
Raccoon
Rafael del Pino
PQShield

Thomas Espitau
PQShield

Shuichi Katsumata
PQShield
AIST

Mary Maller
PQShield

Ethereum Foundation

Fabrice Mouhartem
CryptPad

Thomas Prest
PQShield

Mélissa Rossi
ANSSI

Markku‐Juhani Saarinen
PQShield

Tampere University

Motivation

Signature schemes strike a balance between:
Sizes (verification key and signatures)
Speed (signing, verification)
Portability
Conservative assumptions
Resistance against side‐channel attacks

And so on...

Criteria

Dilithium
Falcon

SPHINCS+
Raccoon

Side-Channel
Attacks

Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

ffSampling

Figure 1: Flowchart of the signature
Learning sk directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

SamplerZ

Figure 1: Flowchart of the signature
Filtering ⟨sig, sk⟩ > 0

2Improved Power Analysis Attacks on Falcon [ZLYW23]

Masking and the t-probing model

t‐probing model
Adversary can probe t circuit values at runtime
Unrealistic but a good starting point

Masking
Each sensitive value x is split in d shares:JxK = (x0, x1, . . . , xd−1) (1)

such that
x0 + x1 + · · ·+ xd−1 = x (2)

In t‐probing model, ideally 0 leakage if d > t
In “real life”, security is exponential in d
What about computations?

Interlude: river-crossing puzzles

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

It gets quickly complicated...

Interlude: river-crossing puzzles

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

It gets quickly complicated...

From river-crossing to masking

Now replace:
1 The set { farmer, wolf, goat, cabbage } by the shares (x0, . . . , xd−1)
2 The operation “everyone crosses the river” by an arbitrary function f(JxK) → JyK
3 The constraints “never leave A alone with B” by “a probing adversary shall not learn
anything”

... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
Addition (JcK = Ja+ bK)?

Compute JcK = (a0 + b0, . . . , ad−1 + bd−1), simple and fast: Θ(d) operations
Multiplication (JcK = Ja · bK)?

Complex and slower: Θ(d2) operations
More complex operations?

Use so‐called mask conversions, very slow: ≫ Θ(d2) operations

Dilithium and
Raccoon

(simplified)

Dilithium - key generation

Keygen(1λ) → (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 Generate a short secret s ▷ Slow
3 Compute t = A · s ▷ Fast
4 Verification key vk = (A, t) ▷ No mask
5 Signing key sk = s ▷ No mask

When masking this algorithm, the bottleneck is sampling s (2):
Concretely, start with boolean masking, then apply B2A conversions
Total masking overhead: O(d2 log q)

Raccoon - masked key generation

Keygen(1λ) → (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 JsK = (0, . . . ,0) ▷ Fast
3 For i ∈ [T]: ▷We call this “AddRepNoise”

1 Sample short random shares in parallel: JrK = (r0, . . . , rd−1) ▷ Fast
2 JsK := JsK + JrK ▷ Fast
3 Refresh JsK ▷ Fast

4 Compute t = A · JsK ▷ Fast
5 Unmask JtK to obtain t ▷ Fast
6 Verification key is vk = (A, t) ▷ No mask
7 Signing key is sk = JsK ▷ No mask

We show that s retains a large amount of randomness even in the presence of a
probing adversary.

Raccoon - masked key generation

Keygen(1λ) → (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 JsK = (0, . . . ,0) ▷ Fast
3 For i ∈ [T]: ▷We call this “AddRepNoise”

1 Sample short random shares in parallel: JrK = (r0, . . . , rd−1) ▷ Fast
2 JsK := JsK + JrK ▷ Fast
3 Refresh JsK ▷ Fast

4 Compute t = A · JsK ▷ Fast
5 Unmask JtK to obtain t ▷ Fast
6 Verification key is vk = (A, t) ▷ No mask
7 Signing key is sk = JsK ▷ No mask

We show that s retains a large amount of randomness even in the presence of a
probing adversary.

Dilithium - signature

Dilithium follows the Fiat‐Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t),msg) → sig

1 Generate a short ephemeral secret r ▷ Slow
2 Compute the commitment w = A · r ▷ Fast
3 Compute the challenge c = H(w,msg, vk) ▷ No mask
4 Compute the response z = s · c+ r ▷ Fast
5 Check that z is in a given interval. If not, restart. ▷ Slow
6 Signature is sig = (c, z)

Masking bottlenecks:
Short secret generation (1) requires B2A.
Rejection sampling (5) requires A2B and B2A.

Total masking overhead: Θ(d2 log q)

Raccoon - masked signature

Sign(sk = JsK, vk = (A, t),msg) → sig

1 Generate a masked short ephemeral secret JrK using “AddRepNoise” ▷ Fast
2 Compute the commitment JwK = A · JrK ▷ Fast
3 Unmask JwK to obtain w ▷ Fast
4 Compute the challenge c = H(w,msg, vk) ▷ No mask
5 Compute the response JzK = JsK · c+ JrK ▷ Fast
6 Unmask JzK to obtain z ▷ Fast
7 (No more rejection sampling!)
8 Signature is sig = (c, z)

Total masking overhead: O(d log d)

Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥r∥/∥s∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥

√
Queries

)
2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.

Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥

√
Queries

)

2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.

Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥

√
Queries

)
2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.

Performances on a Desktop

1 2 4 8 16 32
0

20

40

60

80

100

Number of shares d

Speed (ms)

Dilithium
Raccoon

With some tricks [SR23], RAM consumption is < 128 kB

Conclusion

Raccoon is a specific‐purpose scheme aimed at high side‐channel resistance:
Same assumptions as Dilithium
Simpler
Verification key size is similar
Signature is 4x larger
When masked, orders of magnitude faster than other schemes are

Questions?

Dmitri Asonov and Rakesh Agrawal.
Keyboard acoustic emanations.
In 2004 IEEE Symposium on Security and Privacy, pages 3–11. IEEE Computer
Society Press, May 2004.

Wim Van Eck.
Electromagnetic radiation from video display units: An eavesdropping risk?
Computers & Security, 4:269–286, 1985.

Emre Karabulut and Aydin Aysu.
FALCON down: Breaking FALCON post‐quantum signature scheme through
side‐channel attacks.
In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA,
USA, December 5‐9, 2021, pages 691–696. IEEE, 2021.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.
Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999.

Paul C. Kocher.

Timing attacks on implementations of Diffie‐Hellman, RSA, DSS, and other
systems.
In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 104–113.
Springer, Heidelberg, August 1996.

Markku‐Juhani O. Saarinen and Mélissa Rossi.
Mask compression: High‐order masking on memory‐constrained devices.
Cryptology ePrint Archive, Paper 2023/1117, 2023.
https://eprint.iacr.org/2023/1117.
Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang.
Improved power analysis attacks on falcon.
Cryptology ePrint Archive, Paper 2023/224, 2023.
https://eprint.iacr.org/2023/224.

https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/224

	Introduction
	Side-Channel Attacks
	Dilithium and Raccoon (simplified)

