

PERK

N. Aaraj, S. Bettaieb, L. Bidoux, A. Budroni, V. Dyseryn, A. Esser, P. Gaborit, M. Kulkarni, V. Mateu, M. Palumbi, L. Perin, J.-P. Tillich

Oxford Post-Quantum Cryptography Summit 2023

PERK is a signature scheme based on the **PER** muted **K**ernel problem

- ◇ Fiat-Shamir based signature along with a Zero-Knowledge Proof of Knowledge (ZK PoK)
- ◇ Underlying PoK built using Multi-Party Computation in the Head (MPCitH)
- ◇ Relies on the hardness of the relaxed Inhomogeneous Permuted Kernel Problem (r-IPKP)

- 1 Signature from ZK PoK
- 2 ZK PoK from MPC
- 3 ZK PoK for r-IPKP
- 4 Sizes & Performances
- 5 Advantages & Limitations

Signature from ZK PoK

 $\begin{array}{c|c} \underline{\mathsf{Prover}\,\mathsf{P}} & \underline{\mathsf{Verifier}\,\mathsf{V}} \\ & & \underline{\mathsf{CMT}} \\ & & \underline{\mathsf{CH}} \\ & & \underline{\mathsf{CH}} \\ & & \underline{\mathsf{RSP}} \\ & & & \end{array}$

Figure 1.1: 3-rounds ZK PoK

Figure 1.1: 3-rounds ZK PoK

4 / 23

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest prover P can always convince a verifier that he knows some secret *s*

Soundness - Malicious prover $\tilde{\mathsf{P}}$ can't convince a verifier that he knows the secret s except with negligible probability ϵ

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest prover P can always convince a verifier that he knows some secret *s*

Soundness - Malicious prover \tilde{P} can't convince a verifier that he knows the secret s except with negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not learn anything on the secret \boldsymbol{s}

Fiat-Shamir Transform

Objective - Transform a public coin interactive proof of knowledge into a digital signature

Fiat-Shamir Transform

Signer S CMT CH = $\mathcal{H}(m || \text{pk} || \text{CMT})$

Rsp

Cmt, Rsp

Figure 1.2: Fiat-Shamir Transform [FS86]

Objective - Transform a public coin interactive proof of knowledge into a digital signature

Main Idea - If the verifier V only returns strings sampled uniformly at random, it can be replaced by a hash function (modelled as random oracle)

Fiat-Shamir Transform

Signer S

Смт

 $\mathsf{Ch} = \mathcal{H}(m \,||\, \mathsf{pk} \,||\, \mathsf{Cmt})$

Rsp

Cmt, Rsp

Figure 1.2: Fiat-Shamir Transform [FS86]

Objective - Transform a public coin interactive proof of knowledge into a digital signature

Main Idea - If the verifier V only returns strings sampled uniformly at random, it can be replaced by a hash function (modelled as random oracle)

Security - Proven secure in the ROM for PoK using 3-rounds [PS96] and *n*-rounds [DGV⁺16, AFK22] Studied in the QROM [DFMS19, DFM20]

ZK PoK from MPC

Multi-Party Computation

Let x be a secret that can be recomputed from N shares $(\llbracket x_1 \rrbracket, \cdots, \llbracket x_N \rrbracket)$

Let x be a secret that can be recomputed from N shares $(\llbracket x_1 \rrbracket, \cdots, \llbracket x_N \rrbracket)$

Secure MPC [GMW87] allows a set of parties (P_1, \dots, P_N) with inputs $(\llbracket x_1 \rrbracket, \dots, \llbracket x_N \rrbracket)$ to

- \diamond Compute y = f(x) for some function f [correctness]
- \diamond Without leaking anything on x beyond what can be learned from f(x) [privacy]

Let x be a secret that can be recomputed from N shares $(\llbracket x_1 \rrbracket, \cdots, \llbracket x_N \rrbracket)$

Secure MPC [GMW87] allows a set of parties (P_1, \cdots, P_N) with inputs $(\llbracket x_1 \rrbracket, \cdots, \llbracket x_N \rrbracket)$ to

- ♦ Compute y = f(x) for some function f [correctness]
- \diamond Without leaking anything on x beyond what can be learned from f(x) [privacy]

For Fiat-Shamir based signature schemes, adversaries are modelled as Honest-but-Curious

Prover P Verifier V

 $\begin{array}{l} \mbox{Objective - Transform a MPC protocol computing} \\ y = f(x) \mbox{ into a ZK PoK verifying if } y = f(x) \end{array}$

