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Motivation

Signature schemes strike a balance between:
Sizes (verification key and signatures)
Speed (signing, verification)
Portability
Conservative assumptions
Resistance against side‐channel attacks

And so on...
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Side-Channel
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Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]



Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.
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Figure 1: Flowchart of the signature
Learning sk directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]
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Filtering ⟨sig, sk⟩ > 0

2Improved Power Analysis Attacks on Falcon [ZLYW23]



Masking and the t-probing model

t‐probing model
Adversary can probe t circuit values at runtime
Unrealistic but a good starting point

Masking
Each sensitive value x is split in d shares:JxK = (x0, x1, . . . , xd−1) (1)

such that
x0 + x1 + · · ·+ xd−1 = x (2)

In t‐probing model, ideally 0 leakage if d > t
In “real life”, security is exponential in d
What about computations?



Interlude: river-crossing puzzles

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

It gets quickly complicated...
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From river-crossing to masking

Now replace:
1 The set { farmer, wolf, goat, cabbage } by the shares (x0, . . . , xd−1)
2 The operation “everyone crosses the river” by an arbitrary function f(JxK) → JyK
3 The constraints “never leave A alone with B” by “a probing adversary shall not learn
anything”

... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
Addition (JcK = Ja+ bK)?

Compute JcK = (a0 + b0, . . . , ad−1 + bd−1), simple and fast: Θ(d) operations
Multiplication (JcK = Ja · bK)?

Complex and slower: Θ(d2) operations
More complex operations?

Use so‐called mask conversions, very slow: ≫ Θ(d2) operations



Dilithium and
Raccoon

(simplified)



Dilithium - key generation

Keygen(1λ) → (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 Generate a short secret s ▷ Slow
3 Compute t = A · s ▷ Fast
4 Verification key vk = (A, t) ▷ No mask
5 Signing key sk = s ▷ No mask

When masking this algorithm, the bottleneck is sampling s ( 2 ):
Concretely, start with boolean masking, then apply B2A conversions
Total masking overhead: O(d2 log q)



Raccoon - masked key generation

Keygen(1λ) → (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 JsK = (0, . . . ,0) ▷ Fast
3 For i ∈ [T]: ▷We call this “AddRepNoise”

1 Sample short random shares in parallel: JrK = (r0, . . . , rd−1) ▷ Fast
2 JsK := JsK + JrK ▷ Fast
3 Refresh JsK ▷ Fast

4 Compute t = A · JsK ▷ Fast
5 Unmask JtK to obtain t ▷ Fast
6 Verification key is vk = (A, t) ▷ No mask
7 Signing key is sk = JsK ▷ No mask

We show that s retains a large amount of randomness even in the presence of a
probing adversary.
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Dilithium - signature

Dilithium follows the Fiat‐Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t),msg) → sig

1 Generate a short ephemeral secret r ▷ Slow
2 Compute the commitment w = A · r ▷ Fast
3 Compute the challenge c = H(w,msg, vk) ▷ No mask
4 Compute the response z = s · c+ r ▷ Fast
5 Check that z is in a given interval. If not, restart. ▷ Slow
6 Signature is sig = (c, z)

Masking bottlenecks:
Short secret generation ( 1 ) requires B2A.
Rejection sampling ( 5 ) requires A2B and B2A.

Total masking overhead: Θ(d2 log q)



Raccoon - masked signature

Sign(sk = JsK, vk = (A, t),msg) → sig

1 Generate a masked short ephemeral secret JrK using “AddRepNoise” ▷ Fast
2 Compute the commitment JwK = A · JrK ▷ Fast
3 Unmask JwK to obtain w ▷ Fast
4 Compute the challenge c = H(w,msg, vk) ▷ No mask
5 Compute the response JzK = JsK · c+ JrK ▷ Fast
6 Unmask JzK to obtain z ▷ Fast
7 (No more rejection sampling!)
8 Signature is sig = (c, z)

Total masking overhead: O(d log d)



Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥r∥/∥s∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥

√
Queries

)
2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.
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Performances on a Desktop
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With some tricks [SR23], RAM consumption is < 128 kB



Conclusion

Raccoon is a specific‐purpose scheme aimed at high side‐channel resistance:
Same assumptions as Dilithium
Simpler
Verification key size is similar
Signature is 4x larger
When masked, orders of magnitude faster than other schemes are



Questions?
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