CD MEDS CD
 Matrix Equivalence Digital Signature

Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovohery Hajatiana Randrianarisoa,

 Krijn Reijnders, Simona Samardjiska, Monika Trimoska
MEDS: a new code-based signature scheme

Matrix Code Equivalence

$C D$

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_{q}^{m \times n}$ equipped with the rank metric

$$
d\left(C_{1}, C_{2}\right)=\operatorname{Rank}\left(C_{1}-C_{2}\right) \quad C_{1}, C_{2} \in \mathscr{C}
$$

Matrix Code Equivalence

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_{q}^{m \times n}$ equipped with the rank metric

$$
d\left(C_{1}, C_{2}\right)=\operatorname{Rank}\left(C_{1}-C_{2}\right) \quad C_{1}, C_{2} \in \mathscr{C}
$$

Matrix Code Equivalence

\mathscr{C} $q=13, \quad m=4, \quad n=6, \quad k=5$

$$
\left.C=\lambda_{1} \cdot\left[\begin{array}{cccccc}
2 & 8 & 10 & 4 & 5 & 7 \\
1 & 11 & 7 & 9 & 6 & 12 \\
3 & 0 & 13 & 5 & 4 & 8 \\
9 & 6 & 3 & 2 & 10 & 11
\end{array}\right]+\lambda_{2} \cdot\left[\begin{array}{cccccc}
12 & 0 & 4 & 11 & 9 & 3 \\
5 & 6 & 8 & 13 & 2 & 1 \\
10 & 7 & 3 & 9 & 4 & 6 \\
2 & 5 & 11 & 8 & 1 & 10
\end{array}\right]+\lambda_{3} \cdot\left[\begin{array}{cccccc}
5 & 2 & 9 & 11 & 4 & 8 \\
3 & 7 & 1 & 10 & 12 & 0 \\
6 & 9 & 2 & 13 & 11 & 8 \\
1 & 5 & 6 & 3 & 10 & 7
\end{array}\right]+\lambda_{4} \cdot\left[\begin{array}{cccccc}
9 & 4 & 6 & 1 & 13 & 2 \\
8 & 0 & 5 & 12 & 6 & 11 \\
3 & 7 & 10 & 9 & 4 & 5 \\
2 & 8 & 11 & 3 & 7 & 1
\end{array}\right]+\begin{array}{l}
2
\end{array}\right] \cdot\left[\begin{array}{ccccccc}
7 & 10 & 4 & 6 & 8 & 3 \\
1 & 5 & 2 & 11 & 9 & 0 \\
13 & 7 & 6 & 4 & 12 & 2 \\
8 & 3 & 1 & 9 & 5 & 10
\end{array}\right]
$$

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_{q}^{m \times n}$ equipped with the rank metric

$$
d\left(C_{1}, C_{2}\right)=\operatorname{Rank}\left(C_{1}-C_{2}\right) \quad C_{1}, C_{2} \in \mathscr{C}
$$

Matrix Code
Equivalence

6
 $$
q=13, \quad m=4, \quad n=6, \quad k=5
$$

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_{q}^{m \times n}$ equipped with the rank metric

$$
d\left(C_{1}, C_{2}\right)=\operatorname{Rank}\left(C_{1}-C_{2}\right) \quad C_{1}, C_{2} \in \mathscr{C}
$$

Matrix Code Equivalence

Two matrix codes \mathscr{C} and \mathscr{D} are equivalent if we have a linear map $\mu: \mathscr{C} \rightarrow \mathscr{D}$ that preserves the metric (isometry): $\quad \operatorname{Rank} \mu(C)=\operatorname{Rank} C, \quad \forall C \in \mathscr{C}$

Matrix Code Equivalence

$$
\begin{aligned}
A & =\left[\begin{array}{llll}
0 & 0 & 5 & 7 \\
5 & 1 & 2 & 7 \\
0 & 4 & 4 & 0 \\
4 & 3 & 7 & 7
\end{array}\right] \in \mathrm{GL}_{m}(q) \\
B & =\left[\begin{array}{cccccc}
9 & 0 & 8 & 11 & 2 & 3 \\
2 & 7 & 4 & 7 & 4 & 9 \\
3 & 3 & 10 & 10 & 12 & 12 \\
10 & 6 & 8 & 3 & 5 & 10 \\
0 & 7 & 5 & 1 & 5 & 7 \\
0 & 0 & 1 & 1 & 8 & 12
\end{array}\right] \in \operatorname{GL}_{n}(q)
\end{aligned}
$$

\mathscr{C}

$$
q=13, \quad m=4, \quad n=6, \quad k=5
$$

Matrix Code Equivalence

$$
A=\left[\begin{array}{llll}
0 & 0 & 5 & 7 \\
5 & 1 & 2 & 7 \\
0 & 4 & 4 & 0 \\
4 & 3 & 7 & 7
\end{array}\right] \in \mathrm{GL}_{m}(q)
$$

\mathscr{C}

$$
q=13, \quad m=4, \quad n=6, \quad k=5
$$

Matrix Code Equivalence
the map $\mu=(A, B)$ preserves rank!