Objective - Transform a MPC protocol computing y = f(x) into a ZK PoK verifying if y = f(x)

Main Idea - Prover P generates and commits to shares of x then emulates "in its head" the MPC protocol and reveals the views of (N-1) parties

Objective - Transform a MPC protocol computing y = f(x) into a ZK PoK verifying if y = f(x)

Main Idea - Prover P generates and commits to shares of x then emulates "in its head" the MPC protocol and reveals the views of (N-1) parties

Verifier V checks that the received views are consistent with commitments and checks the computation and result of the MPC protocol

Resulting PoK

- ♦ Correctness From the correctness of the MPC protocol
- ◊ Zero-Knowledge From the (N 1)-privacy of the MPC protocol
- $\diamond~$ Soundness Soundness error equal to 1/N Can be made negligible by repeating the protocol τ times

Resulting PoK

- ◊ Correctness From the correctness of the MPC protocol
- ◊ Zero-Knowledge From the (N 1)-privacy of the MPC protocol
- $\diamond~$ Soundness Soundness error equal to 1/N Can be made negligible by repeating the protocol τ times

Reducing the PoK size [KKW18]

- Compress commitments by hasing them together
- Compress seeds associated to each party using a Merkle tree

ZK PoK for r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input - $\mathbf{H} \in \mathbb{F}_q^{m \times n}$, $(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{F}_q^n \times \mathbb{F}_q^m$ for $i \in [t]$ with $\mathbf{X} = (\mathbf{x}_1 | \cdots | \mathbf{x}_t)$ a full rank matrix $\pi \in S_n$ such that $\mathbf{H}(\pi[\mathbf{x}_i]) = \mathbf{y}_i$ for $i \in [t]$

Goal - Find $ilde{\pi}$ such that $\mathbf{H}ig(ilde{\pi}[\mathbf{x}_i]ig) = \mathbf{y}_i$ for $i \in [t]$

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input -
$$\mathbf{H} \in \mathbb{F}_q^{m \times n}$$
, $(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{F}_q^n \times \mathbb{F}_q^m$ for $i \in [t]$ with $\mathbf{X} = (\mathbf{x}_1 \mid \cdots \mid \mathbf{x}_t)$ a full rank matrix $\pi \in S_n$ such that $\mathbf{H}(\pi[\mathbf{x}_i]) = \mathbf{y}_i$ for $i \in [t]$

Goal - Find $\tilde{\pi}$ such that $\mathbf{H}(\tilde{\pi}[\mathbf{x}_i]) = \mathbf{y}_i$ for $i \in [t]$

- Mono-dimensional IPKP [$\mathbf{t} = \mathbf{1}$]
- Multi-dimensional IPKP [$\mathbf{t} > \mathbf{1}$]

Definition (Relaxed Inhomogeneous Permuted Kernel Problem)

Input - $\mathbf{H} \in \mathbb{F}_q^{m \times n}$, $(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{F}_q^n \times \mathbb{F}_q^m$ for $i \in [t]$ with $\mathbf{X} = (\mathbf{x}_1 | \cdots | \mathbf{x}_t)$ a full rank matrix $\pi \in \mathcal{S}_n$ such that $\mathbf{H}(\pi[\mathbf{x}_i]) = \mathbf{y}_i$ for $i \in [t]$

Goal - Find $\tilde{\pi}$ such that $\mathbf{H}\left(\tilde{\pi}\left[\sum_{i\in[t]}\kappa_i\cdot\mathbf{x}_i\right]\right) = \sum_{i\in[t]}\kappa_i\cdot\mathbf{y}_i$ for any $(\kappa_1,\ldots,\kappa_t)\in\mathbb{F}_q^t\setminus\mathbf{0}$

Known Attacks against IPKP & r-IPKP

Attacks on IPKP

- Mono-dimensional case studied in [Geo92, BCCG93, PC94,]]01, LP11, KMP19, SBC22]
- Existing attacks generalized to the multi-dimensional case in [SBC22]

Known Attacks against IPKP & r-IPKP

Attacks on IPKP

- Mono-dimensional case studied in [Geo92, BCCG93, PC94,]]01, LP11, KMP19, SBC22]
- Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

• Existing attacks generalized to the relaxed case in PERK

Known Attacks against IPKP & r-IPKP

Attacks on IPKP

- Mono-dimensional case studied in [Geo92, BCCG93, PC94,]]01, LP11, KMP19, SBC22]
- Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

Existing attacks generalized to the relaxed case in PERK

Parameter sets considered in PERK use t = 3 or t = 5

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview

♦ PoK uses r-IPKP for challenge space amplification [BG23]

