

Practical Key-Recovery Attack on MQ-Sign and More

<u>Thomas Aulbach</u>¹ Simona Samardjiska² Monika Trimoska³

PQCrypto 2024, Oxford, UK

¹University of Regensburg, Regensburg, Germany

²Radboud Universiteit, Nijmegen, The Netherlands

³Eindhoven University of Technology, Eindhoven, The Netherlands

MQ-Sign Variants

Round 1 Variants	$\mathcal{F}_{V,V}$	$\mathcal{F}_{O,V}$	Attack Type	Complexity
MQ-Sign- RR	random	random		
MQ-Sign-SR	sparse	random		
MQ-Sign-RS	random	sparse		
MQ-Sign-SS	sparse	sparse		

Round 1 Variants	$\mathcal{F}_{V,V}$	$\mathcal{F}_{O,V}$	Attack Type	Complexity
MQ-SIGN-RR	random	random		
MQ-Sign-SR	sparse	random		
MQ-Sign-RS	random	sparse		
MQ-SIGN-SS	sparse	sparse		

• MQ-SIGN-RR corresponds to standard Uov.

Round 1 Variants	$\mathcal{F}_{V,V}$	$\mathcal{F}_{O,V}$	Attack Type	Complexity
MQ-SIGN-RR	random	random		
MQ-Sign-SR	sparse	random		
MQ-Sign-RS	random	sparse		
MQ-Sign-SS	sparse	sparse		

- MQ-SIGN-RR corresponds to standard Uov.
- Variants with sparse central maps ${\mathcal F}$ are developed to reduce key size.

Round 1 Variants	$\mathcal{F}_{V,V}$	$\mathcal{F}_{O,V}$	Attack Type	Complexity
MQ-SIGN-RR	random	random	-	-
MQ-Sign-SR	sparse	random	forgery attack	exp time
MQ-Sign-RS	random	sparse	key-recovery	poly time
MQ-Sign-SS	sparse	sparse	key-recovery	poly time

- MQ-SIGN-RR corresponds to standard Uov.
- Variants with sparse central maps ${\mathcal F}$ are developed to reduce key size.
- We present attacks to every sparse variant.

MQ-Sign Key Structure

Secret/central map (easy to invert):

$$\mathcal{F} = (\mathcal{F}^{(1)}, \dots, \mathcal{F}^{(m)}): \mathbb{F}_q^n o \mathbb{F}_q^m$$

Secret/central map (easy to invert):

$$\mathcal{F} = (\mathcal{F}^{(1)}, \dots, \mathcal{F}^{(m)}) : \mathbb{F}_q^n o \mathbb{F}_q^m$$

Secret/central polynomials (structured):

$$\mathcal{F}^{(k)}(x_1,\ldots,x_n) = \sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j + \sum_{i \in V, j \in O} \gamma_{ij}^{(k)} x_i x_j + \sum_{i \in O, j \in O} \gamma_{ij}^{(k)} x_i x_j$$

Secret/central map (easy to invert):

$$\mathcal{F} = (\mathcal{F}^{(1)}, \dots, \mathcal{F}^{(m)}) : \mathbb{F}_q^n o \mathbb{F}_q^m$$

Secret/central polynomials (structured):

$$\mathcal{F}^{(k)}(x_1,\ldots,x_n) = \sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j + \sum_{i \in V, j \in O} \gamma_{ij}^{(k)} x_i x_j + \sum_{i \in O, j \in O} \gamma_{ij}^{(k)} x_i x_j$$

Store the coefficients of the quadratic part of $\mathcal{F}^{(k)}$ in an upper triangular matrix $\mathbf{F}^{(k)}$

$$\mathbf{F}^{(k)} = \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{F}_{\mathbf{V}}^{(k)} & \mathbf{F}_{\mathbf{0},\mathbf{V}}^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Secret/central map (easy to invert):

$$\mathcal{F} = (\mathcal{F}^{(1)}, \dots, \mathcal{F}^{(m)}) : \mathbb{F}_q^n o \mathbb{F}_q^m$$

Secret/central polynomials (structured):

$$\mathcal{F}^{(k)}(x_1,\ldots,x_n) = \sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j + \sum_{i \in V, j \in O} \gamma_{ij}^{(k)} x_i x_j + \sum_{i \in O, j \in O} \gamma_{ij}^{(k)} x_i \overline{x_j}$$

