

MiRitH

(MinRank in the Head)

Gora Adj, Stefano Barbero, Emanuele Bellini, <u>Andre Esser</u>, Luis Rivera-Zamarripa, Carlo Sanna, Javier Verbel, Floyd Zweydinger

PQC Workshop Oxford

September 2023

Cryptography Research Center

EUF-CMA secure in the ROM assuming hardness of MinRank

EUF-CMA secure in the ROM assuming hardness of MinRank

2. Approach MPC-in-the-Head:

EUF-CMA secure in the ROM assuming hardness of MinRank

2. Approach <u>MPC-in-the-Head</u>:

- 1. MPC protocol to verify a shared solution of MinRank
- 2. Zero-Knowledge proof of a solution
- 3. Signature scheme from Fiat-Shamir transform

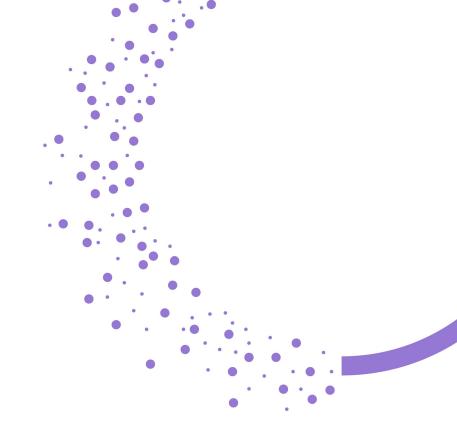
EUF-CMA secure in the ROM assuming hardness of MinRank

2. Approach <u>MPC-in-the-Head</u>:

- 1. MPC protocol to verify a shared solution of MinRank
- 2. Zero-Knowledge proof of a solution
- 3. Signature scheme from Fiat-Shamir transform

3. Parameters, Security and Performance

The MinRank problem



Cryptography Research Center

Given: An integer
$$r$$
, and $k + 1$ matrices $M_0, M_1, \dots, M_k \in \mathbb{F}_q^{m \times n}$

<u>Find:</u> $\alpha_1, \dots, \alpha_k \in \mathbb{F}_q$ such that $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ has $rank(E) \le r$

<u>Given</u>: An integer r, and k + 1 matrices $M_0, M_1, \dots, M_k \in \mathbb{F}_q^{m \times n}$

<u>Find:</u> $\alpha_1, \dots, \alpha_k \in \mathbb{F}_q$ such that $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ has $rank(E) \leq r$

MinRank as decoding problem:

Given: An integer r, and
$$k + 1$$
 matrices $M_0, M_1, \dots, M_k \in \mathbb{F}_q^{m \times n}$

Find:
$$\alpha_1, ..., \alpha_k \in \mathbb{F}_q$$
 such that $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ has $rank(E) \le r$

MinRank as decoding problem:

Gen. Matrix
$$G = \begin{pmatrix} Vec(M_1) \\ \vdots \\ Vec(M_k) \end{pmatrix} \in \mathbb{F}_q^{k \times (n \cdot m)}$$

 $Vec(M_0) = (\alpha_1, ..., \alpha_k) \cdot G + Vec(E)$, where $rank(E) \le r$

Given: An integer r, and
$$k + 1$$
 matrices $M_0, M_1, \dots, M_k \in \mathbb{F}_q^{m \times n}$

Find:
$$\alpha_1, \dots, \alpha_k \in \mathbb{F}_q$$
 such that $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ has $rank(E) \le r$

MinRank as decoding problem:

Gen. Matrix
$$G = \begin{pmatrix} Vec(M_1) \\ \vdots \\ Vec(M_k) \end{pmatrix} \in \mathbb{F}_q^{k \times (n \cdot m)}$$

 $Vec(M_0) = (\alpha_1, ..., \alpha_k) \cdot G + Vec(E)$, where $rank(E) \le r$

Type of instances we use:

Given: An integer r, and
$$k + 1$$
 matrices $M_0, M_1, \dots, M_k \in \mathbb{F}_q^{m \times n}$

Find:
$$\alpha_1, \dots, \alpha_k \in \mathbb{F}_q$$
 such that $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ has $rank(E) \le r$

MinRank as decoding problem:

Gen. Matrix
$$G = \begin{pmatrix} Vec(M_1) \\ \vdots \\ Vec(M_k) \end{pmatrix} \in \mathbb{F}_q^{k \times (n \cdot m)}$$

 $Vec(M_0) = (\alpha_1, ..., \alpha_k) \cdot G + Vec(E)$, where $rank(E) \le r$

Random matrices

Type of instances we use:

- Random secret
- Random *E*

. 0 .

