

PERK

N. Aaraj, S. Bettaieb, L. Bidoux, A. Budroni, V. Dyseryn, A. Esser, P. Gaborit, M. Kulkarni, V. Mateu, M. Palumbi, L. Perin, J.-P. Tillich

Oxford Post-Quantum Cryptography Summit 2023

Overview

PERK is a signature scheme based on the PERmuted Kernel problem
\diamond Fiat-Shamir based signature along with a Zero-Knowledge Proof of Knowledge (ZK PoK)
\diamond Underlying PoK built using Multi-Party Computation in the Head (MPCitH)
\diamond Relies on the hardness of the relaxed Inhomogeneous Permuted Kernel Problem (r-IPKP)

Agenda

1 - Signature from ZK PoK

2-ZK PoK from MPC

3-ZK PoK for r-IPKP

4 - Sizes \& Performances

5 - Advantages \& Limitations

Signature from ZK PoK

Zero-Knowledge Proof of Knowledge (informal)

Prover P
Verifier V
$\xrightarrow[\mathrm{CH}]{\stackrel{\text { CMT }}{\text { Rsp }}}$

Figure 1.1: 3-rounds ZK PoK

Zero-Knowledge Proof of Knowledge (informal)

Prover P
Verifier V
Correctness - Honest prover P can always convince a verifier that he knows some secret s
$\xrightarrow{\substack{\text { CMT }}} \xrightarrow{\text { Rsp }}$

Figure 1.1: 3-rounds ZK PoK

Zero-Knowledge Proof of Knowledge (informal)

Prover P

Correctness - Honest prover P can always convince a verifier that he knows some secret s

Soundness - Malicious prover \tilde{P} can't convince a verifier that he knows the secret s except with negligible probability ϵ

Figure 1.1: 3-rounds ZK PoK

Zero-Knowledge Proof of Knowledge (informal)

Prover P
Verifier V
Correctness - Honest prover P can always convince a verifier that he knows some secret s

Soundness - Malicious prover \tilde{P} can't convince a verifier that he knows the secret s except with negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not learn anything on the secret s

Fiat-Shamir Transform

Prover P	
	CMT

Objective - Transform a public coin interactive proof of knowledge into a digital signature

Fiat-Shamir Transform

Signer S
Смт
$\mathrm{CH}=\mathcal{H}(m\|\mathrm{pk}\| \mathrm{CMT})$
Rsp

Cmt, Rsp

Figure 1.2: Fiat-Shamir Transform [FS86]

Objective - Transform a public coin interactive proof of knowledge into a digital signature

Main Idea - If the verifier V only returns strings sampled uniformly at random, it can be replaced by a hash function (modelled as random oracle)

Fiat-Shamir Transform

Signer S
Смт
$\mathrm{CH}=\mathcal{H}(m\|\mathrm{pk}\| \mathrm{CMT})$
Rsp
$\xrightarrow{\text { CMT, Rsp }}$

Figure 1.2: Fiat-Shamir Transform [FS86]

Objective - Transform a public coin interactive proof of knowledge into a digital signature

Main Idea - If the verifier V only returns strings sampled uniformly at random, it can be replaced by a hash function (modelled as random oracle)

Security - Proven secure in the ROM for PoK using 3 -rounds [PS96] and n-rounds [DGV ${ }^{+} 16$, AFK22] Studied in the QROM [DFMS19, DFM20]

Multi-Party Computation

Let x be a secret that can be recomputed from N shares $\left(\llbracket x_{1} \rrbracket, \cdots, \llbracket x_{N} \rrbracket\right)$

Multi-Party Computation

Let x be a secret that can be recomputed from N shares $\left(\llbracket x_{1} \rrbracket, \cdots, \llbracket x_{N} \rrbracket\right)$

Secure MPC [CMW87] allows a set of parties $\left(P_{1}, \cdots, P_{N}\right)$ with inputs $\left(\llbracket x_{1} \rrbracket, \cdots, \llbracket x_{N} \rrbracket\right)$ to
\diamond Compute $y=f(x)$ for some function f [correctness]
\diamond Without leaking anything on x beyond what can be learned from $f(x)$ [privacy]

