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Motivation

Signature schemes strike a balance between:
2 Sizes (verification key and signatures)
" Speed (signing, verification)

18 Portability
/% Conservative assumptions
%" Resistance against side-channel attacks

And so on...
Criteria ‘ Z »- Ll P *
Dilithium Ty ) 6 & ) 6 0 *W >
Falcon ) 6 & 6 6 4 * % W )
SPHINCS+ *v *N *W ) 6 6 ¢ >
Raccoon *% ) 6 6 ¢ ) 6 6 ¢ *w *







Side-channel attacks in cryptography

Power consumption [KJJ99]

~

Timing measurement [Koc?6]
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Example with Falcon ‘"SHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.
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Figure 1: Flowchart of the signature
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LEALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks [KA21]




Example with Falcon ‘"SHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.
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Figure 1: Flowchart of the signature

HashToPoint

2Improved Power Analysis Attacks on Falcon [Z1Y\W23]




Masking and the t-probing model

t-probing model
5 Adversary can probe t circuit values at runtime
sy Unrealistic but a good starting point

Masking
ot Each sensitive value x is split in d shares:
[[X]] = (XO7X1>"'7Xd71) (1)
such that
Xo+X1+ -+ X4-1 =X (2)

& In t-probing model, ideally O leakage if d > t
& In “real life”, security is exponential in d
2% What about computations?




Interlude: river-crossing puzzles ’“SHIE[I]

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”




Interlude: river-crossing puzzles ’“SHIE[I]

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

T
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Search Tree for “Farmer, Wolf, Duck, Corn”

It gets quickly complicated...
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From river-crossing to masking

Now replace:
@ The set { farmer, wolf, goat, cabbage } by the shares (xq, . .., X4_1)
@ The operation “everyone crosses the river” by an arbitrary function f([x]) — [v]
© The constraints “never leave A alone with B" by “a probing adversary shall not learn
anything”
... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
© Addition ([c] = [a + b])?
> Compute [c]] = (a0 + bo, - .., d4_1 + bg_1), simple and fast: ©(d) operations
) Multiplication ([c] = [a - b])?
> Complex and slower: ©(d?) operations
@ More complex operations?
> Use so-called mask conversions, very slow: > O(d?) operations







Dilithium - key generation

Keygen(1') — (sk, vk)

@ Generate a large matrix A = [1]A] € R+
@ Generate a short secret s

® Computet=A-s

@ \Verification key vk = (A, t)

O Signing key sk =s

> No mask

> Slow
> Fast
> No mask
> No mask

When masking this algorithm, the bottleneck is sampling s (@):

-» Concretely, start with boolean masking, then apply B2A conversions

- Total masking overhead: O(d? logq)




Raccoon - masked key generation

Keygen(1") — (sk, vk)

@ Generate a large matrix A = [1|A] € RYX ¢+ > No mask
@ [s]=(0,...,0) > Fast
© ForielT): > We call this “AddRepNoise”

(1 Sample short random shares in parallel: [r] = (ro,...,rs_1) > Fast

@ [s] = [s] + [r] o> Fast

(3) Refresh [s] > Fast
@ Computet=A-[s] > Fast
© Unmask [t] to obtain t o> Fast
O Verification key is vk = (A, t) > No mask
@ Signing key is sk = [s] > No mask




Raccoon - masked key generation

Keygen(1") — (sk, vk)

@ Generate a large matrix A = [1|A] € RYX ¢+ > No mask
@ [s]=(0,...,0) > Fast
© ForielT): > We call this “AddRepNoise”

(1 Sample short random shares in parallel: [r] = (ro,...,rs_1) > Fast

@ [s] = [s] + [r] o> Fast

(3) Refresh [s] > Fast
@ Computet=A-[s] > Fast
© Unmask [t] to obtain t o> Fast
O Verification key is vk = (A, t) > No mask
@ Signing key is sk = [s] > No mask

We show that s retains a large amount of randomness even in the presence of a
probing adversary.

]



Dilithium - signature

]

Dilithium follows the Fiat-Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t), msg) — sig

@ Generate a short ephemeral secret r

@ Compute the commitmentw = A -r

® Compute the challenge ¢ = H(w, msg, vk)

@ Compute the responsez=s-c+r

© Check that zisin a given interval. If not, restart.
O Signature is sig = (c, z)

> Slow
> Fast
> No mask
> Fast
> Slow

Masking bottlenecks:
@) Short secret generation (@) requires B2A.

@ Rejection sampling (@) requires A2B and B2A.
Total masking overhead: O(d” log q)




Raccoon - masked signature

Sign(sk = [s],vk = (A, t), msg) — sig

@ Generate a masked short ephemeral secret [r] using “AddRepNoise” > Fast

@ Compute the commitment [w] = A - [r] > Fast
© Unmask [w] to obtain w > Fast
@ Compute the challenge ¢ = H(w, msg, vk) > No mask
© Compute the response [z] = [s] - ¢ + [r] > Fast
® Unmask [z] to obtain z > Fast

@ (No more rejection sampling!)

© Signature is sig = (c, z)

Total masking overhead: O(dlogd)




Impact on the modulus

Key recovery (LWE) Forgery (SIS)
> >
Dilithium: sl Iell/lsl | a/liell
>

HVZK (rej. samp.)
q




Impact on the modulus

Key recovery (LWE)

>

Forgery (SIS)

>

Dilithium: sl

[Ir(l/llsl]

a/llrll

—>

HVZK (rej. samp.)

q

Key recovery (LWE)

—>

Forgery (SIS)

—>

Raccoon: IIs|

[Irll/llsl]

a/llrll

HVZK (Rényi div.)

q

@ Removing rejection sampling increases ||r||/||s|| from ©(dims) to © ({|c||v/Queries)




Impact on the modulus ‘"SHIELD

Key recovery (LWE) Forgery (SIS)
> >
Dilithium: s Irll/lsll a/llr
—>
HVZK (rej. samp.)
I q 1
Key recovery (LWE) Forgery (SIS)
Raccoon: [Isl| Irll/ sl a/llr

HVZK (Rényi div.)
g

@ Removing rejection sampling increases ||r||/||s|| from ©(dims) to © ({|c||v/Queries)
@ The increased q in turn requires increasing ||s||, q/||r|| and/or the dimensions.

]




Performances on a Desktop

Speed (ms)
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© With some tricks [SR23], RAM consumption is < 128 kB




Conclusion

Raccoon is a specific-purpose scheme aimed at high side-channel resistance:
© Same assumptions as Dilithium
© Simpler
© Verification key size is similar
©@ Signature is 4x larger
® When masked, orders of magnitude faster than other schemes are
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