Cryptography Research Center

Starting point *N*-Party MPC protocol

Starting point *N*-Party MPC protocol Given: function f, value z, share x_i of xGoal: Verify if f(x) = z, with $x = \sum x_i$ Output: accept : P'_i 's think they **do** share x. reject : P'_i 's think they **do not** share x

Starting point *N*-Party MPC protocol

 $\begin{array}{cccc} P_1 & \longleftrightarrow & P_2 \\ x_1 & & & x_2 \end{array} \\ \uparrow & \boxtimes & \uparrow \\ P_3 & \longleftrightarrow & P_N \\ x_3 & & & x_N \end{array}$

Given: function f, value z, share x_i of xGoal: Verify if f(x) = z, with $x = \sum x_i$ Output: accept : P'_i s think they **do** share x. reject : P'_i s think they **do not** share x

Starting point *N*-Party MPC protocol

 $\begin{array}{cccc} P_1 \\ x_1 \end{array} & \longleftrightarrow & \begin{array}{c} P_2 \\ x_2 \end{array} \\ \end{array}$ $\begin{array}{cccc} \uparrow \\ & \swarrow \\ P_3 \\ x_3 \end{array} & \leftarrow \begin{array}{c} P_N \\ & x_N \end{array} \end{array}$

Given: function f, value z, share x_i of xGoal: Verify if f(x) = z, with $x = \sum x_i$ Output: $accept : P'_i$ s think they **do** share x. $reject : P'_i$ s think they **do** not share x

False-Positive-Rate = $\Pr[\text{accept} | f(x) \neq z]$

No information on x_i leaked to P_j for $j \neq i$

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge

(Prover *P* wants to proof knowledge of *x* with f(x) = z to *V*)

Prover

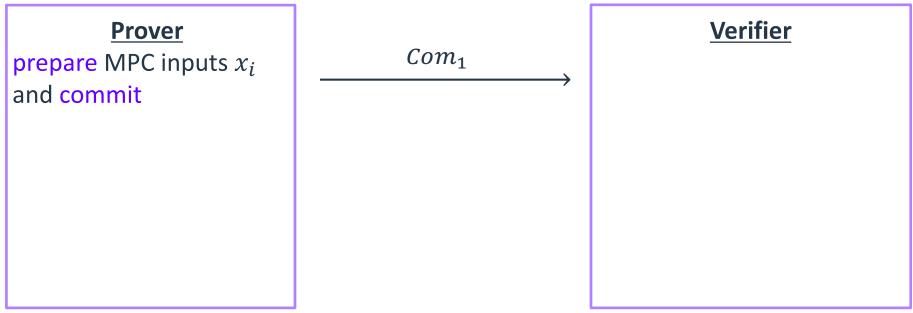
Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge

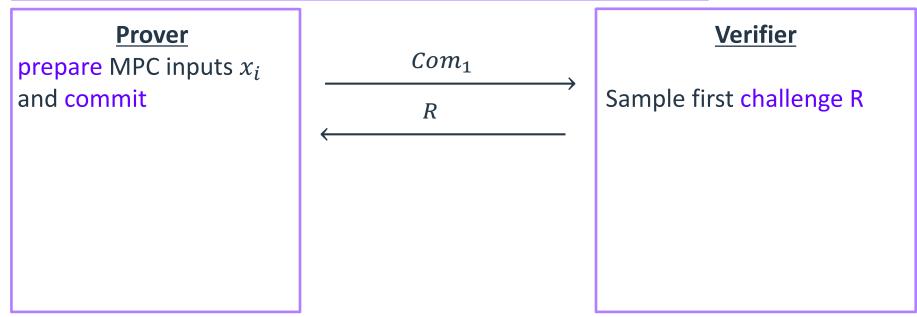
(Prover *P* wants to proof knowledge of *x* with f(x) = z to *V*)