Multi-Party Computation

Let x be a secret that can be recomputed from N shares $\left(\llbracket x_{1} \rrbracket, \cdots, \llbracket x_{N} \rrbracket\right)$

Secure MPC [GMW87] allows a set of parties $\left(P_{1}, \cdots, P_{N}\right)$ with inputs $\left(\llbracket x_{1} \rrbracket, \cdots, \llbracket x_{N} \rrbracket\right)$ to
\diamond Compute $y=f(x)$ for some function f [correctness]
\diamond Without leaking anything on x beyond what can be learned from $f(x)$ [privacy]

For Fiat-Shamir based signature schemes, adversaries are modelled as Honest-but-Curious

Verifier V
Objective - Transform a MPC protocol computing $y=f(x)$ into a ZK PoK verifying if $y=f(x)$

MPC-in-the-Head Transform

Prover P
Generates MPC shares
Run MPC "in-its-Head"
\square
Choose a random party α CH

Reveal the shares of all parties except α and the output of α in the MPC protocol

Verifier V

Objective - Transform a MPC protocol computing $y=f(x)$ into a ZK PoK verifying if $y=f(x)$

Main Idea - Prover P generates and commits to shares of x then emulates "in its head" the MPC protocol and reveals the views of $(N-1)$ parties

MPC-in-the-Head Transform

Objective - Transform a MPC protocol computing $y=f(x)$ into a ZK PoK verifying if $y=f(x)$

Main Idea - Prover P generates and commits to shares of x then emulates "in its head" the MPC protocol and reveals the views of $(N-1)$ parties

Verifier V checks that the received views are consistent with commitments and checks the computation and result of the MPC protocol

Figure 2.1: MPC-in-the-Head [IKOSO7]

MPC-in-the-Head Transform

Resulting PoK

\diamond Correctness - From the correctness of the MPC protocol
\diamond Zero-Knowledge - From the (N-1)-privacy of the MPC protocol
\diamond Soundness - Soundness error equal to $1 / N$
Can be made negligible by repeating the protocol τ times

MPC-in-the-Head Transform

Resulting PoK

\diamond Correctness - From the correctness of the MPC protocol
\diamond Zero-Knowledge - From the (N-1)-privacy of the MPC protocol
\diamond Soundness - Soundness error equal to $1 / N$
Can be made negligible by repeating the protocol τ times

Reducing the PoK size [KKW18]

\diamond Compress commitments by hasing them together
\diamond Compress seeds associated to each party using a Merkle tree

IPKP \& r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

IPKP \& r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input- $\mathbf{H} \in \mathbb{F}_{q}^{m \times n},\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}$ for $i \in[t]$ with $\mathbf{X}=\left(\mathbf{x}_{1}|\cdots| \mathbf{x}_{t}\right)$ a full rank matrix $\pi \in \mathcal{S}_{n}$ such that $\mathbf{H}\left(\pi\left[\mathbf{x}_{i}\right]\right)=\mathbf{y}_{i}$ for $i \in[t]$

Goal - Find $\tilde{\pi}$ such that $\mathbf{H}\left(\tilde{\pi}\left[\mathbf{x}_{i}\right]\right)=\mathbf{y}_{i}$ for $i \in[t]$

IPKP \& r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input- $\mathbf{H} \in \mathbb{F}_{q}^{m \times n},\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}$ for $i \in[t]$ with $\mathbf{X}=\left(\mathbf{x}_{1}|\cdots| \mathbf{x}_{t}\right)$ a full rank matrix $\pi \in \mathcal{S}_{n}$ such that $\mathbf{H}\left(\pi\left[\mathbf{x}_{i}\right]\right)=\mathbf{y}_{i}$ for $i \in[t]$

Goal - Find $\tilde{\pi}$ such that $\mathbf{H}\left(\tilde{\pi}\left[\mathbf{x}_{i}\right]\right)=\mathbf{y}_{i}$ for $i \in[t]$