First challenge space has size $|\mathcal{C}_1| = q^t - 1$

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview

♦ PoK uses r-IPKP for challenge space amplification [BG23]

First challenge space has size $|\mathcal{C}_1| = q^t - 1$

 \diamond PoK uses shared permutation [F]R23] to compute $\pi[\mathbf{x}]$ without leaking anything on π

From $(\pi_i, \mathbf{v}_i)_{i \in [N]}$, compute $\pi = \pi_1 \circ \cdots \circ \pi_N$ and $\mathbf{v} = \mathbf{v}_N + \sum_{i \in [N-1]} \pi_N \circ \cdots \circ \pi_{i+1}[\mathbf{v}_i]$

• Compute $\mathbf{s}_N = \pi[\mathbf{x}] + \mathbf{v}$ by recurrence from $\mathbf{s}_0 = \mathbf{x}$ and $\mathbf{s}_i = \pi_i[\mathbf{s}_{i-1}] + \mathbf{v}_i$

$\underline{\mathsf{Prover}\,\mathsf{P}_0}$

- 1. Sample shares (π_i, \mathbf{v}_i) with $\pi_1 = \pi_2^{-1} \circ \cdots \circ \pi_N^{-1} \circ \pi$ 2. Compute $\mathbf{v} = \mathbf{v}_N + \sum_{i \in [N-1]} \pi_N \circ \cdots \circ \pi_{i+1} [\mathbf{v}_i]$
- 3. Commit to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ and \mathbf{Hv}

$\underline{\mathsf{Prover}\,\mathsf{P}_0}$

1. Sample shares
$$(\pi_i, \mathbf{v}_i)$$
 with $\pi_1 = \pi_2^{-1} \circ \cdots \circ \pi_N^{-1} \circ \pi$
2. Compute $\mathbf{v} = \mathbf{v}_N + \sum_{i \in [N-1]} \pi_N \circ \cdots \circ \pi_{i+1}[\mathbf{v}_i]$
3. Committee (π_i, \mathbf{v}_i) and \mathbf{u}_N

3. Commit to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ and \mathbf{Hv}

$\underline{\mathsf{Verifier}\,\mathsf{V}_0}$

4. Sample
$$(\kappa_i)_{i \in [t]} \stackrel{\$}{\longleftarrow} \mathbb{F}_q^t \setminus \mathbf{0}$$

$\underline{\mathsf{Prover}\,\mathsf{P}_0}$

1. Sample shares
$$(\pi_i, \mathbf{v}_i)$$
 with $\pi_1 = \pi_2^{-1} \circ \cdots \circ \pi_N^{-1} \circ \pi$
2. Compute $\mathbf{v} = \mathbf{v}_N + \sum_{i \in [N-1]} \pi_N \circ \cdots \circ \pi_{i+1} [\mathbf{v}_i]$
3. Commit to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ and $\mathbf{H}\mathbf{v}$
Verifier V_0
4. Sample $(\kappa_i)_{i \in [t]} \xleftarrow{\$} \mathbb{F}_q^t \setminus \mathbf{0}$
Prover P_1

5. Compute
$$\mathbf{s}_i = \pi_i[\mathbf{s}_{i-1}] + \mathbf{v}_i$$
 using $\mathbf{s}_0 = \sum_{i \in [t]} \kappa_i \cdot \mathbf{x}_i$
6. Commit to $(\mathbf{s}_i)_{i \in [N]}$

Prover P₀ 1. Sample shares (π_i, \mathbf{v}_i) with $\pi_1 = \pi_2^{-1} \circ \cdots \circ \pi_N^{-1} \circ \pi$ 2. Compute $\mathbf{v} = \mathbf{v}_N + \sum_{i \in \lceil N-1 \rceil} \pi_N \circ \cdots \circ \pi_{i+1}[\mathbf{v}_i]$ 3. Commit to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ and \mathbf{Hv} Verifier V_0 4. Sample $(\kappa_i)_{i \in [t]} \stackrel{\$}{\longleftarrow} \mathbb{F}_a^t \setminus \mathbf{0}$ Prover P₁ 5. Compute $\mathbf{s}_i = \pi_i[\mathbf{s}_{i-1}] + \mathbf{v}_i$ using $\mathbf{s}_0 = \sum_{i \in [t]} \kappa_i \cdot \mathbf{x}_i$ 6. Commit to $(\mathbf{s}_i)_{i \in [N]}$