\mathscr{C}

$$
q=13, \quad m=4, \quad n=6, \quad k=5
$$

Can think of a matrix code as a 3-tensor over \mathbb{F}_{q}
Equivalence then becomes tensor isomorphism

Matrix Code Equivalence

$$
\mathscr{C} \subseteq \mathbb{F}_{q}^{m \times n \times k}
$$

Matrix Code Equivalence

Viewed as a 3－tensor，we can see \mathscr{C} using three orientations
－a k－dimensional code in $\mathbb{F}_{q}^{m \times n}$
－an m－dimensional code in $\mathbb{F}_{q}^{n \times k}$
－an n－dimensional code in $\mathbb{F}_{q}^{m \times k}$

M1111

IIIIIIIIII

多新亩

Attacks using isometry-invariant substructures

Example: find low-rank codewords in both codes and construct collisions using the birthday paradox

- Graph-based algorithm
- Leon's like algorithm

$$
\tilde{\mathcal{O}}\left(q^{\min (n, m, k)}\right)
$$

Attacks using isometry-invariant substructures

Example: find low-rank codewords in both codes and construct collisions using the birthday paradox

- Graph-based algorithm
- Leon's like algorithm

$$
\widetilde{\mathcal{O}}\left(q^{\min (n, m, k)}\right)
$$

Attacks reducing MCE to solving a system of polynomial equations using Gröbner basis techniques

Example: use the tensor isomorphism formulation to get a trilinear system
or, consider transformed codewords $A C_{i} B$ as dual to the dual code \mathscr{D}^{\perp}

- direct modelling
- minor's modelling
- improved modelling

$$
\mathcal{O}\left(n^{\omega \frac{n}{4}}\right)
$$

Matrix Code Equivalence
equations
$\mathscr{C}(A x, B y, z)=\mathscr{D}\left(x, y, T^{-1} z\right)$

Matrix Code
Equivalence
equations
$\mathscr{C}(A x, B y, z)=\mathscr{D}\left(x, y, T^{-1} z\right)$

Matrix Code Equivalence
equations
$\mathscr{C}(A x, B y, z)=\mathscr{D}\left(x, y, T^{-1} z\right)$
Three bilinear systems:
$\mathscr{C}(A x, B y, z)=\mathscr{D}\left(x, y, T^{-1} z\right)$
$\mathscr{C}(A x, y, T z)=\mathscr{D}\left(x, B^{-1} y, z\right)$
$\mathscr{C}(x, B y, T z)=\mathscr{D}\left(A^{-1} x, y, z\right)$

Equations:

$k(n m-k)+m(k n-m)+n(m k-n)$
Variables:
$n^{2}+m^{2}+k^{2}$

From MCE to MEDS

MEDS

From MCE to MEDS

From MCE to MEDS

$1 \rightarrow 2$

SETUP

- Assume parameter set q, n, m, k. and "starting" code \mathscr{C}
- Generate secret key $A \in \mathrm{GL}_{\mathrm{m}}(q), B \in \mathrm{GL}_{n}(q)$
- Generate public key $\mathscr{D}=A \mathscr{C} B$

$$
\begin{array}{r}
\mathscr{C} \\
(A, B) \\
\downarrow \\
\mathscr{D}
\end{array}
$$

From MCE

to MEDS

$1 \rightarrow 2$

SETUP

- Assume parameter set q, n, m, k. and "starting" code \mathscr{C}
- Generate secret key $A \in \mathrm{GL}_{\mathrm{m}}(q), B \in \mathrm{GL}_{n}(q)$
- Generate public key $\mathscr{D}=A \mathscr{C} B$

COMMIT

- Generate ephemeral $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}}=\tilde{A} \mathscr{C} \tilde{B}$

$$
\mathscr{C} \xrightarrow{(\tilde{A}, \tilde{B})} \tilde{\mathscr{C}}
$$

D

From MCE

to MEDS

$1 \rightarrow 2$

SETUP

- Assume parameter set q, n, m, k. and "starting" code \mathscr{C}
- Generate secret key $A \in \mathrm{GL}_{\mathrm{m}}(q), B \in \mathrm{GL}_{n}(q)$
- Generate public key $\mathscr{D}=A \mathscr{C} B$