- Mono-dimensional IPKP [$\mathbf{t}=\mathbf{1}]$
- Multi-dimensional IPKP [t > 1]

IPKP \& r-IPKP

Definition (Relaxed Inhomogeneous Permuted Kernel Problem)

Input- $\mathbf{H} \in \mathbb{F}_{q}^{m \times n},\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}$ for $i \in[t]$ with $\mathbf{X}=\left(\mathbf{x}_{1}|\cdots| \mathbf{x}_{t}\right)$ a full rank matrix $\pi \in \mathcal{S}_{n}$ such that $\mathbf{H}\left(\pi\left[\mathbf{x}_{i}\right]\right)=\mathbf{y}_{i}$ for $i \in[t]$

Goal - Find $\tilde{\pi}$ such that $\mathbf{H}\left(\tilde{\pi}\left[\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{x}_{i}\right]\right)=\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{y}_{i}$ for any $\left(\kappa_{1}, \ldots, \kappa_{t}\right) \in \mathbb{F}_{q}^{t} \backslash \mathbf{0}$

Known Attacks against IPKP \& r-IPKP

Attacks on IPKP

\diamond Mono-dimensional case studied in [Geo92, BCCC93, PC94, JJ01, LP11, KMP19, SBC22]
\diamond Existing attacks generalized to the multi-dimensional case in [SBC22]

Known Attacks against IPKP \& r-IPKP

Attacks on IPKP

\diamond Mono-dimensional case studied in [Geo92, BCCG93, PC94, JJ01, LP11, KMP19, SBC22]
\diamond Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

\diamond Existing attacks generalized to the relaxed case in PERK

Known Attacks against IPKP \& r-IPKP

Attacks on IPKP

\diamond Mono-dimensional case studied in [Geo92, BCCG93, PC94, JJ01, LP11, KMP19, SBC22]
\diamond Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

\diamond Existing attacks generalized to the relaxed case in PERK

Parameter sets considered in PERK use $t=3$ or $t=5$

PoK for r-IPKP

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

PoK for r-IPKP

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview
\diamond PoK uses r-IPKP for challenge space amplification [BG23]
■ First challenge space has size $\left|\mathcal{C}_{1}\right|=q^{t}-1$

PoK for r-IPKP

PERK is derived from a 5 -rounds ZK PoK introduced in [BC23]

Overview

\diamond PoK uses r-IPKP for challenge space amplification [BG23]

- First challenge space has size $\left|\mathcal{C}_{1}\right|=q^{t}-1$
\diamond PoK uses shared permutation [F]R23] to compute $\pi[\mathbf{x}]$ without leaking anything on π
- From $\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]}$, compute $\pi=\pi_{1} \circ \cdots \circ \pi_{N}$ and $\mathbf{v}=\mathbf{v}_{N}+\sum_{i \in[N-1]} \pi_{N} \circ \cdots \circ \pi_{i+1}\left[\mathbf{v}_{i}\right]$
- Compute $\mathbf{s}_{N}=\pi[\mathbf{x}]+\mathbf{v}$ by recurrence from $\mathbf{s}_{0}=\mathbf{x}$ and $\mathbf{s}_{i}=\pi_{i}\left[\mathbf{s}_{i-1}\right]+\mathbf{v}_{i}$

PoK for r-IPKP (High Level Description)

Prover P_{0}

1. Sample shares $\left(\pi_{i}, \mathbf{v}_{i}\right)$ with $\pi_{1}=\pi_{2}^{-1} \circ \cdots \circ \pi_{N}^{-1} \circ \pi$
2. Compute $\mathbf{v}=\mathbf{v}_{N}+\sum_{i \in[N-1]} \pi_{N} \circ \cdots \circ \pi_{i+1}\left[\mathbf{v}_{i}\right]$
3. Commit to $\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]}$ and $\mathbf{H v}$