$\underline{\mathsf{Prover}\,\mathsf{P}_0}$

1. Sample shares (π_i, \mathbf{v}_i) with $\pi_1 = \pi_2^{-1} \circ \cdots \circ \pi_N^{-1} \circ \pi$ 2. Compute $\mathbf{v} = \mathbf{v}_N + \sum_{i \in [N-1]} \pi_N \circ \cdots \circ \pi_{i+1}[\mathbf{v}_i]$ 3. Commit to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ and $\mathbf{H}\mathbf{v}$

Verifier V_0

4. Sample
$$(\kappa_i)_{i \in [t]} \stackrel{\$}{\longleftarrow} \mathbb{F}_q^t \setminus \mathbf{0}$$

Prover P_1

5. Compute
$$\mathbf{s}_i = \pi_i[\mathbf{s}_{i-1}] + \mathbf{v}_i$$
 using $\mathbf{s}_0 = \sum_{i \in [t]} \kappa_i \cdot \mathbf{x}_i$
6. Commit to $(\mathbf{s}_i)_{i \in [N]}$

Verifier V₁ 7. Sample $\alpha \xleftarrow{\$} [1, N]$ Prover P₂ 8. Compute $\mathbf{z_1} = \mathbf{s}_{\alpha}$ and $z_2 = (\pi_i, \mathbf{v}_i)_{i \in [N] \setminus \alpha}$ 9. Output $rsp = (\mathbf{z}_1, z_2, com_{\alpha})$

$\underline{\mathsf{Prover}\,\mathsf{P}_0}$

1. Sample shares (π_i, \mathbf{v}_i) with $\pi_1 = \pi_2^{-1} \circ \cdots \circ \pi_N^{-1} \circ \pi$ 2. Compute $\mathbf{v} = \mathbf{v}_N + \sum_{i \in [N-1]} \pi_N \circ \cdots \circ \pi_{i+1} [\mathbf{v}_i]$ 3. Commit to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ and $\mathbf{H}\mathbf{v}$ Verifier \mathbf{V}_0

4. Sample
$$(\kappa_i)_{i \in [t]} \xleftarrow{\$} \mathbb{F}_q^t \setminus \mathbf{0}$$

Prover P1
5. Compute $\mathbf{s}_i = \pi_i[\mathbf{s}_{i-1}] + \mathbf{v}_i$ using $\mathbf{s}_0 = \sum_{i \in [t]} \kappa_i \cdot \mathbf{x}_i$
6. Commit to $(\mathbf{s}_i)_{i \in [N]}$

Verifier V₁ 7. Sample $\alpha \xleftarrow{\$} [1, N]$ Prover P₂ 8. Compute $\mathbf{z_1} = \mathbf{s}_{\alpha}$ and $z_2 = (\pi_i, \mathbf{v}_i)_{i \in [N] \setminus \alpha}$ 9. Output $rsp = (\mathbf{z}_1, z_2, com_{\alpha})$ Verifier V_2 10. Check commitments to $(\pi_i, \mathbf{v}_i)_{i \in [N]}$ using z_2 and com_{α} 11. Check commitments to $(\mathbf{s}_i)_{i \in [N]}$ using \mathbf{s}_0 and \mathbf{z}_1 12. Check commitment to $\mathbf{H}\mathbf{v}$ using $\mathbf{H}\mathbf{s}_N - \sum_{i\in[t]}\kappa_i\cdot\mathbf{y}_i$

Sizes & Performances

Short Parameters

NIST level	sk	pk	σ	Keygen	Sign	Verify
PERK L1 [t = 3]	16 B	0.15 kB	6.56 kB	80 k	39 M	27 M
PERK L1 [t = 5]	16 B	0.24 kB	6.06 kB	91 k	36 M	25 M
PERK L3 [t = 3]	24 B	0.23 kB	15.0 kB	175 k	82 M	65 M
PERK L3 [t = 5]	24 B	0.37 kB	13.8 kB	194 k	77 M	60 M
PERK L5 [t = 3]	32 B	0.31 kB	26.4 kB	300 k	185 M	143 M
PERK L5 [t = 5]	32 B	0.51 kB	24.2 kB	328 k	171 M	131 M

Table 1: Sizes and performances (CPU cycles)

[Constant-Time implementation using AVX2 @3GHz]

Fast Parameters

NIST level	sk	pk	σ	Keygen	Sign	Verify
PERK L1 [t = 3]	16 B	0.15 kB	8.35 kB	77 k	7.6 M	5.3 M
PERK L1 [t = 5]	16 B	0.24 kB	8.03 kB	90 k	7.2 M	5.1 M
PERK L3 [t = 3]	24 B	0.23 kB	18.8 kB	167 k	16 M	13 M
PERK L3 [t = 5]	24 B	0.37 kB	18.0 kB	185 k	15 M	12 M
PERK L5 [t = 3]	32 B	0.31 kB	33.3 kB	304 k	36 M	28 M
PERK L5 [t = 5]	32 B	0.51 kB	31.7 kB	324 k	34 M	26 M