COMMIT

- Generate ephemeral $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}}=\tilde{A} \mathscr{C} \tilde{B}$

From MCE
to MEDS

$1 \rightarrow 2$

SETUP

- Assume parameter set q, n, m, k. and "starting" code \mathscr{C}
- Generate secret key $A \in \mathrm{GL}_{\mathrm{m}}(q), B \in \mathrm{GL}_{n}(q)$
- Generate public key $\mathscr{D}=A \mathscr{C} B$

CHALLENGE

- Pick a bit $b \in\{0,1\}$

COMMIT

- Generate ephemeral $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}}=\tilde{A} \mathscr{C} \tilde{B}$

RESPONSE

- if $b=0$, reply with (\tilde{A}, \tilde{B})
- if $b=1$, reply with $\left(\tilde{A} \cdot A^{-1}, B^{-1} \cdot \tilde{B}\right)$

MEDS

From MCE

to MEDS

$1 \rightarrow 2$

SETUP

- Assume parameter set q, n, m, k. and "starting" code \mathscr{C}
- Generate secret key $A \in \mathrm{GL}_{\mathrm{m}}(q), B \in \mathrm{GL}_{n}(q)$
- Generate public key $\mathscr{D}=A \mathscr{C} B$

CHALLENGE

- Pick a bit $b \in\{0,1\}$

COMMIT

- Generate ephemeral $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}}=\tilde{A} \mathscr{C} \tilde{B}$

RESPONSE

- if $b=0$, reply with (\tilde{A}, \tilde{B})
- if $b=1$, reply with $\left(\tilde{A} \cdot A^{-1}, B^{-1} \cdot \tilde{B}\right)$

MEDS

From MCE

to MEDS

$1 \rightarrow 2$

SETUP

- Assume parameter set q, n, m, k. and "starting" code \mathscr{C}
- Generate secret key $A \in \mathrm{GL}_{\mathrm{m}}(q), B \in \mathrm{GL}_{n}(q)$
- Generate public key $\mathscr{D}=A \mathscr{C} B$

COMMIT

- Generate ephemeral $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}}=\tilde{A} \mathscr{C} \tilde{B}$

CHALLENGE

- Pick a bit $b \in\{0,1\}$

RESPONSE

- if $b=0$, reply with (\tilde{A}, \tilde{B})
- if $b=1$, reply with $\left(\tilde{A} \cdot A^{-1}, B^{-1} \cdot \tilde{B}\right)$

soundness $1 / 2$

multiple pk

$$
\text { provide } s \text { public keys, }
$$

$b \in\{1, \ldots, s\}$
response is an isometry
$\mathscr{D}_{b} \rightarrow \tilde{\mathscr{C}}$ or $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$

$\mathscr{C} \xrightarrow{(\tilde{A}, \tilde{B})} \tilde{\mathscr{C}}$

repeat t times

[1] L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
[2]. W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falaff: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT
2020.

From MCE
to MEDS
provide s public keys,
$b \in\{1, \ldots, s\}$ response is an isometry $\mathscr{D}_{b} \rightarrow \tilde{\mathscr{C}}$ or $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$

2
fix weight

- generate $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$ from seed
- respond to $b=0$ with seed
- response much cheaper!
adjust probability so that $b=0$ appears more

3
3
seed tree
instead of sending t seeds, send tree

to reveal nodes N_{1}, \ldots, N_{w} communicate $N_{1} \ldots, N_{w}$ and for the $t-w$ remaining nodes only appropriate parent nodes
[1] L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
[2] W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falaff: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT
2020.

From MCE
to MEDS
provide s public keys,
$b \in\{1, \ldots, s\}$ response is an isometry $\mathscr{D}_{b} \rightarrow \tilde{\mathscr{C}}$ or $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$

2
fix weight

- generate $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$ from seed
- respond to $b=0$ with seed
- response much cheaper!
adjust probability so that $b=0$ appears more

3
3
seed tree
instead of sending t seeds, send tree

to reveal nodes N_{1}, \ldots, N_{w} communicate $N_{1} \ldots, N_{w}$ and for the $t-w$ remaining nodes only appropriate parent nodes
[1] L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
[2] W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falaff: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT

From MCE
to MEDS

provide s public keys,
$b \in\{1, \ldots, s\}$ response is an isometry $\mathscr{D}_{b} \rightarrow \tilde{\mathscr{C}}$ or $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$