PoK for r-IPKP (High Level Description)

```
Prover P0
1. Sample shares ( }\mp@subsup{\pi}{i}{},\mp@subsup{\mathbf{v}}{i}{})\mathrm{ with }\mp@subsup{\pi}{1}{}=\mp@subsup{\pi}{2}{-1}\circ\cdots\circ\mp@subsup{\pi}{N}{-1}\circ
2. Compute \mathbf{v}=\mp@subsup{\mathbf{v}}{N}{}+\mp@subsup{\sum}{i\in[N-1]}{}\mp@subsup{\pi}{N}{}\circ\cdots\circ\mp@subsup{\pi}{i+1}{}[\mp@subsup{\mathbf{v}}{i}{}]
3. Commit to (}\mp@subsup{\pi}{i}{},\mp@subsup{\mathbf{v}}{i}{}\mp@subsup{)}{i\in[N]}{}\mathrm{ and Hv
Verifier \0
4. Sample (}\mp@subsup{\kappa}{i}{}\mp@subsup{)}{i\in[t]}{}\stackrel{$}{\leftrightarrows}\mp@subsup{\mathbb{F}}{q}{t}\\mathbf{0
```


PoK for r-IPKP (High Level Description)

$$
\begin{aligned}
& \frac{\text { Prover } \mathrm{P}_{0}}{\text { 1. Sample shares }\left(\pi_{i}, \mathbf{v}_{i}\right) \text { with } \pi_{1}=\pi_{2}^{-1} \circ \cdots \circ \pi_{N}^{-1} \circ \pi} \\
& \text { 2. Compute } \mathbf{v}=\mathbf{v}_{N}+\sum_{i \in[N-1]} \pi_{N} \circ \cdots \circ \pi_{i+1}\left[\mathbf{v}_{i}\right] \\
& \text { 3. Commit to }\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]} \text { and } \mathbf{H v} \\
& \frac{\text { Verifier } \mathrm{V}_{0}}{\text { 4. Sample }\left(\kappa_{i}\right)_{i \in[t]} \stackrel{\$}{\leftrightarrows} \mathbb{F}_{q}^{t} \backslash \mathbf{0}} \\
& \frac{\text { Prover } \mathrm{P}_{1}}{\text { 5. Compute } \mathbf{s}_{i}=\pi_{i}\left[\mathbf{s}_{i-1}\right]+\mathbf{v}_{i} \text { using } \mathbf{s}_{0}=\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{x}_{i}} \\
& \text { 6. Commit to }\left(\mathbf{s}_{i}\right)_{i \in[N]}
\end{aligned}
$$

PoK for r-IPKP (High Level Description)

$$
\begin{aligned}
& \frac{\text { Prover } \mathrm{P}_{0}}{\text { 1. Sample shares }\left(\pi_{i}, \mathbf{v}_{i}\right) \text { with } \pi_{1}=\pi_{2}^{-1} \circ \cdots \circ \pi_{N}^{-1} \circ \pi} \\
& \text { 2. Compute } \mathbf{v}=\mathbf{v}_{N}+\sum_{i \in[N-1]} \pi_{N} \circ \cdots \circ \pi_{i+1}\left[\mathbf{v}_{i}\right] \\
& \text { 3. Commit to }\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]} \text { and } \mathbf{H v} \\
& \frac{\text { Verifier } \mathrm{V}_{0}}{\text { 4. Sample }\left(\kappa_{i}\right)_{i \in[t]} \stackrel{\$}{\leftrightarrows} \mathbb{F}_{q}^{t} \backslash \mathbf{0}} \\
& \frac{\text { Prover } \mathrm{P}_{1}}{\text { 5. Compute } \mathbf{s}_{i}=\pi_{i}\left[\mathbf{s}_{i-1}\right]+\mathbf{v}_{i} \text { using } \mathbf{s}_{0}=\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{x}_{i}} \\
& \text { 6. Commit to }\left(\mathbf{s}_{i}\right)_{i \in[N]}
\end{aligned}
$$