Prover

<u>Goal:</u> zero-knowledge proof of knowledge

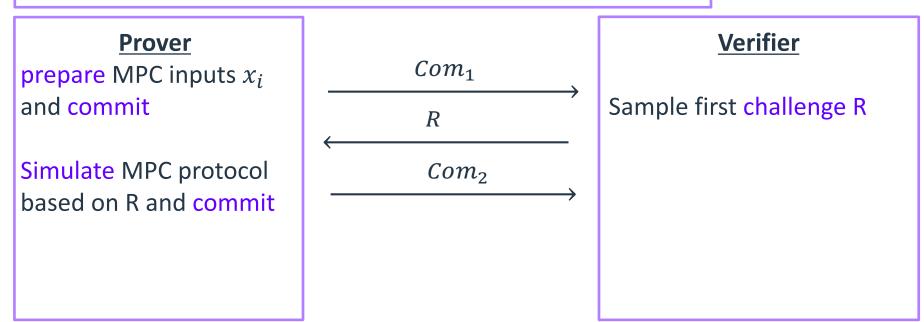


<u>Goal:</u> zero-knowledge proof of knowledge



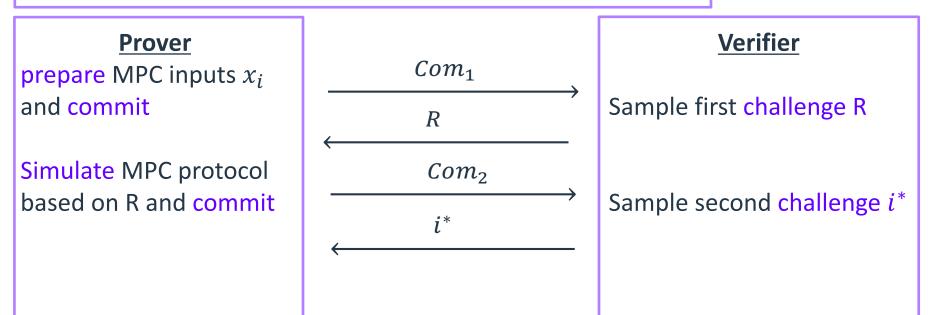
Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge



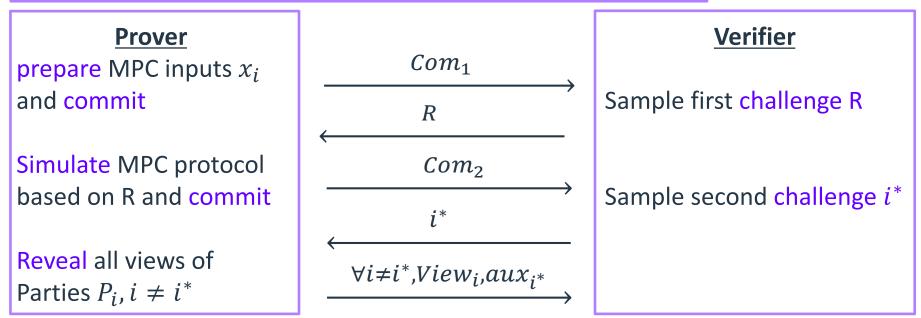
Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge



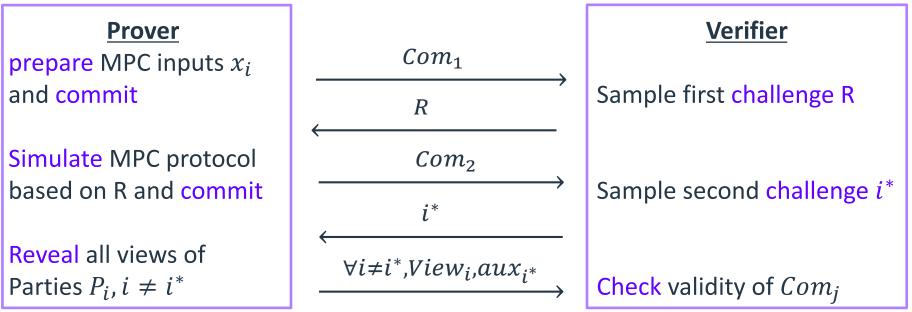
Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge



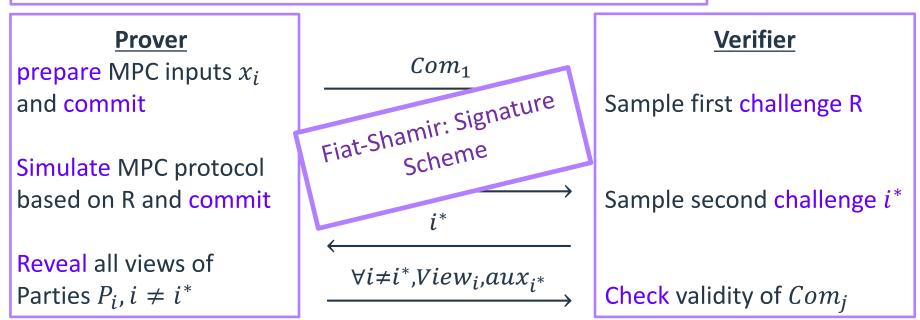
Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge

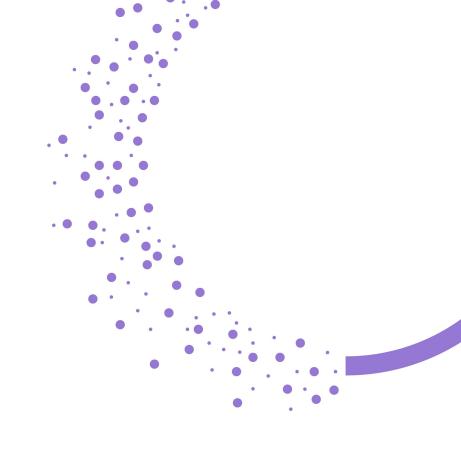


Given: MPC protocol

<u>Goal:</u> zero-knowledge proof of knowledge



Design rationale



Cryptography Research Center

Models MinRank as a bilinear system

Models MinRank as a bilinear system

$$\left(M_0 + \sum_{i=1}^k \frac{\beta_i M_i}{K}\right) \cdot \binom{l_{n-r}}{K} = 0$$

Models MinRank as a bilinear system

$$\left(M_0 + \sum_{i=1}^k \beta_i M_i\right) \cdot \binom{I_{n-r}}{K} = 0$$

Solving system \Rightarrow Solving MinRank!

Models MinRank as a bilinear system

$$\left(M_0 + \sum_{i=1}^k \beta_i M_i\right) \cdot \binom{I_{n-r}}{K} = 0$$

Solving system \Rightarrow Solving MinRank!

$$\beta_i = \alpha_i$$

Models MinRank as a bilinear system

$$\left(M_0 + \sum_{i=1}^k \alpha_i M_i\right) \cdot \binom{I_{n-r}}{K} = 0$$

Solving system \Rightarrow Solving MinRank!

Kipnis-Shamir modelling

Models MinRank as a bilinear system

$$\left(M_{0} + \sum_{i=1}^{k} \alpha_{i} M_{i} \right) \cdot {\binom{l_{n-r}}{K}} = 0$$
Solving
$$M_{\vec{\alpha}} \cdot {\binom{l_{n-r}}{K}} = 0 \iff M_{\vec{\alpha}}^{L} = -M_{\vec{\alpha}}^{R} \cdot K$$

Solving system \Rightarrow Solving MinRank!

Kipnis-Shamir modelling

Models MinRank as a bilinear system

$$\begin{pmatrix} M_0 + \sum_{i=1}^{k} \alpha_i M_i \end{pmatrix} \cdot \begin{pmatrix} I_{n-r} \\ K \end{pmatrix} = 0 \qquad \text{Solving syst}$$

$$M_{\vec{\alpha}} \cdot \begin{pmatrix} I_{n-r} \\ K \end{pmatrix} = 0 \iff M_{\vec{\alpha}}^L = -M_{\vec{\alpha}}^R \cdot K$$

Solving system \Rightarrow Solving MinRank!

