Explicitly rejecting Fujisaki-Okamoto and worst-case correctness

pqCrypto 2024

Kathrin Hövelmanns

June 12th, 2024, Oxford

Motivation: KEMs + the NIST process

Key Encapsulation Mechanisms are

- one of NIST's 2 pq standardization aims
- public-key methods to securely establish a symmetric key K_{sym} .

Motivation: KEMs + the NIST process

Fujisaki-Okamoto: 'generic' PKE-to-Key-Encapsulation recipe, e.g.

FO, applied to moduleLWE encryption

HHK17: proofs deal with

☑ occasional decryption failures (lattices, codes)

☑ quantum attacks (quantum ROM)

but...

QROM: proof only for somewhat-unnatural variant,

suboptimal bounds

FO KEMs: initial idea

Goal: Establish a symmetric key K_{sym} , using a PKE scheme and a hash function.

Image source: xkcd.com

FO KEMs: IND-CCA security

Goal:

Security, even if attackers can request decapsulations

How?

Alter decapsulation: Prevent that such requests are useful

m

FO KEMs: IND-CCA security

Implicit vs explicit reject

Intuition: 'hides rejection branch'

...but does it, in practice?

Implicit: proofs available much earlier*, then tighter

Explicit: additional 'key confirmation' hash (until [Zha19])

Still subject to debate:

How to reject? Return...

- explicit failure symbol \perp ?
- pseudorandom key?

Bob's public key

Decrypt Only if *m* survives sanity check: Set $K_{sym} \coloneqq \operatorname{Hash}(m)$ Otherwise, reject! Bob's secret key

Bob

* [SXY18, JZ+18, BHH+19, HKSU20, KSS+20]

m

Explicit reject in the QROM after [Zha19]

Image source: xkcd.com

Imperfect correctness

With some probability,

HHK17: Upper-bound per-m failure probability by δ

☺ hard to even find failing ciphertexts

⊗ bounds so far only heuristic

Explicit reject and imperfect correctness

[HHM22] bound for explicitly rejecting FO (FO^{\perp}), applied to probabilistic scheme PKE:

IND-CCA (FO^{\perp}) \leq IND-CPA (FO^{\perp}) + Failure-CCA (PKE^{derand}) + ϵ_{γ} $\epsilon_{\gamma} \approx \frac{q_D \cdot q}{\sqrt{2\gamma}}$ γ : PKE spreadness ('entropy') q: # queries to ROs q_D : # decryption requests (NIST: 2⁶⁴)

Explicit reject and imperfect correctness

[HHM22] bound for explicitly rejecting FO (FO^{\perp}), applied to probabilistic scheme PKE:

IND-CCA $(FO^{\perp}) \leq IND-CPA (FO^{\perp}) + Failure-CCA (PKE^{derand}) + \epsilon_{\gamma}$ FAILURE - CCA (PKE^{derand}) in extractable QROM NONGENFAIL (PKE) + GENFAIL (PKE^{derand}) \odot more fine-grained bounds

⊗ more work for scheme designers

Q: Can we replace Failure–CCA with the δ –heuristic?

Our result

Bound for explicitly rejecting FO (FO^{\perp}), applied to probabilistic scheme PKE:

IND-CCA $(FO^{\perp}) \leq IND$ -CPA $(FO^{\perp}) + Failure$ –CCA $(PKE^{derand}) + \epsilon_{\gamma}$ FAILURE – CCA $(PKE^{derand}) \leq q^2 \cdot \delta$ q: # queries to ROs $\delta:$ Upper-bound on per-*m* failure probability as in [HHK17]

 \odot Best of both worlds: Proof for explicit rejection now works for δ –heuristic!

Proof overview

Goal: Failure–CCA (PKE^{derand}) $\leq q^2 \cdot \delta$ **Step 1**: = chance at success for following task:

• Task: Find failing message *m*:

m s. th. $Decrypt(Encrypt(m)) \neq m$

- Having access to
 - public and secret key,
 - random oracle used to generate the encryption randomness
 - additional extraction interface Extract(c) = 'preimage' *m* for c

Intuition: chance at success $\leq q^2 \cdot \delta$ for attackers without Extract interface

 \rightarrow Step 2: Show: availability of Extract has only mild effect on chance at success

Proof overview – step 2

• Task: Find failing message *m*:

m s. th. $Decrypt(Encrypt(m)) \neq m$

- Having access to
 - public and secret key,
 - random oracle used to generate the encryption randomness
 - additional extraction interface Extract(c) = 'preimage' *m* for c

Lemma:
$$\sqrt{\Pr[Win]} \lesssim \sum_{i=1}^{q+1} \max_{m,i} \sqrt{p_{FIND}(m,i)}$$

Prob. that *i*-th oracle query triggers decryption error

 $\sum_{i=1}^{q+1} \max_{m,i} \sqrt{p_{FIND}(m,i)} \leq (q+1) \cdot \sqrt{\delta}$

Then bound:

Conclusion

New bound for FO^{\perp} for schemes with sufficient entropy:

IND-CCA (FO^{\perp}) \leq IND-CPA (FO^{\perp}) + $q^2 \cdot \delta + \epsilon_{\gamma}$

<i>q</i> :	# queries to RO
δ :	Upper-bound on per- m failure probability as in [HHK17]
ϵ_{γ} :	PKE spreadness ('entropy') term

QROM tools: Extending compressed oracles by Extract

- furthers almost-classical reasoning ③
- without disturbing bounds for oracle search problems

(eg preimages, collisions, predicate fulfillers...)

Bonus: δ - estimations vs security proofs

Bonus: δ - estimations vs security proofs

 δ -estimator scripts:

estimate ≜ success probability in game **without sk**

Observed by Manuel Barbosa while formally verifying Kyber

Applicability issue

Concrete δ – estimations \clubsuit security proofs

Bonus: Key indistinguishability + OWTH

Image source: xkcd.com

Bonus: Key indistinguishability + OWTH

Proof technique: Extractable QROM [DFMS22]

Idea: ROM-like reduction via preimage extraction

QROM $O: X \rightarrow Y$ via compressed oracle (Zha19)

+ interface Extract_f for $f: X \times Y \to T$:

Extract_{*f*}(t):

Collapse *O*'s database such that

• for one x, f(x, y) = t for all y in x's database superposition

Return x

FO proof:

 $O = \text{Hash}_{\text{rand}} \colon M \to R$

$$f = \text{Encrypt:} M \times R \to C$$

 $Extract_f(c) = 'preimage' m$

'Surprising' ≜ PKE spreadness

 $Extract_f$ commutes nicely with O-operations for sufficiently surprising f.