Store the coefficients of the quadratic part of $\mathcal{F}^{(k)}$ in an upper triangular matrix $\mathbf{F}^{(k)}$

$$\mathbf{F}^{(k)} = \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{F}_V^{(k)} & \mathbf{F}_{O,V}^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Secret linear transformation (invertible matrix):

$$\mathbf{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$$
, where we commonly have $\mathbf{S} = egin{pmatrix} \mathbf{I}_{\mathbf{v}} & \mathbf{S}_1 \ \mathbf{0} & \mathbf{I}_{\mathbf{m}} \end{pmatrix}$

Public key map (hard to invert):

$$\mathcal{P} = (\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(m)}): \mathbb{F}_q^n o \mathbb{F}_q^m$$

Public key map (hard to invert):

$$\mathcal{P} = (\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(m)}) : \mathbb{F}_q^n o \mathbb{F}_q^m$$

Public polynomials (seemingly random):

$$\mathcal{P}^{(k)}(x_1,\ldots,x_n) = \sum_{1 \leq i \leq j \leq n} p_{ij}^{(k)} x_i x_j$$

Public key map (hard to invert):

$$\mathcal{P} = (\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(m)}) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

Public polynomials (seemingly random):

$$\mathcal{P}^{(k)}(x_1,\ldots,x_n) = \sum_{1 \leq i \leq j \leq n} p_{ij}^{(k)} x_i x_j$$

Store the coefficients of the quadratic part of $\mathcal{P}^{(k)}$ in an upper triangular matrix $\mathbf{P}^{(k)}$

$$\mathsf{P}^{(\mathsf{k})} = egin{pmatrix} \mathsf{P}_1^{(\mathsf{k})} & \mathsf{P}_2^{(\mathsf{k})} \ \mathsf{0} & \mathsf{P}_4^{(\mathsf{k})} \end{pmatrix}$$

Public key map (hard to invert):

$$\mathcal{P} = (\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(m)}) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

Public polynomials (seemingly random):

$$\mathcal{P}^{(k)}(x_1,\ldots,x_n) = \sum_{1 \le i \le j \le n} p_{ij}^{(k)} x_i x_j$$

Store the coefficients of the quadratic part of $\mathcal{P}^{(k)}$ in an upper triangular matrix $\mathbf{P}^{(k)}$

$$\mathsf{P}^{(\mathsf{k})} = egin{pmatrix} \mathsf{P}_1^{(\mathsf{k})} & \mathsf{P}_2^{(\mathsf{k})} \ \mathsf{0} & \mathsf{P}_4^{(\mathsf{k})} \end{pmatrix}$$

The public and secret polynomials follow the equation:

$$\mathcal{P}=\mathcal{F}\circ \textbf{S}$$

Public key map (hard to invert):

$$\mathcal{P} = (\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(m)}) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

Public polynomials (seemingly random):

$$\mathcal{P}^{(k)}(x_1,\ldots,x_n) = \sum_{1 \le i \le j \le n} p_{ij}^{(k)} x_i x_j$$

Store the coefficients of the quadratic part of $\mathcal{P}^{(k)}$ in an upper triangular matrix $\mathbf{P}^{(k)}$

r

$$\mathsf{P}^{(\mathsf{k})} = egin{pmatrix} \mathsf{P}_1^{(\mathsf{k})} & \mathsf{P}_2^{(\mathsf{k})} \ \mathsf{0} & \mathsf{P}_4^{(\mathsf{k})} \end{pmatrix}$$

The public and secret polynomials follow the equation:

$$\mathcal{P} = \mathcal{F} \circ \mathbf{S}$$
esp. $\mathbf{P}^{(\mathbf{k})} = \mathbf{S}^{ op} \mathbf{F}^{(\mathbf{k})} \mathbf{S}$

Sign

- Build the target value $\mathbf{t} = \mathbf{H}(\mathbf{m}, \mathtt{salt})$ from message \mathbf{m} .
- Compute $\mathbf{y} = \mathcal{F}^{-1}(\mathbf{t}) \in \mathbb{F}_q^n$, and $\mathbf{z} = \mathbf{S}^{-1}(\mathbf{y})$.
- The signature is given by sig = (z, salt)

Sign

- Build the target value $\mathbf{t} = \mathbf{H}(\mathbf{m}, \mathtt{salt})$ from message \mathbf{m} .
- Compute $\mathbf{y} = \mathcal{F}^{-1}(\mathbf{t}) \in \mathbb{F}_q^n$, and $\mathbf{z} = \mathbf{S}^{-1}(\mathbf{y})$.
- The signature is given by sig = (z, salt)

Verify

- Build the target value $\mathbf{t} = \mathbf{H}(\mathbf{m}, \mathtt{salt})$ and evaluate $\mathbf{t}' = \mathcal{P}(\mathbf{z})$.
- Accept if $\mathbf{t} = \mathbf{t}'$, reject otherwise.

