
Explicitly rejecting Fujisaki-
Okamoto

and worst-case correctness

pqCrypto 2024

Kathrin Hövelmanns

June 12th, 2024, Oxford

Motivation: KEMs + the NIST process

Key Encapsulation Mechanisms are

• one of NIST’s 2 pq standardization aims

• public-key methods to securely establish a symmetric key 𝐾𝑠𝑦𝑚.

Bob‘s
secret key

Bob‘s
public key

Image source: xkcd.com

𝐾𝑠𝑦𝑚

Motivation: KEMs + the NIST process

Computational problem
(LWE, NTRU, SD)…

Public-Key Encryption
Passively secure

Key Encapsulation
IND-CCA

HHK17: proofs deal with

🗹 occasional decryption failures (lattices, codes)

🗹 quantum attacks (quantum ROM)

but…

QROM: proof only for somewhat-unnatural variant,

suboptimal bounds

Fujisaki-Okamoto: ‘generic’ PKE-to-Key-Encapsulation recipe, e.g.

= FO, applied to moduleLWE encryption

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

FO KEMs: initial idea

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Establish a symmetric key 𝐾𝑠𝑦𝑚, using a PKE scheme and a hash function.

Decrypt
𝑚

FO KEMs: IND-CCA security

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal:

Security, even if attackers can request decapsulations

How?

Alter decapsulation: Prevent that such requests are useful

FO KEMs: IND-CCA security

Image source: xkcd.com

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 survives sanity check:

Otherwise, reject!

Image source: xkcd.com

𝑚

Bob‘s
secret key

Bob‘s
public key

Still subject to debate:

How to reject? Return…

• explicit failure symbol ⊥?
• pseudorandom key?

Goal:

Security, even if attackers can request decapsulations

How?

Alter decapsulation: Prevent that such requests are useful

Implicit vs explicit reject

Image source: xkcd.com

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 survives sanity check:

Otherwise, reject!

Image source: xkcd.com

𝑚

Bob‘s
secret key

Bob‘s
public key

Still subject to debate:

How to reject? Return…

• explicit failure symbol ⊥?
• pseudorandom key?

Intuition: ‘hides rejection branch’

…but does it, in practice?

Implicit: proofs available much earlier*, then tighter

Explicit: additional ‘key confirmation’ hash (until [Zha19])

* [SXY18, JZ+18, BHH+19, HKSU20, KSS+20]

Explicit reject in the QROM after [Zha19]

Image source: xkcd.com

Decrypt 𝑚

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Only if 𝑚 survives sanity check:

Otherwise, reject!

Image source: xkcd.com

𝑚

Bob‘s
secret key

Bob‘s
public key

Still subject to debate:

How to reject? Return…

• explicit failure symbol ⊥?
• pseudorandom key?

First proof [DFMS21]: much bigger tightness loss

[HHM22] got bounds closer to implicit-rejection …

… for probabilistic PKE with certain correctness properties

With some probability,

Imperfect correctness

HHK17: Upper-bound per-𝑚 failure probability by 𝛿

☺ hard to even find failing ciphertexts

 bounds so far only heuristic

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚 ≠ 𝑚

leakage on secret key

[DGJ+19, BS20, DRV20, FKK+22]

Explicit reject and imperfect correctness

IND-CCA (FO
⊥
) ⪅ IND-CPA (FO

⊥
) + Failure−CCA PKEderand + 𝜖𝛾

𝜖𝛾 ≈
𝑞𝐷 ⋅ 𝑞

2𝛾

𝑞: # queries to ROs

𝛾: PKE spreadness (‘entropy’)

𝑞𝐷: # decryption requests (NIST: 264)

[HHM22] bound for explicitly rejecting FO (FO
⊥
), applied to probabilistic scheme PKE:

Explicit reject and imperfect correctness

IND-CCA (FO
⊥
) ⪅ IND-CPA (FO

⊥
) + Failure−CCA PKEderand + 𝜖𝛾

Q: Can we replace Failure−CCA with the 𝛿 –heuristic?

FAILURE − CCA (PKEderand)

☺more fine-grained bounds
 more work for scheme designers

NONGENFAIL PKE + GENFAIL PKEderand

in extractable QROM

[HHM22] bound for explicitly rejecting FO (FO
⊥
), applied to probabilistic scheme PKE:

Bound for explicitly rejecting FO (FO
⊥
), applied to probabilistic scheme PKE:

Our result

IND-CCA (FO
⊥
) ⪅ IND-CPA (FO

⊥
) + Failure−CCA PKEderand + 𝜖𝛾

FAILURE − CCA (PKEderand) ⪅ 𝑞2 ⋅ 𝛿

𝑞: # queries to ROs

𝛿: Upper-bound on per-𝑚 failure probability as in [HHK17]

☺ Best of both worlds: Proof for explicit rejection now works for 𝛿 –heuristic!

