
PERK

N. Aaraj, S. Bettaieb, L. Bidoux, A. Budroni, V. Dyseryn, A. Esser,
P. Gaborit, M. Kulkarni, V. Mateu, M. Palumbi, L. Perin, J.-P. Tillich

Oxford Post-Quantum Cryptography Summit 2023

Overview

PERK is a signature scheme based on the PERmuted Kernel problem

⋄ Fiat-Shamir based signature along with a Zero-Knowledge Proof of Knowledge (ZK PoK)

⋄ Underlying PoK built using Multi-Party Computation in the Head (MPCitH)

⋄ Relies on the hardness of the relaxed Inhomogeneous Permuted Kernel Problem (r-IPKP)

1 / 23

Agenda

1 - Signature from ZK PoK

2 - ZK PoK from MPC

3 - ZK PoK for r-IPKP

4 - Sizes & Performances

5 - Advantages & Limitations

2 / 23

Signature from ZK PoK

Zero-Knowledge Proof of Knowledge (informal)

ProverP VerifierV

Cmt

Ch

Rsp

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest proverP can always
convince a verifier that he knows some secret s

Soundness - Malicious prover P̃ can’t convince a
verifier that he knows the secret s except with
negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not
learn anything on the secret s

4 / 23

Zero-Knowledge Proof of Knowledge (informal)

ProverP VerifierV

Cmt

Ch

Rsp

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest proverP can always
convince a verifier that he knows some secret s

Soundness - Malicious prover P̃ can’t convince a
verifier that he knows the secret s except with
negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not
learn anything on the secret s

4 / 23

Zero-Knowledge Proof of Knowledge (informal)

ProverP VerifierV

Cmt

Ch

Rsp

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest proverP can always
convince a verifier that he knows some secret s

Soundness - Malicious prover P̃ can’t convince a
verifier that he knows the secret s except with
negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not
learn anything on the secret s

4 / 23

Zero-Knowledge Proof of Knowledge (informal)

ProverP VerifierV

Cmt

Ch

Rsp

Figure 1.1: 3-rounds ZK PoK

Correctness - Honest proverP can always
convince a verifier that he knows some secret s

Soundness - Malicious prover P̃ can’t convince a
verifier that he knows the secret s except with
negligible probability ϵ

Honest-Verifier ZK - Honest-Verifier does not
learn anything on the secret s

4 / 23

Fiat-Shamir Transform

ProverP VerifierV

Cmt

Ch

Rsp

Objective - Transform a public coin interactive
proof of knowledge into a digital signature

Main Idea - If the verifierV only returns strings
sampled uniformly at random, it can be replaced
by a hash function (modelled as random oracle)

Security - Proven secure in the ROM for PoK using
3-rounds [PS96] andn-rounds [DGV+16, AFK22]
Studied in the QROM [DFMS19, DFM20]

5 / 23

Fiat-Shamir Transform

Signer S

Cmt

Ch = H(m || pk || Cmt)

Rsp

Cmt, Rsp

Figure 1.2: Fiat-Shamir Transform [FS86]

Objective - Transform a public coin interactive
proof of knowledge into a digital signature

Main Idea - If the verifierV only returns strings
sampled uniformly at random, it can be replaced
by a hash function (modelled as random oracle)

Security - Proven secure in the ROM for PoK using
3-rounds [PS96] andn-rounds [DGV+16, AFK22]
Studied in the QROM [DFMS19, DFM20]

5 / 23

Fiat-Shamir Transform

Signer S

Cmt

Ch = H(m || pk || Cmt)

Rsp

Cmt, Rsp

Figure 1.2: Fiat-Shamir Transform [FS86]

Objective - Transform a public coin interactive
proof of knowledge into a digital signature

Main Idea - If the verifierV only returns strings
sampled uniformly at random, it can be replaced
by a hash function (modelled as random oracle)

Security - Proven secure in the ROM for PoK using
3-rounds [PS96] andn-rounds [DGV+16, AFK22]
Studied in the QROM [DFMS19, DFM20]

5 / 23

ZK PoK from MPC

Multi-Party Computation

Letx be a secret that can be recomputed fromN shares (Jx1K, · · · , JxN K)

Secure MPC [GMW87] allows a set of parties (P1, · · · , PN)with inputs (Jx1K, · · · , JxN K) to

⋄ Compute y = f(x) for some function f [correctness]

⋄ Without leaking anything onx beyond what can be learned from f(x) [privacy]

For Fiat-Shamir based signature schemes, adversaries are modelled as Honest-but-Curious