MQ-Sign design principle: sparse polynomials to reduce key size

MQ-Sign design principle: sparse polynomials to reduce key size

• Choose $\mathcal{F}_V^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{v} \gamma_i^{(k)} x_i x_{(i+k-1(\text{ mod } v))+1}$$

MQ-Sign design principle: sparse polynomials to reduce key size

• Choose $\mathcal{F}_V^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{v} \gamma_i^{(k)} x_i x_{(i+k-1(\text{ mod } v))+1}$$

$$\Rightarrow$$
 From $v \cdot (v + 1)/2$ to v coefficients per polynomials.

MQ-Sign design principle: sparse polynomials to reduce key size

• Choose $\mathcal{F}_V^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{\nu} \gamma_i^{(k)} x_i x_{(i+k-1(\text{ mod } \nu))+1}$$

 \Rightarrow From $\nu \cdot (\nu + 1)/2$ to ν coefficients per polynomials.

• Choose $\mathcal{F}_{OV}^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in O} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{v} \gamma_i^{(k)} x_i x_{(i+k-2(\text{ mod } m))+v+1}$$

MQ-Sign design principle: sparse polynomials to reduce key size

• Choose $\mathcal{F}_V^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{\nu} \gamma_i^{(k)} x_i x_{(i+k-1(\text{ mod } \nu))+1}$$

 \Rightarrow From $\nu \cdot (\nu + 1)/2$ to ν coefficients per polynomials.

• Choose $\mathcal{F}_{OV}^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in O} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{\nu} \gamma_i^{(k)} x_i x_{(i+k-2(\mod m))+\nu+1}.$$

 \Rightarrow From $v \cdot o$ to v coefficients per polynomials.

MQ-Sign design principle: sparse polynomials to reduce key size

• Choose $\mathcal{F}_V^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in V} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{\nu} \gamma_i^{(k)} x_i x_{(i+k-1(\text{ mod } \nu))+1}$$

 \Rightarrow From $\nu \cdot (\nu + 1)/2$ to ν coefficients per polynomials.

• Choose $\mathcal{F}_{OV}^{(k)}(x_1,\ldots,x_n)$ sparse

$$\sum_{i \in V, j \in O} \gamma_{ij}^{(k)} x_i x_j \rightarrow \sum_{i=1}^{\nu} \gamma_i^{(k)} x_i x_{(i+k-2(\mod m))+\nu+1}.$$

 \Rightarrow From $v \cdot o$ to v coefficients per polynomials.

Translate sparse polynomial equations to matrix visualization

Translate sparse polynomial equations to matrix visualization

$$\mathcal{F}_{V}^{(1)} = \sum_{i=1}^{v} \gamma_{i}^{(1)} x_{i} x_{(i \mod v)+1} \rightarrow \mathbf{F}_{V}^{(1)} = \begin{pmatrix} 0 & \gamma_{1}^{(1)} & 0 & \cdots & 0 \\ 0 & 0 & \gamma_{2}^{(1)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma_{v-1}^{(1)} \\ \gamma_{v}^{(1)} & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Translate sparse polynomial equations to matrix visualization

$$\mathcal{F}_{V}^{(1)} = \sum_{i=1}^{v} \gamma_{i}^{(1)} x_{i} x_{(i \mod v)+1} \quad \rightarrow \quad \mathbf{F}_{V}^{(1)} = \begin{pmatrix} 0 & \gamma_{1}^{(1)} & 0 & \cdots & 0 \\ 0 & 0 & \gamma_{2}^{(1)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma_{v-1}^{(1)} \\ \gamma_{v}^{(1)} & 0 & 0 & \cdots & 0 \end{pmatrix}$$
$$\mathcal{F}_{V}^{(2)} = \sum_{i=1}^{v} \gamma_{i}^{(2)} x_{i} x_{(i+1 \mod v)+1} \quad \rightarrow \quad \mathbf{F}_{V}^{(2)} = \begin{pmatrix} 0 & 0 & \gamma_{1}^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma_{v-2}^{(2)} \\ \gamma_{v-1}^{(2)} & 0 & 0 & \cdots & 0 \\ 0 & \gamma_{v}^{(2)} & 0 & \cdots & 0 \end{pmatrix}$$