Goal: Failure−CCA PKEderand ⪅ 𝑞2 ⋅ 𝛿

Step 1: ≡ chance at success for following task:

Proof overview

• Task: Find failing message 𝑚:

𝑚 s. th. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚 ≠ 𝑚

• Having access to
• public and secret key,
• random oracle used to generate the encryption randomness
• additional extraction interface Extract c = ‘preimage’ m for c

Intuition: chance at success ⪅ 𝑞2 ⋅ 𝛿 for attackers without Extract interface

→ Step 2: Show: availability of Extract has only mild effect on chance at success

Proof overview – step 2

• Task: Find failing message 𝑚:

𝑚 s. th. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑚 ≠ 𝑚

• Having access to
• public and secret key,
• random oracle used to generate the encryption randomness
• additional extraction interface Extract c = ‘preimage’ m for c

Lemma: Pr 𝑊𝑖𝑛 ⪅

Prob. that 𝑖–th oracle query triggers decryption error

𝑖=1

𝑞+1

max
𝑚,𝑖

𝑝𝐹𝐼𝑁𝐷 𝑚, 𝑖 ≤ 𝑞 + 1 ⋅ 𝛿Then bound:

𝑖=1

𝑞+1

max
𝑚,𝑖

𝑝𝐹𝐼𝑁𝐷 𝑚, 𝑖

Conclusion
New bound for FO

⊥
 for schemes with sufficient entropy:

QROM tools: Extending compressed oracles by Extract

• furthers almost-classical reasoning ☺

• without disturbing bounds for oracle search problems

(eg preimages, collisions, predicate fulfillers…)

IND-CCA (FO
⊥
) ⪅ IND-CPA (FO

⊥
) + 𝑞2 ⋅ 𝛿 + 𝜖𝛾

𝑞: # queries to RO

𝛿: Upper-bound on per-𝑚 failure probability as in [HHK17]

𝜖𝛾: PKE spreadness (‘entropy’) term

Bonus: 𝛿- estimations vs security proofs

𝛿 ≜ success probability in

AttackerCorrectness game

Necessary?

Bonus: 𝛿- estimations vs security proofs

Correctness game Attacker

𝛿-estimator scripts:

estimate ≜ success probability in game without sk

observed by Manuel Barbosa
while formally verifying Kyber

Applicability issue

Concrete 𝛿 – estimations
security proofs

𝛿 ≜ success probability in Necessary?

Goal: Establish a symmetric key 𝐾𝑠𝑦𝑚, using a PKE scheme and a hash function.

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Bonus: Key indistinguishability + OWTH

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

𝑚

Random Oracle reasoning:

𝑨 cannot do this without
querying Hash on 𝑚

-> 𝑨 broke

IND-CPA for KEMs:

Seeing , 𝑨 must tell 𝐾𝑠𝑦𝑚

apart from random.

𝑨

‘real’ /
’random’

IND-CPA security of FO

Goal: Establish a symmetric key 𝐾𝑠𝑦𝑚, using a PKE scheme and a hash function.

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Bonus: Key indistinguishability + OWTH

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

𝑚

Quantum ROM reasoning:

𝑨 cannot do this without
querying Hash on 𝑚

-> 𝑨 broke

IND-CPA for KEMs:

Seeing , 𝑨 must tell 𝐾𝑠𝑦𝑚

apart from random.

𝑨

‘real’ /
’random’

Kyber etc.: Oneway-to-Hiding (OWTH) [Unruh 14]

Advantage(𝑨) ⪅ 𝑞 𝜖

QROM IND-CPA security of FO

Bound improvements:

𝑞 = # queries to Hash
𝜖 = Advantage against

Advantage(𝑨) ⪅ ቊ
𝜖 [BH+ 19]

𝑞𝜖 [KS+ 20]
(optimal? still tbd)

QROM 𝑂: 𝑋 → 𝑌 via compressed oracle (Zha19)

+ interface Extract𝑓 for 𝑓: 𝑋 × 𝑌 → 𝑇:

Extract𝑓 t :

Collapse 𝑂‘s database such that
• for one x, 𝑓 𝑥, 𝑦 = 𝑡 for all y in x’s

database superposition
Return x

Extract𝑓 commutes nicely with 𝑂-operations for sufficiently surprising 𝑓.

Idea: ROM-like reduction via preimage extraction

Proof technique: Extractable QROM [DFMS22]

FO proof:

𝑂 = Hashrand: 𝑀 → 𝑅

‘Surprising’ ≜ PKE spreadness

Extract𝑓 c = ‘preimage’ m

𝑓 = Encrypt: 𝑀 × 𝑅 → 𝐶

	Slide 1: Explicitly rejecting Fujisaki-Okamoto and worst-case correctness
	Slide 2: Motivation: KEMs + the NIST process
	Slide 3: Motivation: KEMs + the NIST process
	Slide 4: FO KEMs: initial idea
	Slide 5: FO KEMs: IND-CCA security
	Slide 6: FO KEMs: IND-CCA security
	Slide 7: Implicit vs explicit reject
	Slide 8: Explicit reject in the QROM after [Zha19]
	Slide 9: Imperfect correctness
	Slide 10: Explicit reject and imperfect correctness
	Slide 11: Explicit reject and imperfect correctness
	Slide 12: Our result
	Slide 13: Proof overview
	Slide 14: Proof overview – step 2
	Slide 15: Conclusion
	Slide 16: Bonus: delta- estimations vs security proofs
	Slide 17: Bonus: delta- estimations vs security proofs
	Slide 18: Bonus: Key indistinguishability + OWTH
	Slide 19: Bonus: Key indistinguishability + OWTH
	Slide 20: Proof technique: Extractable QROM [DFMS22]