Knowledge of MinRank solution $\vec{\alpha}$ \Leftrightarrow Knowledge of K such that $M_{\vec{\alpha}}^L = -M_{\vec{\alpha}}^R \cdot K$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k $\vec{\alpha} = \sum_{i=1}^N \vec{\alpha}_i$ and $K = \sum_{i=1}^N K_i$

$$\begin{array}{cccc}
P_1 & \longleftrightarrow & P_2 \\
(\vec{\alpha}_1, K_1) & & (\vec{\alpha}_2, K_2)
\end{array}$$

$$\begin{array}{cccc}
\uparrow & \swarrow & \uparrow \\
P_3 & & P_N \\
(\vec{\alpha}_3, K_3) & \longleftrightarrow & (\vec{\alpha}_N, K_N)
\end{array}$$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k

 $\begin{array}{cccc}
P_1 & \leftrightarrow & P_2 \\
(\vec{\alpha}_1, K_1) & & (\vec{\alpha}_2, K_2)
\end{array}$ $\begin{array}{cccc}
\uparrow & \swarrow & \uparrow \\
P_3 & & P_N \\
(\vec{\alpha}_3, K_3) & \leftrightarrow & (\vec{\alpha}_N, K_N)
\end{array}$

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$

Goal: Verify parties share $(\vec{\alpha}, K)$ s.t. $M_{\vec{\alpha}}^L = -M_{\vec{\alpha}}^R \cdot K$ Output: <u>accept</u> : P'_i s think they **do** share $(\vec{\alpha}, K)$ <u>reject</u> : P'_i s think they **don't** share $(\vec{\alpha}, K)$

No information on $(\vec{\alpha}_i, K_i)$ leaked

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$ $(\vec{\alpha}_1, K_1)$ MiRitH: MPC verifies (X, Y, Z) satisfies $X \cdot Y = Z$

 $\longleftrightarrow \begin{array}{c} P_N \\ (\vec{\alpha}_N, K_N) \end{array}$

<u>Goal</u>: Verify parties share $(\vec{\alpha}, K)$ s.t. $M_{\overrightarrow{\alpha}}^L = -M_{\overrightarrow{\alpha}}^R \cdot K$

Output:

<u>accept</u> : P'_i 's think they **do** share $(\vec{\alpha}, K)$

<u>reject</u> : P'_i 's think they **don't** share($\vec{\alpha}, K$)

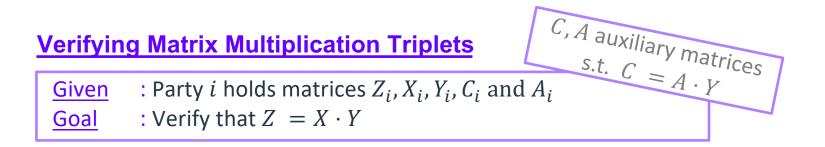
No information on $(\vec{\alpha}_i, K_i)$ leaked

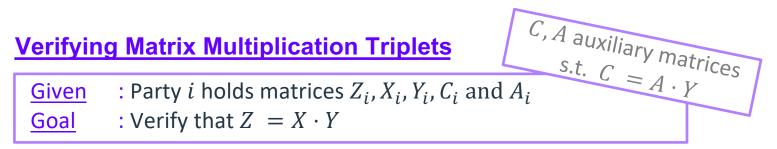
Verifying Matrix Multiplication Triplets