Key size reduction due to sparsely chosen central polynomials

Round 1 variants	$\mathcal{F}_{V,V}$	$\mathcal{F}_{O,V}$	Secret key size at security level I
MQ-SIGN-RR	random	random	282 177 Bytes
MQ-Sign-SR	sparse	random	164 601 Bytes
MQ-SIGN-RS	random	sparse	133 137 Bytes
MQ-Sign-SS	sparse	sparse	15 561 Bytes

Table: Key size of the MQ-Sign variants for security level I with parameters $(q, v, m) = (2^8, 72, 46)$

Polynomial Time Key-Recovery Attack

The key equation $\mathcal{P} = \mathcal{F} \circ \mathbf{S}$ translates to the matrix equations $\mathbf{P}^{(k)} = \mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S}$,

The key equation $\mathcal{P} = \mathcal{F} \circ \mathbf{S}$ translates to the matrix equations $\mathbf{P}^{(k)} = \mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S}$, i.e.

$$\begin{split} \begin{pmatrix} \mathsf{P}_1^{(k)} & \mathsf{P}_2^{(k)} \\ \mathbf{0} & \mathsf{P}_4^{(k)} \end{pmatrix} &= \mathtt{U}\mathtt{pper} \begin{pmatrix} \left(\begin{array}{c} \mathbf{I} & \mathbf{0} \\ \mathbf{S}_1^\top & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathsf{F}_1^{(k)} & \mathsf{F}_2^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \mathsf{F}_1^{(k)} & (\mathsf{F}_1^{(k)} + \mathsf{F}_1^{(k)\top}) \mathsf{S}_1 + \mathsf{F}_2^{(k)} \\ \mathbf{0} & \mathtt{U}\mathtt{pper} & (\mathsf{S}_1^\top \mathsf{F}_1^{(k)} \mathsf{S}_1 + \mathsf{S}_1^\top \mathsf{F}_2^{(k)}) \end{pmatrix}. \end{split}$$

The key equation $\mathcal{P} = \mathcal{F} \circ S$ translates to the matrix equations $P^{(k)} = S^{\top} F^{(k)} S$, i.e.

$$\begin{split} \begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ \mathbf{0} & \mathbf{P}_4^{(k)} \end{pmatrix} &= \mathtt{U}\mathtt{pper} \left(\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{S}_1^\top & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \right) \\ &= \begin{pmatrix} \mathbf{F}_1^{(k)} & (\mathbf{F}_1^{(k)} + \mathbf{F}_1^{(k)\top}) \mathbf{S}_1 + \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathtt{U}\mathtt{pper} & (\mathbf{S}_1^\top \mathbf{F}_1^{(k)} \mathbf{S}_1 + \mathbf{S}_1^\top \mathbf{F}_2^{(k)}) \end{pmatrix}. \end{split}$$

From the two upper blocks we obtain the equations

$$\mathbf{P}_1^{(k)} = \mathbf{F}_1^{(k)}$$
 and $\mathbf{P}_2^{(k)} = (\mathbf{P}_1^{(k)} + \mathbf{P}_1^{(k)\top})\mathbf{S}_1 + \mathbf{F}_2^{(k)}.$

The key equation $\mathcal{P} = \mathcal{F} \circ S$ translates to the matrix equations $P^{(k)} = S^{\top} F^{(k)} S$, i.e.

$$\begin{split} \begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ \mathbf{0} & \mathbf{P}_4^{(k)} \end{pmatrix} &= \mathtt{U}\mathtt{pper} \left(\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{S}_1^\top & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \right) \\ &= \begin{pmatrix} \mathbf{F}_1^{(k)} & (\mathbf{F}_1^{(k)} + \mathbf{F}_1^{(k)\top}) \mathbf{S}_1 + \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathtt{U}\mathtt{pper} & (\mathbf{S}_1^\top \mathbf{F}_1^{(k)} \mathbf{S}_1 + \mathbf{S}_1^\top \mathbf{F}_2^{(k)}) \end{pmatrix}. \end{split}$$

From the two upper blocks we obtain the equations

$$\mathbf{P}_1^{(k)} = \mathbf{F}_1^{(k)} \quad \text{and} \quad \mathbf{P}_2^{(k)} = (\mathbf{P}_1^{(k)} + \mathbf{P}_1^{(k)\top})\mathbf{S}_1 + \mathbf{F}_2^{(k)}.$$

 $\Rightarrow\,$ System of linear equations in the entries of the secret \textbf{S}_1

The key equation $\mathcal{P} = \mathcal{F} \circ \mathbf{S}$ translates to the matrix equations $\mathbf{P}^{(k)} = \mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S}$, i.e.