7 / 23

Multi-Party Computation

Letx be a secret that can be recomputed fromN shares (Jx1K, · · · , JxN K)

Secure MPC [GMW87] allows a set of parties (P1, · · · , PN)with inputs (Jx1K, · · · , JxN K) to

⋄ Compute y = f(x) for some function f [correctness]

⋄ Without leaking anything onx beyond what can be learned from f(x) [privacy]

For Fiat-Shamir based signature schemes, adversaries are modelled as Honest-but-Curious

7 / 23

Multi-Party Computation

Letx be a secret that can be recomputed fromN shares (Jx1K, · · · , JxN K)

Secure MPC [GMW87] allows a set of parties (P1, · · · , PN)with inputs (Jx1K, · · · , JxN K) to

⋄ Compute y = f(x) for some function f [correctness]

⋄ Without leaking anything onx beyond what can be learned from f(x) [privacy]

For Fiat-Shamir based signature schemes, adversaries are modelled as Honest-but-Curious

7 / 23

MPC-in-the-Head Transform

ProverP VerifierV

Generates MPC shares
Run MPC "in-its-Head"

Cmt

Choose a random partyα
Ch

Reveal the shares of
all parties exceptα
and the output ofα
in the MPC protocol

Rsp

Check commitments

Check computation and
result of the MPC protocol

Figure 2.1: MPC-in-the-Head [IKOS07]

Objective - Transform a MPC protocol computing
y = f(x) into a ZK PoK verifying if y = f(x)

Main Idea - ProverP generates and commits to
shares ofx then emulates "in its head" the MPC
protocol and reveals the views of (N −1)parties

VerifierV checks that the received views are
consistent with commitments and checks the
computation and result of the MPC protocol

8 / 23

MPC-in-the-Head Transform

ProverP VerifierV

Generates MPC shares
Run MPC "in-its-Head"

Cmt

Choose a random partyα
Ch

Reveal the shares of
all parties exceptα
and the output ofα
in the MPC protocol

Rsp

Check commitments

Check computation and
result of the MPC protocol

Figure 2.1: MPC-in-the-Head [IKOS07]

Objective - Transform a MPC protocol computing
y = f(x) into a ZK PoK verifying if y = f(x)

Main Idea - ProverP generates and commits to
shares ofx then emulates "in its head" the MPC
protocol and reveals the views of (N −1)parties

VerifierV checks that the received views are
consistent with commitments and checks the
computation and result of the MPC protocol

8 / 23

MPC-in-the-Head Transform

ProverP VerifierV

Generates MPC shares
Run MPC "in-its-Head"

Cmt

Choose a random partyα
Ch

Reveal the shares of
all parties exceptα
and the output ofα
in the MPC protocol

Rsp

Check commitments

Check computation and
result of the MPC protocol

Figure 2.1: MPC-in-the-Head [IKOS07]

Objective - Transform a MPC protocol computing
y = f(x) into a ZK PoK verifying if y = f(x)

Main Idea - ProverP generates and commits to
shares ofx then emulates "in its head" the MPC
protocol and reveals the views of (N −1)parties

VerifierV checks that the received views are
consistent with commitments and checks the
computation and result of the MPC protocol

8 / 23

MPC-in-the-Head Transform

Resulting PoK

⋄ Correctness - From the correctness of the MPC protocol

⋄ Zero-Knowledge - From the (N - 1)-privacy of the MPC protocol

⋄ Soundness - Soundness error equal to 1/N
Can be made negligible by repeating the protocol τ times

Reducing the PoK size [KKW18]

⋄ Compress commitments by hasing them together

⋄ Compress seeds associated to each party using a Merkle tree

9 / 23

MPC-in-the-Head Transform

Resulting PoK

⋄ Correctness - From the correctness of the MPC protocol

⋄ Zero-Knowledge - From the (N - 1)-privacy of the MPC protocol

⋄ Soundness - Soundness error equal to 1/N
Can be made negligible by repeating the protocol τ times

Reducing the PoK size [KKW18]

⋄ Compress commitments by hasing them together

⋄ Compress seeds associated to each party using a Merkle tree

9 / 23

ZK PoK for r-IPKP

IPKP & r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input -H ∈ Fm×n
q , (xi,yi) ∈ Fn

q × Fm
q for i ∈ [t] with X = (x1 | · · · |xt) a full rank matrix

π ∈ Sn such that H
(
π[xi]

)
= yi for i ∈ [t]

Goal - Find π̃ such that H
(
π̃[xi]

)
= yi for i ∈ [t]

