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Overview

PERK is a signature scheme based on the PERmuted Kernel problem

⋄ Fiat-Shamir based signature along with a Zero-Knowledge Proof of Knowledge (ZK PoK)

⋄ Underlying PoK built using Multi-Party Computation in the Head (MPCitH)

⋄ Relies on the hardness of the relaxed Inhomogeneous Permuted Kernel Problem (r-IPKP)
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Signature from ZK PoK



Zero-Knowledge Proof of Knowledge (informal)

ProverP VerifierV

Cmt

Ch

Rsp

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest proverP can always
convince a verifier that he knows some secret s

Soundness - Malicious prover P̃ can’t convince a
verifier that he knows the secret s except with
negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not
learn anything on the secret s
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Fiat-Shamir Transform

ProverP VerifierV

Cmt

Ch

Rsp

Objective - Transform a public coin interactive
proof of knowledge into a digital signature

Main Idea - If the verifierV only returns strings
sampled uniformly at random, it can be replaced
by a hash function (modelled as random oracle)

Security - Proven secure in the ROM for PoK using
3-rounds [PS96] andn-rounds [DGV+16, AFK22]
Studied in the QROM [DFMS19, DFM20]
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ZK PoK from MPC



Multi-Party Computation

Letx be a secret that can be recomputed fromN shares (Jx1K, · · · , JxN K)

Secure MPC [GMW87] allows a set of parties (P1, · · · , PN )with inputs (Jx1K, · · · , JxN K) to

⋄ Compute y = f(x) for some function f [correctness]

⋄ Without leaking anything onx beyond what can be learned from f(x) [privacy]

For Fiat-Shamir based signature schemes, adversaries are modelled as Honest-but-Curious
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MPC-in-the-Head Transform

ProverP VerifierV

Generates MPC shares
Run MPC "in-its-Head"

Cmt

Choose a random partyα
Ch

Reveal the shares of
all parties exceptα
and the output ofα
in the MPC protocol

Rsp

Check commitments

Check computation and
result of the MPC protocol

Figure 2.1: MPC-in-the-Head [IKOS07]

Objective - Transform a MPC protocol computing
y = f(x) into a ZK PoK verifying if y = f(x)

Main Idea - ProverP generates and commits to
shares ofx then emulates "in its head" the MPC
protocol and reveals the views of (N −1)parties

VerifierV checks that the received views are
consistent with commitments and checks the
computation and result of the MPC protocol
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MPC-in-the-Head Transform

Resulting PoK

⋄ Correctness - From the correctness of the MPC protocol

⋄ Zero-Knowledge - From the (N - 1)-privacy of the MPC protocol

⋄ Soundness - Soundness error equal to 1/N
Can be made negligible by repeating the protocol τ times

Reducing the PoK size [KKW18]

⋄ Compress commitments by hasing them together

⋄ Compress seeds associated to each party using a Merkle tree
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ZK PoK for r-IPKP



IPKP & r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input -H ∈ Fm×n
q , (xi,yi) ∈ Fn

q × Fm
q for i ∈ [t] with X = (x1 | · · · |xt) a full rank matrix

π ∈ Sn such that H
(
π[xi]

)
= yi for i ∈ [t]

Goal - Find π̃ such that H
(
π̃[xi]

)
= yi for i ∈ [t]

Mono-dimensional IPKP [t = 1]

Multi-dimensional IPKP [t > 1]
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IPKP & r-IPKP

Definition (Relaxed Inhomogeneous Permuted Kernel Problem)

Input -H ∈ Fm×n
q , (xi,yi) ∈ Fn

q × Fm
q for i ∈ [t] with X = (x1 | · · · |xt) a full rank matrix

π ∈ Sn such that H
(
π[xi]

)
= yi for i ∈ [t]

Goal - Find π̃ such that H
(
π̃
[∑

i∈[t] κi · xi

])
=

∑
i∈[t] κi · yi for any (κ1, . . . , κt) ∈ Ft

q \ 0
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Known Attacks against IPKP & r-IPKP