$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ \mathbf{0} & \mathbf{P}_4^{(k)} \end{pmatrix} = \mathtt{U}\mathtt{pper} \begin{pmatrix} \left(\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{S}_1^\top & \mathbf{I} \end{array} \right) \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \end{pmatrix} \\ = \begin{pmatrix} \mathbf{F}_1^{(k)} & (\mathbf{F}_1^{(k)} + \mathbf{F}_1^{(k)\top})\mathbf{S}_1 + \mathbf{F}_2^{(k)} \\ \mathbf{0} & \mathtt{U}\mathtt{pper} & (\mathbf{S}_1^\top \mathbf{F}_1^{(k)}\mathbf{S}_1 + \mathbf{S}_1^\top \mathbf{F}_2^{(k)}) \end{pmatrix}.$$

From the two upper blocks we obtain the equations

$$\mathbf{P}_{1}^{(k)} = \mathbf{F}_{1}^{(k)}$$
 and $\mathbf{P}_{2}^{(k)} = (\mathbf{P}_{1}^{(k)} + \mathbf{P}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)}$.

- $\Rightarrow\,$ System of linear equations in the entries of the secret ${\bm S}_1$
- \Rightarrow But highly **underdetermined**, due to the secret coefficients in $\mathbf{F}_2^{(k)}$

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)} = F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

 $\mathbf{P}_{2}^{(k)} = (\mathbf{P}_{1}^{(k)} + \mathbf{P}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)}.$

secret, but known structure

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)}=F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

 $\mathbf{P}_{2}^{(k)} = (\mathbf{P}_{1}^{(k)} + \mathbf{P}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)}.$

$$\underbrace{\begin{pmatrix} p_{1,v+1}^{(k)} & \cdots & p_{1,v+m}^{(k)} \\ \vdots & & \vdots \\ p_{v,v+1}^{(k)} & \cdots & p_{v,v+m}^{(k)} \end{pmatrix}}_{public} = \underbrace{\begin{pmatrix} p_{1,1}^{(k)} & \cdots & p_{1,v}^{(k)} \\ \vdots & & \vdots \\ p_{v,1}^{(k)} & \cdots & p_{v,v}^{(k)} \end{pmatrix}}_{public} \underbrace{\begin{pmatrix} s_{11} & \cdots & s_{1m} \\ \vdots & & \vdots \\ s_{v1} & \cdots & s_{vm} \end{pmatrix}}_{secret} + \underbrace{\begin{pmatrix} 0 & \gamma_{1}^{(k)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma_{m-1}^{(k)} \\ \gamma_{m}^{(k)} & 0 & \cdots & 0 \\ \vdots & \ddots & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix}}_{lint}$$

secret, but known structure

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)} = F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

 $\mathbf{P}_{2}^{(k)} = (\mathbf{P}_{1}^{(k)} + \mathbf{P}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)}.$

secret, but known structure

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)} = F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

 $\mathbf{P}_{2}^{(k)} = (\mathbf{P}_{1}^{(k)} + \mathbf{P}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)}.$

secret, but known structure

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)} = F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

 $\mathbf{P}_{2}^{(k)} = (\mathbf{P}_{1}^{(k)} + \mathbf{P}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)}.$

secret, but known structure

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)} = F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

Collect linear equations for all k ∈ {1,..., m} polynomials.

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)}=F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

- Collect linear equations for all k ∈ {1,...,m} polynomials.
- Obtain system of mv(m-1) equations in vm variables (can be divided into subsystems).

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in $F_2^{(k)}=F_{O,V}^{(k)}$ are chosen sparsely. This removes unknown variables from the system

- Collect linear equations for all $k \in \{1, \ldots, m\}$ polynomials.
- Obtain system of mv(m-1) equations in vm variables (can be divided into subsystems).
- Once **S** is known, receive all central polynomials efficiently from $P^{(k)} = S^{\top}F^{(k)}S$.

9

• Compute secret key (\mathcal{F}, S) directly from public key \mathcal{P} , no signing-oracle needed.

- Compute secret key (\mathcal{F}, S) directly from public key \mathcal{P} , no signing-oracle needed.
- Works in seconds for all security levels.

- Compute secret key (\mathcal{F}, S) directly from public key \mathcal{P} , no signing-oracle needed.
- Works in seconds for all security levels.
- Ikematsu et al.¹ generalized this attack to arbitrary **S**.