Mono-dimensional IPKP [t = 1]

Multi-dimensional IPKP [t > 1]

11 / 23

IPKP & r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input -H ∈ Fm×n
q , (xi,yi) ∈ Fn

q × Fm
q for i ∈ [t] with X = (x1 | · · · |xt) a full rank matrix

π ∈ Sn such that H
(
π[xi]

)
= yi for i ∈ [t]

Goal - Find π̃ such that H
(
π̃[xi]

)
= yi for i ∈ [t]

Mono-dimensional IPKP [t = 1]

Multi-dimensional IPKP [t > 1]

11 / 23

IPKP & r-IPKP

The Permuted Kernel Problem was initially introduced in [Sha90]

Definition (Inhomogeneous Permuted Kernel Problem)

Input -H ∈ Fm×n
q , (xi,yi) ∈ Fn

q × Fm
q for i ∈ [t] with X = (x1 | · · · |xt) a full rank matrix

π ∈ Sn such that H
(
π[xi]

)
= yi for i ∈ [t]

Goal - Find π̃ such that H
(
π̃[xi]

)
= yi for i ∈ [t]

Mono-dimensional IPKP [t = 1]

Multi-dimensional IPKP [t > 1]

11 / 23

IPKP & r-IPKP

Definition (Relaxed Inhomogeneous Permuted Kernel Problem)

Input -H ∈ Fm×n
q , (xi,yi) ∈ Fn

q × Fm
q for i ∈ [t] with X = (x1 | · · · |xt) a full rank matrix

π ∈ Sn such that H
(
π[xi]

)
= yi for i ∈ [t]

Goal - Find π̃ such that H
(
π̃
[∑

i∈[t] κi · xi

])
=

∑
i∈[t] κi · yi for any (κ1, . . . , κt) ∈ Ft

q \ 0

12 / 23

Known Attacks against IPKP & r-IPKP

Attacks on IPKP

⋄ Mono-dimensional case studied in [Geo92, BCCG93, PC94, JJ01, LP11, KMP19, SBC22]

⋄ Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

⋄ Existing attacks generalized to the relaxed case in PERK

Parameter sets considered in PERK use t = 3 or t = 5

13 / 23

Known Attacks against IPKP & r-IPKP

Attacks on IPKP

⋄ Mono-dimensional case studied in [Geo92, BCCG93, PC94, JJ01, LP11, KMP19, SBC22]

⋄ Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

⋄ Existing attacks generalized to the relaxed case in PERK

Parameter sets considered in PERK use t = 3 or t = 5

13 / 23

Known Attacks against IPKP & r-IPKP

Attacks on IPKP

⋄ Mono-dimensional case studied in [Geo92, BCCG93, PC94, JJ01, LP11, KMP19, SBC22]

⋄ Existing attacks generalized to the multi-dimensional case in [SBC22]

Attacks on r-IPKP

⋄ Existing attacks generalized to the relaxed case in PERK

Parameter sets considered in PERK use t = 3 or t = 5

13 / 23

PoK for r-IPKP

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview

⋄ PoK uses r-IPKP for challenge space amplification [BG23]

First challenge space has size |C1| = qt − 1

⋄ PoK uses shared permutation [FJR23] to computeπ[x]without leaking anything onπ

From (πi,vi)i∈[N], compute π = π1 ◦ · · · ◦ πN and v = vN +
∑

i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

Compute sN = π[x] + v by recurrence from s0 = x and si = πi[si−1] + vi

14 / 23

PoK for r-IPKP

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview

⋄ PoK uses r-IPKP for challenge space amplification [BG23]

First challenge space has size |C1| = qt − 1

⋄ PoK uses shared permutation [FJR23] to computeπ[x]without leaking anything onπ

From (πi,vi)i∈[N], compute π = π1 ◦ · · · ◦ πN and v = vN +
∑

i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

Compute sN = π[x] + v by recurrence from s0 = x and si = πi[si−1] + vi

14 / 23

PoK for r-IPKP

PERK is derived from a 5-rounds ZK PoK introduced in [BG23]

Overview

⋄ PoK uses r-IPKP for challenge space amplification [BG23]

First challenge space has size |C1| = qt − 1

⋄ PoK uses shared permutation [FJR23] to computeπ[x]without leaking anything onπ

From (πi,vi)i∈[N], compute π = π1 ◦ · · · ◦ πN and v = vN +
∑

i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

Compute sN = π[x] + v by recurrence from s0 = x and si = πi[si−1] + vi

14 / 23

PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N]