Attacks on IPKP

⋄ Mono-dimensional case studied in [Geo92, BCCG93, PC94, JJ01, LP11, KMP19, SBC22]

⋄ Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

⋄ Existing attacks generalized to the relaxed case in PERK

Parameter sets considered in PERK use t = 3 or t = 5
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PoK for r-IPKP

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview

⋄ PoK uses r-IPKP for challenge space amplification [BG23]

First challenge space has size |C1| = qt − 1

⋄ PoK uses shared permutation [FJR23] to computeπ[x]without leaking anything onπ

From (πi,vi)i∈[N ], compute π = π1 ◦ · · · ◦ πN and v = vN +
∑

i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

Compute sN = π[x] + v by recurrence from s0 = x and si = πi[si−1] + vi
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PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N ] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N ]

VerifierV1

7. Sample α
$←− [1, N ]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N ]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N ] using z2 and comα

11. Check commitments to (si)i∈[N ] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi
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Sizes & Performances



Resulting Sizes

⋄ |sk| = λ︸︷︷︸
Seed forπ

|pk| = λ︸︷︷︸
Seed forH and (xi)i∈[t]

+ t ·m⌈log2(q)⌉︸ ︷︷ ︸
Vectors (yi)i∈[t] inFm

q

⋄ |σ| ≈ τ ·
(
n⌈log2(q)⌉︸ ︷︷ ︸
Vector sαinFn

q

+ n⌈log2(n)⌉︸ ︷︷ ︸
Permutationπ1

+ λ⌈log2(N)⌉︸ ︷︷ ︸
Seeds for parties i ∈ [1, N ] \ α

+ 2λ︸︷︷︸
Commitment for partyα

)
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Short Parameters

NIST level sk pk σ Keygen Sign Verify

PERK L1 [t = 3] 16 B 0.15 kB 6.56 kB 80 k 39 M 27 M

PERK L1 [t = 5] 16 B 0.24 kB 6.06 kB 91 k 36 M 25 M

PERK L3 [t = 3] 24 B 0.23 kB 15.0 kB 175 k 82 M 65 M

PERK L3 [t = 5] 24 B 0.37 kB 13.8 kB 194 k 77 M 60 M

PERK L5 [t = 3] 32 B 0.31 kB 26.4 kB 300 k 185 M 143 M

PERK L5 [t = 5] 32 B 0.51 kB 24.2 kB 328 k 171 M 131 M

Table 1: Sizes and performances (CPU cycles)
[Constant-Time implementation using AVX2 @3GHz]
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Fast Parameters

NIST level sk pk σ Keygen Sign Verify

PERK L1 [t = 3] 16 B 0.15 kB 8.35 kB 77 k 7.6 M 5.3 M

PERK L1 [t = 5] 16 B 0.24 kB 8.03 kB 90 k 7.2 M 5.1 M

PERK L3 [t = 3] 24 B 0.23 kB 18.8 kB 167 k 16 M 13 M

PERK L3 [t = 5] 24 B 0.37 kB 18.0 kB 185 k 15 M 12 M

PERK L5 [t = 3] 32 B 0.31 kB 33.3 kB 304 k 36 M 28 M

PERK L5 [t = 5] 32 B 0.51 kB 31.7 kB 324 k 34 M 26 M

Table 2: Sizes and performances (CPU cycles)
[Constant-Time implementation using AVX2 @3GHz]
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Advantages &
Limitations



Advantages & Limitations

Advantages

⋄ Good public key + signature size & small public and private keys

⋄ Underlying hardness assumption is unstructured

⋄ Resilience against IPKP and r-IPKP attacks - Increasing the r-IPKP parameters has
a limited impact on the signature size
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Advantages & Limitations

Limitations

⋄ Relatively slow similarly to most MPC based schemes

⋄ Relatively large signature size similarly to most MPC based schemes

⋄ Rely on a variant of the IPKP problem
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What’s Next ?

Disclaimer - Work in progress, results are not guaranted

Expected update

⋄ Improved signature size (approx. -5%)

⋄ Improved implementation

pqc-perk.org
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Thank you for your attention.
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