¹Ikematsu et al. *A security analysis on MQ-Sign*. In International Conference on Information Security Applications, 2023

- Compute secret key $(\mathcal{F}, \mathbf{S})$ directly from public key \mathcal{P} , no signing-oracle needed.
- Works in seconds for all security levels.
- Ikematsu et al.¹ generalized this attack to arbitrary S.
- Together, this led to the removal of the variants $\mathrm{MQ}\text{-}\mathrm{SIGN}\text{-}\mathrm{RS}$ and $\mathrm{MQ}\text{-}\mathrm{SIGN}\text{-}\mathrm{SS}.$

¹Ikematsu et al. *A security analysis on MQ-Sign*. In International Conference on Information Security Applications, 2023

Forgery Attack with Reduced Complexity

Given: a target value $\mathbf{t} = H(d) \in \mathbb{F}_q^m$

Given: a target value $\mathbf{t} = H(d) \in \mathbb{F}_q^m$

Find: a signature $z \in \mathbb{F}_q^n$, such that $\mathcal{P}(z) = t$ is fulfilled, i.e.

$$(\mathbf{z}_{v}, \mathbf{z}_{o}) \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ \mathbf{0} & \mathbf{P}_{4}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{z}_{v} \\ \mathbf{z}_{o} \end{pmatrix} = \mathbf{z}_{v} \mathbf{P}_{1}^{(k)} \mathbf{z}_{v} + \mathbf{z}_{v} \mathbf{P}_{2}^{(k)} \mathbf{z}_{o} + \mathbf{z}_{o} \mathbf{P}_{4}^{(k)} \mathbf{z}_{o} = t_{k}$$

has to hold for all $k \in \{1, \ldots, m\}$.

Given: a target value $\mathbf{t} = H(d) \in \mathbb{F}_q^m$

Find: a signature $z \in \mathbb{F}_q^n$, such that $\mathcal{P}(z) = t$ is fulfilled, i.e.

$$(\mathbf{z}_{v}, \mathbf{z}_{o}) \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ \mathbf{0} & \mathbf{P}_{4}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{z}_{v} \\ \mathbf{z}_{o} \end{pmatrix} = \mathbf{z}_{v} \mathbf{P}_{1}^{(k)} \mathbf{z}_{v} + \mathbf{z}_{v} \mathbf{P}_{2}^{(k)} \mathbf{z}_{o} + \mathbf{z}_{o} \mathbf{P}_{4}^{(k)} \mathbf{z}_{o} = t_{k}$$

has to hold for all $k \in \{1, \ldots, m\}$.

Recall: the submatrices $\mathbf{P}_1^{(k)} = \mathbf{F}_1^{(k)}$ are chosen sparse in $\mathrm{MQ}\text{-}\mathrm{Sign}\text{-}\mathrm{SR}$

Given: a target value $\mathbf{t} = H(d) \in \mathbb{F}_q^m$

Find: a signature $z \in \mathbb{F}_q^n$, such that $\mathcal{P}(z) = t$ is fulfilled, i.e.

$$(\mathbf{z}_{v}, \mathbf{z}_{o}) \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ \mathbf{0} & \mathbf{P}_{4}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{z}_{v} \\ \mathbf{z}_{o} \end{pmatrix} = \mathbf{z}_{v} \mathbf{P}_{1}^{(k)} \mathbf{z}_{v} + \mathbf{z}_{v} \mathbf{P}_{2}^{(k)} \mathbf{z}_{o} + \mathbf{z}_{o} \mathbf{P}_{4}^{(k)} \mathbf{z}_{o} = t_{k}$$

has to hold for all $k \in \{1, \ldots, m\}$.

Recall: the submatrices $\textbf{P}_1^{(k)}=\textbf{F}_1^{(k)}$ are chosen sparse in $\mathrm{MQ}\text{-}\mathrm{Sign}\text{-}\mathrm{SR}$

First: eliminate the non-sparse submatrices $\mathbf{P}_2^{(k)}$ and $\mathbf{P}_4^{(k)}$ by fixing \mathbf{z}_o randomly, which gives

$$\mathbf{z}_{v}\mathbf{P}_{1}^{(k)}\mathbf{z}_{v}+\operatorname{lin}(\mathbf{z}_{v})=\sum_{i=1}^{v}\alpha_{i}^{k}z_{i}z_{(i+k-1(\operatorname{mod} v))+1}+\operatorname{lin}(\mathbf{z}_{v})=t_{k}.$$

Given: a target value $\mathbf{t} = H(d) \in \mathbb{F}_q^m$

Find: a signature $z \in \mathbb{F}_q^n$, such that $\mathcal{P}(z) = t$ is fulfilled, i.e.

$$(\mathbf{z}_{v}, \mathbf{z}_{o}) \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ \mathbf{0} & \mathbf{P}_{4}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{z}_{v} \\ \mathbf{z}_{o} \end{pmatrix} = \mathbf{z}_{v} \mathbf{P}_{1}^{(k)} \mathbf{z}_{v} + \mathbf{z}_{v} \mathbf{P}_{2}^{(k)} \mathbf{z}_{o} + \mathbf{z}_{o} \mathbf{P}_{4}^{(k)} \mathbf{z}_{o} = t_{k}$$

has to hold for all $k \in \{1, \ldots, m\}$.