Verifier V_{1}
7. Sample $\alpha \stackrel{\$}{\leftrightarrows}[1, N]$

PoK for r-IPKP (High Level Description)

$$
\begin{aligned}
& \frac{\text { Prover } \mathrm{P}_{0}}{} \\
& \text { 1. Sample shares }\left(\pi_{i}, \mathbf{v}_{i}\right) \text { with } \pi_{1}=\pi_{2}^{-1} \circ \cdots \circ \pi_{N}^{-1} \circ \pi \\
& \text { 2. Compute } \mathbf{v}=\mathbf{v}_{N}+\sum_{i \in[N-1]} \pi_{N} \circ \cdots \circ \pi_{i+1}\left[\mathbf{v}_{i}\right] \\
& \text { 3. Commit to }\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]} \text { and } \mathbf{H v} \\
& \frac{\text { Verifier } \mathrm{V}_{0}}{\text { 4. Sample }\left(\kappa_{i}\right)_{i \in[t]} \stackrel{\$}{\leftrightarrows} \mathbb{F}_{q}^{t} \backslash \mathbf{0}} \\
& \frac{\text { Prover } \mathrm{P}_{1}}{\text { 5. Compute } \mathbf{s}_{i}=\pi_{i}\left[\mathbf{s}_{i-1}\right]+\mathbf{v}_{i} \text { using } \mathbf{s}_{0}=\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{x}_{i}} \\
& \text { 6. Commit to }\left(\mathbf{s}_{i}\right)_{i \in[N]}
\end{aligned}
$$

Verifier V_{1}
7. Sample $\alpha \stackrel{\$}{\leftrightarrows}[1, N]$

Prover P_{2}
8. Compute $\mathbf{z}_{1}=\mathbf{s}_{\alpha}$ and $z_{2}=\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N] \backslash \alpha}$
9. Output rsp $=\left(\mathbf{z}_{1}, z_{2}, \operatorname{com}_{\alpha}\right)$

PoK for r-IPKP (High Level Description)

$$
\begin{aligned}
& \frac{\text { Prover } \mathrm{P}_{0}}{\text { 1. Sample shares }\left(\pi_{i}, \mathbf{v}_{i}\right) \text { with } \pi_{1}=\pi_{2}^{-1} \circ \cdots \circ \pi_{N}^{-1} \circ \pi} \\
& \text { 2. Compute } \mathbf{v}=\mathbf{v}_{N}+\sum_{i \in[N-1]} \pi_{N} \circ \cdots \circ \pi_{i+1}\left[\mathbf{v}_{i}\right] \\
& \text { 3. Commit to }\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]} \text { and } \mathbf{H v} \\
& \frac{\text { Verifier } \mathrm{V}_{0}}{\text { 4. Sample }\left(\kappa_{i}\right)_{i \in[t]} \stackrel{\$}{\leftrightarrows} \mathbb{F}_{q}^{t} \backslash \mathbf{0}} \\
& \frac{\text { Prover } \mathrm{P}_{1}}{\text { 5. Compute } \mathbf{s}_{i}=\pi_{i}\left[\mathbf{s}_{i-1}\right]+\mathbf{v}_{i} \text { using } \mathbf{s}_{0}=\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{x}_{i}} \\
& \text { 6. Commit to }\left(\mathbf{s}_{i}\right)_{i \in[N]}
\end{aligned}
$$

Verifier V_{1}
7. Sample $\alpha \stackrel{\$}{\leftrightarrows}[1, N]$

Prover P_{2}

8. Compute $\mathbf{z}_{1}=\mathbf{s}_{\alpha}$ and $z_{2}=\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N] \backslash \alpha}$
9. Output rsp $=\left(\mathbf{z}_{1}, z_{2}, \operatorname{com}_{\alpha}\right)$

Verifier V_{2}
10. Check commitments to $\left(\pi_{i}, \mathbf{v}_{i}\right)_{i \in[N]}$ using z_{2} and com $_{\alpha}$ 11. Check commitments to $\left(\mathbf{s}_{i}\right)_{i \in[N]}$ using \mathbf{s}_{0} and \mathbf{z}_{1} 12. Check commitment to $\mathbf{H v}$ using $\mathbf{H s}_{N}-\sum_{i \in[t]} \kappa_{i} \cdot \mathbf{y}_{i}$