Verifying Matrix Multiplication Triplets

Given : Party *i* holds matrices
$$Z_i, X_i, Y_i, C_i$$
 and A_i

<u>Goal</u> : Verify that $Z = X \cdot Y$





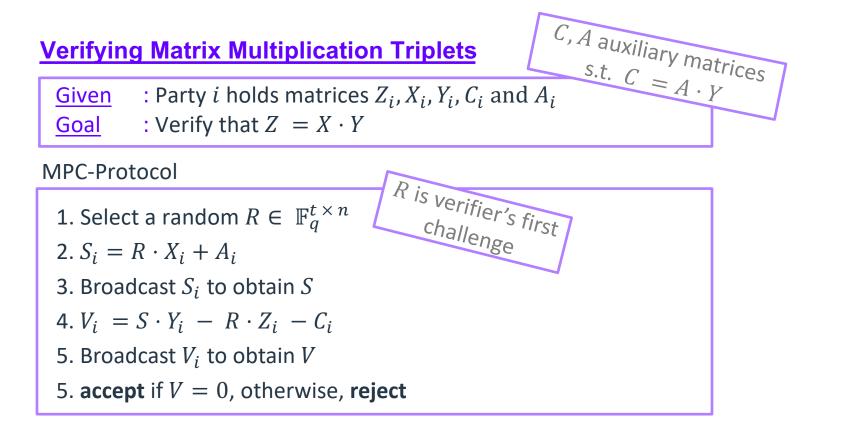
MPC-Protocol

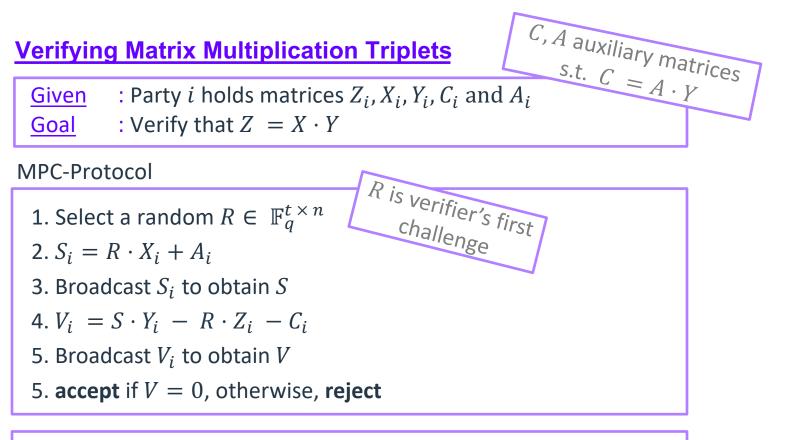
Verifying Matrix Multiplication Triplets

- C, A auxiliary matrices s.t. $C = A \cdot Y$: Party *i* holds matrices Z_i, X_i, Y_i, C_i and A_i Given
- : Verify that $Z = X \cdot Y$ Goal

MPC-Protocol

- 1. Select a random $R \in \mathbb{F}_q^{t \times n}$
- 2. $S_i = R \cdot X_i + A_i$
- 3. Broadcast S_i to obtain S
- 4. $V_i = S \cdot Y_i R \cdot Z_i C_i$
- 5. Broadcast V_i to obtain V
- 5. accept if V = 0, otherwise, reject





<u>Correctness</u> : If $Z = X \cdot Y$ and $C = A \cdot Y$, then parties **accept** <u>False-Positive rate</u>: If not, the Parties **accept** with prob. q^{-t}

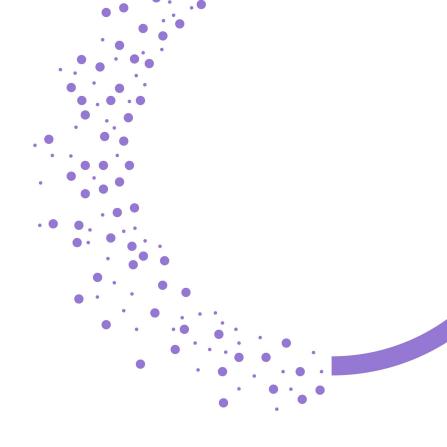
1. <u>Kinpis-Shamir</u> modelling

- 1. <u>Kinpis-Shamir</u> modelling
- 2. MPC for <u>matrix-triplet verification</u>

- 1. <u>Kinpis-Shamir</u> modelling
- 2. MPC for matrix-triplet verification
- 3. <u>MPC-in-the-Head</u> (incl. hypercube, seedtrees, etc.)

