIT 2019.
J. LeonCompu�ng automorphism groups of error-correc�ng codes.
IEEE Transac�ons on Informa�on Theory, 28(3):496–511, 1982.

23/24

References

W. BeullensNot Enough LESS: An Improved Algorithm for Solving Code Equivalence Problems over Fq.
SAC 2020.
E. Persiche�, and P. San�niA New Formula�on of the Linear Equivalence Problem and Shorter LESS Signatures.
ASIACRYPT 2023.
T. Chou, E. Persiche�, and P. San�niOn Linear Equivalence, Canonical Forms, and Digital Signatures.
preprint, available at h�ps://tungchou.github.io/papers/leq.pdf.
L. Beckwith, R. Wallace, K. Mohajerani and K. GajA High-Performance Hardware Implementa�on of the LESS Digital Signature Scheme.
PQCRYPTO 2023.
A. Barenghi, J.-F. Biasse, T. Ngo, E. Persiche�, and P. San�niAdvanced Signature Func�onali�es from the Code Equivalence Problem.
Interna�onal Journal of Computer Mathema�cs: Computer Systems Theory, 2022.
M. Ba�agliola, G. Borin, A. Meneghe� and E. Persiche�Cu�ng the GRASS: Threshold GRoup Ac�on Signature Schemes.
preprint, available at h�ps://eprint.iacr.org/2023/859.

24/24

	Motivation and Background
	Code Equivalence
	LESS
	Considerations