Resulting Sizes

$$
\diamond|\mathrm{sk}|=\underbrace{\lambda}_{\text {Seed for } \pi}
$$

$$
|\mathrm{pk}|=\underbrace{}_{\text {Seed for } \mathbf{H} \text { and }\left(\mathbf{x}_{i}\right)_{i \in[t]}^{\lambda}}+\underbrace{t \cdot m\left\lceil\log _{2}(q)\right\rceil}_{\text {Vectors }\left(\mathbf{y}_{i}\right)_{i \in[t]} \operatorname{in} \mathbb{F}_{q}^{m}}
$$

Resulting Sizes

$$
\begin{aligned}
& \diamond \mid \text { sk } \mid=\underbrace{\lambda}_{\text {Seed for } \pi} \\
& |\mathrm{pk}|=\underbrace{\lambda \underbrace{t \cdot m\left\lceil\log _{2}(q)\right]}_{\operatorname{Vectors}\left(\mathbf{y}_{i}\right)_{i \in[t]} \text { in } \mathbb{F}_{q}^{m}}}_{\text {Seed for } \mathbf{H} \text { and }\left(\mathbf{x}_{i}\right)_{i \in[t]}^{\lambda}} \\
& \diamond|\sigma| \approx \tau \cdot(\underbrace{n\left\lceil\log _{2}(q)\right\rceil}_{\text {Vector } s_{\alpha} \operatorname{in} \mathbb{F}_{q} n}+\underbrace{n\left\lceil\log _{2}(n)\right\rceil}_{\text {Permutation } \pi_{1}}+\underbrace{2 \lambda}_{\text {Seeds for parties } i \in[1, N] \backslash \alpha}+\log _{2}(N)\rceil \quad \text { Commitment for party } \alpha
\end{aligned}
$$

Short Parameters

NIST level	sk	pk	σ	Keygen	Sign	Verify
PERK L1 $[\mathrm{t}=3]$	16 B	0.15 kB	6.56 kB	80 k	39 M	27 M
PERK L1 [t = 5]	16 B	0.24 kB	6.06 kB	91 k	36 M	25 M
PERK L3 $[\mathrm{t}=3]$	24 B	0.23 kB	15.0 kB	175 k	82 M	65 M
PERK L3 $[\mathrm{t}=5]$	24 B	0.37 kB	13.8 kB	194 k	77 M	60 M
PERK L5 $[\mathrm{t}=3]$	32 B	0.31 kB	26.4 kB	300 k	185 M	143 M
PERK L5 $[\mathrm{t}=5]$	32 B	0.51 kB	24.2 kB	328 k	171 M	131 M

Table 1: Sizes and performances (CPU cycles)
[Constant-Time implementation using AVX2 @3GHz]

Fast Parameters

NIST level	sk	pk	σ	Keygen	Sign	Verify
PERK L1 [$\mathrm{t}=3]$	16 B	0.15 kB	8.35 kB	77 k	7.6 M	5.3 M
PERK L1 [t = 5]	16 B	0.24 kB	8.03 kB	90 k	7.2 M	5.1 M
PERK L3 $[\mathrm{t}=3]$	24 B	0.23 kB	18.8 kB	167 k	16 M	13 M
PERK L3 $[\mathrm{t}=5]$	24 B	0.37 kB	18.0 kB	185 k	15 M	12 M
PERK L5 $[\mathrm{t}=3]$	32 B	0.31 kB	33.3 kB	304 k	36 M	28 M
PERK L5 $[\mathrm{t}=5]$	32 B	0.51 kB	31.7 kB	324 k	34 M	26 M

Table 2: Sizes and performances (CPU cycles)
[Constant-Time implementation using AVX2 @3GHz]

Advantages \& Limitations

Advantages \& Limitations

Advantages

\diamond Good public key + signature size \& small public and private keys
\diamond Underlying hardness assumption is unstructured
\diamond Resilience against IPKP and r-IPKP attacks - Increasing the r-IPKP parameters has a limited impact on the signature size

Advantages \& Limitations

Limitations

\diamond Relatively slow similarly to most MPC based schemes
\diamond Relatively large signature size similarly to most MPC based schemes
\diamond Rely on a variant of the IPKP problem

What's Next?