- 1. <u>Kinpis-Shamir</u> modelling
- 2. MPC for matrix-triplet verification
- 3. <u>MPC-in-the-Head</u> (incl. hypercube, seedtrees, etc.)
- 4. Fiat-Shamir transform

Security, Parameters and Performance



Cryptography Research Center

Find $\alpha \in \mathbb{F}_q^k$ such that: $E \coloneqq M_0 + \sum_{i=1}^k \alpha_i M_i \in \mathbb{F}_q^{m \times n}$, and $rank(E) \leq r$

Find $\alpha \in \mathbb{F}_q^k$ such that: $E \coloneqq M_0 + \sum_{i=1}^k \alpha_i M_i \in \mathbb{F}_q^{m \times n}$, and $rank(E) \leq r$

1. Kernel Search (combinatorial) : Guess vectors in kernel(E)

Find $\alpha \in \mathbb{F}_q^k$ such that: $E \coloneqq M_0 + \sum_{i=1}^k \alpha_i M_i \in \mathbb{F}_q^{m \times n}$, and $rank(E) \le r$

- 1. Kernel Search (combinatorial) : Guess vectors in kernel(E)
- 2. Support-Minors (algebraic) : Model as bilinear system of equations

Find $\alpha \in \mathbb{F}_q^k$ such that: $E \coloneqq M_0 + \sum_{i=1}^k \alpha_i M_i \in \mathbb{F}_q^{m \times n}$, and $rank(E) \le r$

- 1. Kernel Search (combinatorial) : Guess vectors in kernel(E)
- 2. Support-Minors (algebraic) : Model as bilinear system of equations
- 3. Big-k (combinatorial) : Guess entries of *E*

Find $\alpha \in \mathbb{F}_q^k$ such that: $E \coloneqq M_0 + \sum_{i=1}^k \alpha_i M_i \in \mathbb{F}_q^{m \times n}$, and $rank(E) \le r$

- 1. Kernel Search (combinatorial) : Guess vectors in kernel(E)
- 2. Support-Minors (algebraic) : Model as bilinear system of equations
- 3. Big-k (combinatorial) : Guess entries of *E*

Hybrid approach: Guess some of the α_i 's, and some vectors in kernel(E)

Find $\alpha \in \mathbb{F}_q^k$ such that: $E \coloneqq M_0 + \sum_{i=1}^k \alpha_i M_i \in \mathbb{F}_q^{m \times n}$, and $rank(E) \le r$

- 1. Kernel Search (combinatorial) : Guess vectors in kernel(E)
- 2. Support-Minors (algebraic) : Model as bilinear system of equations
- 3. Big-k (combinatorial) : Guess entries of *E*

Hybrid approach: Guess some of the α_i 's, and some vectors in kernel(E) \rightarrow MinRank instance of smaller dimension **Category I MinRank Parameters**

Category I MinRank Parameters

Category	set	q	m = n	k	r
I.	а	16	15	78	6
I	b	16	16	142	4

Parameters of the underlying MinRank instance

Category I MinRank Parameters

Category	set	q	m = n	k	r
I	а	16	15	78	6
I	b	16	16	142	4

Parameters of the underlying MinRank instance

Category	set	Kernel-Search	Support Minors	Big-k
I	а	151	144	154
I	b	159	165	226

Complexity estimates for proposed parameters, with linear algebra constant equal to 3 in KS and Big-k, equal 2.81 for Strassen in SM.

Performance

Category I a	Sig. Size	Pk size	Key Gen.	Sign	Verify
Short	5.7 kB		F2 000	~23 MCycles	
Fast	7.7 kB	129 Bytes	~53.000	~ 3	MCycles

Performance

Category I a	Sig. Size	Pk size	Key Gen.	Sign	Verify
Short	5.7 kB	100 D .	F2 000	~23 MCycles	
Fast	7.7 kB	129 Bytes	~53.000	~ 3	MCycles

Category I b	Sig. Size	Pk size	Key Gen.	Sign	Verify
Short	6.3 kB	129 Bytes	F2 000	~24 MCycles	
Fast	8.8 kB		~53.000	~ 4	MCycles

Performance

Category I a	Sig. Size	Pk size	Key Gen.	Sign	Verify
Short	5.7 kB	100 D .	50.000	~23 MCycles	
Fast	7.7 kB	129 Bytes	~53.000	~ 3	MCycles

Category I b	Sig. Size	Pk size	Key Gen.	Sign	Verify
Short	6.3 kB	129 Bytes	F2 000	~24 MCycles	
Fast	8.8 kB		~53.000	~ 4	MCycles