VerifierV1

7. Sample α
$←− [1, N]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N] using z2 and comα

11. Check commitments to (si)i∈[N] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi

15 / 23

PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N]

VerifierV1

7. Sample α
$←− [1, N]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N] using z2 and comα

11. Check commitments to (si)i∈[N] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi

15 / 23

PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N]

VerifierV1

7. Sample α
$←− [1, N]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N] using z2 and comα

11. Check commitments to (si)i∈[N] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi

15 / 23

PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N]

VerifierV1

7. Sample α
$←− [1, N]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N] using z2 and comα

11. Check commitments to (si)i∈[N] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi

15 / 23

PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N]

VerifierV1

7. Sample α
$←− [1, N]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N] using z2 and comα

11. Check commitments to (si)i∈[N] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi

15 / 23

PoK for r-IPKP (High Level Description)

ProverP0

1. Sample shares (πi,vi)withπ1 = π−1
2 ◦ · · · ◦ π−1

N ◦ π
2. Compute v = vN +

∑
i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

3. Commit to (πi,vi)i∈[N] and Hv

VerifierV0

4. Sample (κi)i∈[t]
$←− Ft

q \ 0

ProverP1

5. Compute si = πi[si−1] + vi using s0 =
∑

i∈[t] κi · xi

6. Commit to (si)i∈[N]

VerifierV1

7. Sample α
$←− [1, N]

ProverP2

8. Compute z1 = sα and z2 = (πi,vi)i∈[N]\α

9. Output rsp = (z1, z2, comα)

VerifierV2

10. Check commitments to (πi,vi)i∈[N] using z2 and comα

11. Check commitments to (si)i∈[N] using s0 and z1

12. Check commitment to Hv using HsN −
∑

i∈[t] κi · yi

15 / 23

Sizes & Performances

Resulting Sizes

⋄ |sk| = λ︸︷︷︸
Seed forπ

|pk| = λ︸︷︷︸
Seed forH and (xi)i∈[t]

+ t ·m⌈log2(q)⌉︸ ︷︷ ︸
Vectors (yi)i∈[t] inFm

q

⋄ |σ| ≈ τ ·
(
n⌈log2(q)⌉︸ ︷︷ ︸
Vector sαinFn

q

+ n⌈log2(n)⌉︸ ︷︷ ︸
Permutationπ1

+ λ⌈log2(N)⌉︸ ︷︷ ︸
Seeds for parties i ∈ [1, N] \ α

+ 2λ︸︷︷︸
Commitment for partyα

)

17 / 23

Resulting Sizes

⋄ |sk| = λ︸︷︷︸
Seed forπ

|pk| = λ︸︷︷︸
Seed forH and (xi)i∈[t]

+ t ·m⌈log2(q)⌉︸ ︷︷ ︸
Vectors (yi)i∈[t] inFm

q

⋄ |σ| ≈ τ ·
(
n⌈log2(q)⌉︸ ︷︷ ︸
Vector sαinFn

q

+ n⌈log2(n)⌉︸ ︷︷ ︸
Permutationπ1

+ λ⌈log2(N)⌉︸ ︷︷ ︸
Seeds for parties i ∈ [1, N] \ α

+ 2λ︸︷︷︸
Commitment for partyα

)

17 / 23

Short Parameters

NIST level sk pk σ Keygen Sign Verify

PERK L1 [t = 3] 16 B 0.15 kB 6.56 kB 80 k 39 M 27 M

PERK L1 [t = 5] 16 B 0.24 kB 6.06 kB 91 k 36 M 25 M

PERK L3 [t = 3] 24 B 0.23 kB 15.0 kB 175 k 82 M 65 M

PERK L3 [t = 5] 24 B 0.37 kB 13.8 kB 194 k 77 M 60 M

PERK L5 [t = 3] 32 B 0.31 kB 26.4 kB 300 k 185 M 143 M

PERK L5 [t = 5] 32 B 0.51 kB 24.2 kB 328 k 171 M 131 M

Table 1: Sizes and performances (CPU cycles)
[Constant-Time implementation using AVX2 @3GHz]

18 / 23

Fast Parameters

NIST level sk pk σ Keygen Sign Verify

PERK L1 [t = 3] 16 B 0.15 kB 8.35 kB 77 k 7.6 M 5.3 M

PERK L1 [t = 5] 16 B 0.24 kB 8.03 kB 90 k 7.2 M 5.1 M

PERK L3 [t = 3] 24 B 0.23 kB 18.8 kB 167 k 16 M 13 M

PERK L3 [t = 5] 24 B 0.37 kB 18.0 kB 185 k 15 M 12 M

PERK L5 [t = 3] 32 B 0.31 kB 33.3 kB 304 k 36 M 28 M

PERK L5 [t = 5] 32 B 0.51 kB 31.7 kB 324 k 34 M 26 M

Table 2: Sizes and performances (CPU cycles)
[Constant-Time implementation using AVX2 @3GHz]