Disclaimer - Work in progress, results are not guaranted

Expected update

\diamond Improved signature size (approx. -5\%)
\diamond Improved implementation
pqc-perk.org

Thank you for your attention.

References I

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß.
Fiat-Shamir transformation of multi-round interactive proofs.
In Theory of Cryptography Conference (TCC), pages 113-142. Springer, 2022.
[BCCC93] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert.
On the Security of the Permuted Kernel Identification Scheme.
In Annual International Cryptology Conference (CRYPTO), pages 305-311. Springer, 1993.
[BG23] Loïc Bidoux and Philippe Gaborit.
Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the PKP, SD and RSD Problems.
In Codes, Cryptology and Information Security (C2SI), pages 10-42. Springer, 2023.
[DFM20] Jelle Don, Serge Fehr, and Christian Majenz.
The measure-and-reprogram technique 2.0: multi-round fiat-shamir and more.
In Annual International Cryptology Conference (CRYPTO), pages 602-631. Springer, 2020.
[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the fiat-shamir transformation in the quantum random-oracle model.
In Annual International Cryptology Conference (CRYPTO), pages 356-383. Springer, 2019.

References II

$\left[D G V^{+}{ }^{16]}\right.$ Özgür Dagdelen, David Galindo, Pascal Véron, Sidi Mohamed El Yousfi Alaoui, and Pierre-Louis Cayrel.
Extended security arguments for signature schemes.
Designs, Codes and Cryptography, 78(2):441-461, 2016.
[FJR23] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.
Shared permutation for syndrome decoding: new zero-knowledge protocol and code-based signature.
Designs, Codes and Cryptography, 91(2):563-608, 2023.
[FS86] Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification and signature problems.
In Annual International Cryptology Conference (CRYPTO). Springer, 1986.
[Geo92] Jean Georgiades.
Some Remarks on the Security of the Identification Scheme Based on Permuted Kernels.
Journal of Cryptology, 5(2):133-137, 1992.
[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson.
How to play any mental game, or a completeness theorem for protocols with honest majority.
In ACM Symposium on Theory of Computing (STOC), pages 218-229, 1987.

References III

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-Knowledge from Secure Multiparty Computation.
In ACM Symposium on Theory of Computing (STOC), pages 21-30, 2007.
[JJ01] Éliane Jaulmes and Antoine Joux.
Cryptanalysis of PKP: A new approach.
In International Conference on Practice and Theory of Public-Key Cryptography (PKC), pages 165-172. Springer, 2001.
[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures. In ACM Conference on Computer and Communications Security (CCS), 2018.
[KMP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin. On the complexity of the Permuted Kernel Problem.
Cryptology ePrint Archive, Report 2019/412, 2019.
[LP11] Rodolphe Lampe and Jacques Patarin.
Analysis of some natural variants of the PKP algorithm.
Cryptology ePrint Archive, Report 2011/686, 2011.

References IV

[PC94] Jacques Patarin and Pascal Chauvaud.
Improved Algorithms for the Permuted Kernel Problem.
In Annual International Cryptology Conference (CRYPTO), pages 391-402. Springer, 1994.
[PS96] David Pointcheval and Jacques Stern.
Security proofs for signature schemes.
In International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1996.
[SBC22] Paolo Santini, Marco Baldi, and Franco Chiaraluce.
Computational Hardness of the Permuted Kernel and Subcode Equivalence Problems.
Cryptology ePrint Archive, Report 2022/1749, 2022.
[Sha90] Adi Shamir.
An Efficient Identification Scheme Based on Permuted Kernels.
In Annual International Cryptology Conference (CRYPTO). Springer, 1990.