Recall: the submatrices $\mathbf{P}_1^{(k)} = \mathbf{F}_1^{(k)}$ are chosen sparse in $\mathrm{MQ}\text{-}\mathrm{Sign}\text{-}\mathrm{SR}$

First: eliminate the non-sparse submatrices $\mathbf{P}_2^{(k)}$ and $\mathbf{P}_4^{(k)}$ by fixing \mathbf{z}_o randomly, which gives

$$\mathbf{z}_{v}\mathbf{P}_{1}^{(k)}\mathbf{z}_{v}+\operatorname{lin}(\mathbf{z}_{v})=\sum_{i=1}^{v}\alpha_{i}^{k}z_{i}z_{(i+k-1(\operatorname{mod} v))+1}+\operatorname{lin}(\mathbf{z}_{v})=t_{k}.$$

Key observation: the $\frac{m}{2}$ equations from polynomials with odd index k are bilinear in the sets $z_{odd} = \{z_1, z_3, \dots, z_{\nu-1}\}$ and $z_{even} = \{z_2, z_4, \dots, z_{\nu}\}$

 \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

• Randomly guess the $\frac{v}{2}$ variables in z_{odd}

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

- Randomly guess the $\frac{v}{2}$ variables in z_{odd}
- Get a $\frac{v-m}{2}$ -dimensional linear solution space for z_{even} in the $\frac{m}{2}$ bilinear equations

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

- Randomly guess the $\frac{v}{2}$ variables in z_{odd}
- Get a $\frac{v-m}{2}$ -dimensional linear solution space for z_{even} in the $\frac{m}{2}$ bilinear equations
- Problem: will most likely not yield a solution to the remaining $\frac{m}{2}$ quadratic (non-bilinear) equations (probability $\approx q^{-(\frac{v}{2}-(v-m))}) \rightarrow$ repeat until **Step 2** finds a solution

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

- Randomly guess the $\frac{v}{2}$ variables in z_{odd}
- Get a $\frac{v-m}{2}$ -dimensional linear solution space for z_{even} in the $\frac{m}{2}$ bilinear equations
- Problem: will most likely not yield a solution to the remaining $\frac{m}{2}$ quadratic (non-bilinear) equations (probability $\approx q^{-(\frac{v}{2}-(v-m))}) \rightarrow$ repeat until **Step 2** finds a solution

Step 2: Solve for *z*even

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

- Randomly guess the $\frac{v}{2}$ variables in z_{odd}
- Get a $\frac{v-m}{2}$ -dimensional linear solution space for z_{even} in the $\frac{m}{2}$ bilinear equations
- Problem: will most likely not yield a solution to the remaining $\frac{m}{2}$ quadratic (non-bilinear) equations (probability $\approx q^{-(\frac{v}{2}-(v-m))}) \rightarrow$ repeat until **Step 2** finds a solution

Step 2: Solve for *z*even

• Try to find an assignment to z_{even} that also validate the remaining $\frac{m}{2}$ equations

- \Rightarrow Split the *m* equations in *m*/2 bilinear and *m*/2 quadratic equations.
- $\Rightarrow \text{ Split the } v \text{ variables into } z_{odd} = \{z_1, z_3, \dots, z_{v-1}\} \text{ and } z_{even} = \{z_2, z_4, \dots, z_v\}.$

Step 1: Enumerate *z*odd

- Randomly guess the $\frac{v}{2}$ variables in z_{odd}
- Get a $\frac{v-m}{2}$ -dimensional linear solution space for z_{even} in the $\frac{m}{2}$ bilinear equations
- Problem: will most likely not yield a solution to the remaining ^m/₂ quadratic (non-bilinear) equations (probability ≈ q^{-(^v/₂-(v-m))}) → repeat until Step 2 finds a solution

Step 2: Solve for *z*even

- Try to find an assignment to z_{even} that also validate the remaining $\frac{m}{2}$ equations
- I.e. solve a quadratic system of $\frac{m}{2}$ equations in $\frac{v-m}{2}$ variables

Security level	Parameters (q, v, m)	$C_{\text{ENUM}(q,rac{v}{2}-(v-m))}$	$C_{\mathrm{MQ}(q, \frac{v-m}{2}, \frac{m}{2})}$	Complexity
I	$(2^8, 72, 46)$	2 ⁸⁰	2 ³¹	2 ¹¹¹
III	$(2^8, 112, 72)$	2 ¹²⁸	2 ⁴²	2 ¹⁷⁰
V	$(2^8, 148, 96)$	2 ¹⁷⁶	2 ⁵²	2 ²²⁸

Table: Theoretical complexity of the forgery attack.