19 / 23

Advantages &
Limitations

Advantages & Limitations

Advantages

⋄ Good public key + signature size & small public and private keys

⋄ Underlying hardness assumption is unstructured

⋄ Resilience against IPKP and r-IPKP attacks - Increasing the r-IPKP parameters has
a limited impact on the signature size

21 / 23

Advantages & Limitations

Limitations

⋄ Relatively slow similarly to most MPC based schemes

⋄ Relatively large signature size similarly to most MPC based schemes

⋄ Rely on a variant of the IPKP problem

22 / 23

What’s Next ?

Disclaimer - Work in progress, results are not guaranted

Expected update

⋄ Improved signature size (approx. -5%)

⋄ Improved implementation

pqc-perk.org

23 / 23

Thank you for your attention.

References I

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß.
Fiat-Shamir transformation of multi-round interactive proofs.
In Theory of Cryptography Conference (TCC), pages 113–142. Springer, 2022.

[BCCG93] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert.
On the Security of the Permuted Kernel Identification Scheme.
In Annual International Cryptology Conference (CRYPTO), pages 305–311. Springer, 1993.

[BG23] Loïc Bidoux and Philippe Gaborit.
Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the PKP, SD and RSD Problems.
In Codes, Cryptology and Information Security (C2SI), pages 10–42. Springer, 2023.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz.
The measure-and-reprogram technique 2.0: multi-round fiat-shamir and more.
In Annual International Cryptology Conference (CRYPTO), pages 602–631. Springer, 2020.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the fiat-shamir transformation in the quantum random-oracle model.
In Annual International Cryptology Conference (CRYPTO), pages 356–383. Springer, 2019.

References II

[DGV+16] Özgür Dagdelen, David Galindo, Pascal Véron, Sidi Mohamed El Yousfi Alaoui, and Pierre-Louis Cayrel.
Extended security arguments for signature schemes.
Designs, Codes and Cryptography, 78(2):441–461, 2016.

[FJR23] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.
Shared permutation for syndrome decoding: new zero-knowledge protocol and code-based signature.
Designs, Codes and Cryptography, 91(2):563–608, 2023.

[FS86] Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification and signature problems.
In Annual International Cryptology Conference (CRYPTO). Springer, 1986.

[Geo92] Jean Georgiades.
Some Remarks on the Security of the Identification Scheme Based on Permuted Kernels.
Journal of Cryptology, 5(2):133–137, 1992.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson.
How to play any mental game, or a completeness theorem for protocols with honest majority.
In ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

References III

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-Knowledge from Secure Multiparty Computation.
In ACM Symposium on Theory of Computing (STOC), pages 21–30, 2007.

[JJ01] Éliane Jaulmes and Antoine Joux.
Cryptanalysis of PKP: A new approach.
In International Conference on Practice and Theory of Public-Key Cryptography (PKC), pages 165–172. Springer, 2001.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures.
In ACM Conference on Computer and Communications Security (CCS), 2018.

[KMP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin.
On the complexity of the Permuted Kernel Problem.
Cryptology ePrint Archive, Report 2019/412, 2019.

[LP11] Rodolphe Lampe and Jacques Patarin.
Analysis of some natural variants of the PKP algorithm.
Cryptology ePrint Archive, Report 2011/686, 2011.

References IV

[PC94] Jacques Patarin and Pascal Chauvaud.
Improved Algorithms for the Permuted Kernel Problem.
In Annual International Cryptology Conference (CRYPTO), pages 391–402. Springer, 1994.

[PS96] David Pointcheval and Jacques Stern.
Security proofs for signature schemes.
In International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1996.

[SBC22] Paolo Santini, Marco Baldi, and Franco Chiaraluce.
Computational Hardness of the Permuted Kernel and Subcode Equivalence Problems.
Cryptology ePrint Archive, Report 2022/1749, 2022.

[Sha90] Adi Shamir.
An Efficient Identification Scheme Based on Permuted Kernels.
In Annual International Cryptology Conference (CRYPTO). Springer, 1990.

	Signature from ZK PoK
	ZK PoK from MPC
	ZK PoK for r-IPKP
	Sizes & Performances
	Advantages & Limitations