Table 2: Sizes and performances (CPU cycles)

[Constant-Time implementation using AVX2 @3GHz]

Advantages & Limitations

Advantages & Limitations

Advantages

- ♦ Good public key + signature size & small public and private keys
- ♦ Underlying hardness assumption is unstructured
- Resilience against IPKP and r-IPKP attacks Increasing the r-IPKP parameters has a limited impact on the signature size

Advantages & Limitations

Limitations

- Relatively slow similarly to most MPC based schemes
- ♦ **Relatively large signature size** similarly to most MPC based schemes
- ◊ Rely on a variant of the IPKP problem

Disclaimer - Work in progress, results are not guaranted

Expected update

- Improved signature size (approx. -5%)
- ◊ Improved implementation

pqc-perk.org

Thank you for your attention.

- [AFK22] Thomas Attema, Serge Fehr, and Michael Klooß.
 Fiat-Shamir transformation of multi-round interactive proofs. In <u>Theory of Cryptography Conference (TCC)</u>, pages 113–142. Springer, 2022.
 [BCCG93] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert.
 - On the Security of the Permuted Kernel Identification Scheme. In Annual International Cryptology Conference (CRYPTO), pages 305–311. Springer, 1993.
- [BC23]
 Loic Bidoux and Philippe Gaborit.

 Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the PKP, SD and RSD Problems.

 In Codes, Cryptology and Information Security (C2SI), pages 10–42. Springer, 2023.
- [DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: multi-round fiat-shamir and more. In Annual International Cryptology Conference (CRYPTO), pages 602–631. Springer, 2020.
- [DFMS19]
 Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.

 Security of the fiat-shamir transformation in the quantum random-oracle model.
 In Annual International Cryptology Conference (CRYPTO), pages 356–383. Springer, 2019.

[DGV ⁺ 16]	Özgür Dagdelen, David Galindo, Pascal Véron, Sidi Mohamed El Yousfi Alaoui, and Pierre-Louis Cayrel. Extended security arguments for signature schemes. Designs, Codes and Cryptography, 78(2):441–461, 2016.
[F]R23]	Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syndrome decoding: new zero-knowledge protocol and code-based signature. Designs, Codes and Cryptography, 91(2):563–608, 2023.
[FS86]	Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In <u>Annual International Cryptology Conference (CRYPTO)</u> . Springer, 1986.
[Geo92]	Jean Georgiades. Some Remarks on the Security of the Identification Scheme Based on Permuted Kernels. Journal of Cryptology, 5(2):133–137, 1992.
[GMW87]	Oded Goldreich, Silvio Micali, and Avi Wigderson.

How to play any mental game, or a completeness theorem for protocols with honest majority. In ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-Knowledge from Secure Multiparty Computation. In ACM Symposium on Theory of Computing (STOC), pages 21–30, 2007. Éliane laulmes and Antoine loux. **[]]01**] Cryptanalysis of PKP: A new approach. In International Conference on Practice and Theory of Public-Key Cryptography (PKC), pages 165–172. Springer, 2001. [KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-Interactive Zero Knowledge with Applications to Post-Ouantum Signatures. In ACM Conference on Computer and Communications Security (CCS), 2018. [KMP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin. On the complexity of the Permuted Kernel Problem. Cryptology ePrint Archive, Report 2019/412, 2019. Rodolphe Lampe and Jacques Patarin. [LP11] Analysis of some natural variants of the PKP algorithm. Cryptology ePrint Archive, Report 2011/686, 2011.

[PC94]	Jacques Patarin and Pascal Chauvaud. Improved Algorithms for the Permuted Kernel Problem. In <u>Annual International Cryptology Conference (CRYPTO)</u> , pages 391–402. Springer, 1994.
[PS96]	David Pointcheval and Jacques Stern. Security proofs for signature schemes. In International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1996
[SBC22]	Paolo Santini, Marco Baldi, and Franco Chiaraluce. Computational Hardness of the Permuted Kernel and Subcode Equivalence Problems. <u>Cryptology ePrint Archive, Report 2022/1749,</u> 2022.
[Sha90]	Adi Shamir. An Efficient Identification Scheme Based on Permuted Kernels. In <u>Annual International Cryptology Conference (CRYPTO)</u> . Springer, 1990.