- $C_{\text{ENUM}(q, \frac{v}{2} (v m))}$ denote the cost of the enumeration.
- $C_{\mathrm{MQ}(q,\frac{v-m}{2},\frac{m}{2})}$ denote the cost of solving the remaining quadratic system .

Security level	Parameters (q, v, m)	$C_{\text{ENUM}(q, \frac{v}{2}-(v-m))}$	$C_{\mathrm{MQ}(q, \frac{v-m}{2}, \frac{m}{2})}$	Complexity
I	$(2^8, 72, 46)$	2 ⁸⁰	2 ³¹	2 ¹¹¹
111	$(2^8, 112, 72)$	2 ¹²⁸	2 ⁴²	2 ¹⁷⁰
V	$(2^8, 148, 96)$	2 ¹⁷⁶	2 ⁵²	2 ²²⁸

Table: Theoretical complexity of the forgery attack.

- $C_{\text{ENUM}(q, \frac{v}{2} (v m))}$ denote the cost of the enumeration.
- $C_{MQ(q, \frac{v-m}{2}, \frac{m}{2})}$ denote the cost of solving the remaining quadratic system .
- \Rightarrow We implemented the system solving step to validate the complexity estimates.

Impact and Open Research Questions

 $\rm MQ\text{-}Sign$ advanced to the KpqC Competition Round 2

Round 1 Variants	Attack Type	Complexity	Round 2 Variants
MQ-SIGN-RR	-	-	MQ-SIGN-RR
MQ-Sign-SR	direct attack	exp time	$\mathrm{MQ} ext{-}\mathrm{Sign} ext{-}\mathrm{LR}^2$
MQ-Sign-RS	key-recovery	poly time	×
MQ-SIGN-SS	key-recovery	poly time	×

 $^{^2 \}text{another sparse}\ \mathrm{MQ}\text{-}\mathrm{Sign}$ variant with different structure

 $\rm MQ\text{-}Sign$ advanced to the KpqC Competition Round 2

Round 1 Variants	Attack Type	Complexity	Round 2 Variants
MQ-SIGN-RR	-	-	MQ-SIGN-RR
MQ-Sign-SR	direct attack	exp time	$\mathrm{MQ} ext{-}\mathrm{SIGN} ext{-}\mathrm{LR}^2$
MQ-Sign-RS	key-recovery	poly time	×
MQ-SIGN-SS	key-recovery	poly time	×

 \Rightarrow The presented key-recovery attack - together with its generalization by Ikematsu et al. - led to the removal of the last two variants

 $^{^2 \}text{another sparse}\ \mathrm{MQ}\text{-}\mathrm{SIGN}$ variant with different structure

 $\rm MQ\text{-}Sign$ advanced to the KpqC Competition Round 2

Round 1 Variants	Attack Type	Complexity	Round 2 Variants
MQ-SIGN-RR	-	-	MQ-SIGN-RR
MQ-Sign-SR	direct attack	exp time	$\mathrm{MQ} ext{-}\mathrm{SIGN} ext{-}\mathrm{LR}^2$
MQ-Sign-RS	key-recovery	poly time	×
MQ-SIGN-SS	key-recovery	poly time	×

- \Rightarrow The presented key-recovery attack together with its generalization by Ikematsu et al. led to the removal of the last two variants
- \Rightarrow Possible future work: cryptanalysis of $\rm MQ\text{-}Sign\text{-}LR$

 $^{^2 \}text{another sparse}\ \mathrm{MQ}\text{-}\mathrm{SIGN}$ variant with different structure

Takeaways

- Sparse polynomials can introduce vulnerabilities.
- Attacks do not exploit a general weakness, sparse polynomials are still interesting.
- It seems preferable to choose public polynomials sparse, instead of secret polynomials.

Questions?

Contact: thomas.aulbach@ur.de

Aulbach, Samardjiska, Trimoska: Practical Key-Recovery on MQ-Sign and More https://ia.cr/2023/432