2

fix weight

- generate $\mathscr{C} \rightarrow \tilde{\mathscr{C}}$ from seed
- respond to $b=0$ with seed
- response much cheaper!
adjust probability so that $b=0$ appears more

3

instead of sending t seeds, send tree

to reveal nodes N_{1}, \ldots, N_{w} communicate $N_{1} \ldots, N_{w}$ and for the $t-w$ remaining nodes only appropriate parent nodes

4
compression
instead of generating A_{i}, B_{i} from seed and computing $\mathscr{D}_{i}=A_{i} \cdot \mathscr{C} \cdot B_{i}$
generate part of \mathscr{D}_{i} from seed compute appropriate A_{i}, B_{i} and rest of \mathscr{D}_{i}

Note: this does not break MCE!

Performance of MEDS

MEDS

parameters	q	$\mathrm{n}=\mathrm{m}=\mathrm{k}$	t (rounds)	s (no. of pk's)	w (seed tree)	Public Key (bytes)	$\underset{\text { Signature }}{\text { (bytes) }}$	Keygen (ms)	Signing (ms)	Verification (ms)
MEDS-9923	4093	14	1152	4	14	9923	9896	1.00	272.66	271.36
MEDS-13220	4093	14	192	5	20	13220	12976	1.32	46.79	46.04
MEDS-41711	4093	22	608	4	26	41711	41080	5.16	772.10	769.46
MEDS-69497	4093	22	160	5	36	55604	54736	6.75	203.83	200.37
MEDS-134180	2039	30	192	5	52	134180	132528	23.55	857.81	848.72
MEDS-167717	2039	30	112	6	66	167717	165464	29.39	506.21	494.15

parameters	q	$\mathrm{n}=\mathrm{m}=\mathrm{k}$	t (rounds)	s (no. of pk's)	w (seed tree)	Public Key (bytes)	$\underset{\text { Signature }}{\text { (bytes) }}$	Keygen (ms)	Signing (ms)	Verification (ms)
MEDS-9923	4093	14	1152	4	14	9923	9896	1.00	272.66	271.36
MEDS-13220	4093	14	192	5	20	13220	12976	1.32	46.79	46.04
MEDS-41711	4093	22	608	4	26	41711	41080	5.16	772.10	769.46
MEDS-69497	4093	22	160	5	36	55604	54736	6.75	203.83	200.37
MEDS-134180	2039	30	192	5	52	134180	132528	23.55	857.81	848.72
MEDS-167717	2039	30	112	6	66	167717	165464	29.39	506.21	494.15

- single hardness assumption: MCE
- simple design and arithmetic
- great flexibility in sizes
- generic: room for improvements!

parameters	q	$\mathrm{n}=\mathrm{m}=\mathrm{k}$	t (rounds)	s (no. of pk s)	w (seed tree)	Public Key (bytes)	Signature (bytes)	Keygen (ms)	Signing (ms)
MEDS-9923	4093	14	1152	4	14	9923	9896	1.00	272.66
MEDS-13220	4093	14	192	5	20	13220	12976	1.32	46.79
(ms)									

- single hardness assumption: MCE
limitations

advantages		limitations
• single hardness assumption: MCE		
• simple design and arithmetic	e resulting pk's and sig's still large	
- great flexibility in sizes		

parameters	q	$\mathrm{n}=\mathrm{m}=\mathrm{k}$	t (rounds)	s (no. of pk's)	w (seed tree)	Public Key (bytes)	Signature (bytes)	Keygen (ms)	Signing (ms)	Verification (ms)
MEDS-9923	4093	14	1152	4	14	9923	9896	1.00	272.66	271.36
MEDS-13220	4093	14	192	5	20	13220	12976	1.32	46.79	46.04
MEDS-41711	4093	22	608	4	26	41711	41080	5.16	772.10	769.46
MEDS-69497	4093	22	160	5	36	55604	54736	6.75	203.83	200.37
MEDS-134180	2039	30	192	5	52	134180	132528	23.55	857.81	848.72
MEDS-167717	2039	30	112	6	66	167717	165464	29.39	506.21	494.15

advantages

- single hardness assumption: MCE
- simple design and arithmetic
- geneat flexibility in sizes room for improvements!

limitations	
- resulting pk's and sig's still large	- new technique to reduce sig. size
- scaling to higher parameters	- MEDS-13220 to 2088 bytes (-84\%)
- needs more research on MCE	- still analysing security of technique
opportunity: lots of cool research!	

Thank you for your attention!

https://www.meds-pqc.org/

