Shuichi Katsumata

Rafael del Pino Thomas Espitau)
PQShield PQShield PQAslg'Te'd
Msryslr\]{lall(ljer Fabrice Mouhartem Thomas Prest
Qshie CryptPad PQShield

Ethereum Foundation

Méli Rossi Markku-Juhani Saarinen
élissa Rossi PQShield

ANSSI Tampere University

Motivation

Signature schemes strike a balance between:
2 Sizes (verification key and signatures)
" Speed (signing, verification)

18 Portability
/% Conservative assumptions
%" Resistance against side-channel attacks

And so on...
Criteria ‘ Z »- Ll P *
Dilithium Ty) 6 &) 6 0 *W >
Falcon) 6 & 6 6 4 * % W)
SPHINCS+ *v *N *W) 6 6 ¢ >
Raccoon *%) 6 6 ¢) 6 6 ¢ *w *

Side-channel attacks in cryptography

Power consumption [KJJ99]

~

Timing measurement [Koc?6]

=¥

MELTDOWN

Example with Falcon ‘"SHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.

FALCON Floating-Point Multiplication EM Trace
Exponent Sign-Bit
Addition Compute

HashToPoint

SHAKE SamplerZ

[BaseSampler] [BerExp] - soo 1000 ‘

Time in Samples
*A roxex - -
Learning sk directly

Figure 1: Flowchart of the signature

Compress

Sampled Signal (V)

LEALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks [KA21]

Example with Falcon ‘"SHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.

[ffSampling J (Compress]

/*

[BaseSampler] [BerExp]

e e S

Figure 1: Flowchart of the signature

HashToPoint

2Improved Power Analysis Attacks on Falcon [Z1Y\W23]

Masking and the t-probing model

t-probing model
5 Adversary can probe t circuit values at runtime
sy Unrealistic but a good starting point

Masking
ot Each sensitive value x is split in d shares:
[[X]] = (XO7X1>"'7Xd71) (1)
such that
Xo+X1+ -+ X4-1 =X (2)

& In t-probing model, ideally O leakage if d > t
& In “real life”, security is exponential in d
2% What about computations?

Interlude: river-crossing puzzles ’“SHIE[I]

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

Interlude: river-crossing puzzles ’“SHIE[I]

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

T
,.//./ — I

Search Tree for “Farmer, Wolf, Duck, Corn”

It gets quickly complicated...

N

From river-crossing to masking

Now replace:
@ The set { farmer, wolf, goat, cabbage } by the shares (xq, . .., X4_1)
@ The operation “everyone crosses the river” by an arbitrary function f([x]) — [v]
© The constraints “never leave A alone with B" by “a probing adversary shall not learn
anything”
... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
© Addition ([c] = [a + b])?
> Compute [c]] = (a0 + bo, - .., d4_1 + bg_1), simple and fast: ©(d) operations
) Multiplication ([c] = [a - b])?
> Complex and slower: ©(d?) operations
@ More complex operations?
> Use so-called mask conversions, very slow: > O(d?) operations

Dilithium - key generation

Keygen(1') — (sk, vk)

@ Generate a large matrix A = [1]A] € R+
@ Generate a short secret s

® Computet=A-s

@ \Verification key vk = (A, t)

O Signing key sk =s

> No mask

> Slow
> Fast
> No mask
> No mask

When masking this algorithm, the bottleneck is sampling s (@):

-» Concretely, start with boolean masking, then apply B2A conversions

- Total masking overhead: O(d? logq)

Raccoon - masked key generation

Keygen(1") — (sk, vk)

@ Generate a large matrix A = [1|A] € RYX ¢+ > No mask
@ [s]=(0,...,0) > Fast
© ForielT): > We call this “AddRepNoise”

(1 Sample short random shares in parallel: [r] = (ro,...,rs_1) > Fast

@ [s] = [s] + [r] o> Fast

(3) Refresh [s] > Fast
@ Computet=A-[s] > Fast
© Unmask [t] to obtain t o> Fast
O Verification key is vk = (A, t) > No mask
@ Signing key is sk = [s] > No mask

Raccoon - masked key generation

Keygen(1") — (sk, vk)

@ Generate a large matrix A = [1|A] € RYX ¢+ > No mask
@ [s]=(0,...,0) > Fast
© ForielT): > We call this “AddRepNoise”

(1 Sample short random shares in parallel: [r] = (ro,...,rs_1) > Fast

@ [s] = [s] + [r] o> Fast

(3) Refresh [s] > Fast
@ Computet=A-[s] > Fast
© Unmask [t] to obtain t o> Fast
O Verification key is vk = (A, t) > No mask
@ Signing key is sk = [s] > No mask

We show that s retains a large amount of randomness even in the presence of a
probing adversary.

]

Dilithium - signature

]

Dilithium follows the Fiat-Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t), msg) — sig

@ Generate a short ephemeral secret r

@ Compute the commitmentw = A -r

® Compute the challenge ¢ = H(w, msg, vk)

@ Compute the responsez=s-c+r

© Check that zisin a given interval. If not, restart.
O Signature is sig = (c, z)

> Slow
> Fast
> No mask
> Fast
> Slow

Masking bottlenecks:
@) Short secret generation (@) requires B2A.

@ Rejection sampling (@) requires A2B and B2A.
Total masking overhead: O(d” log q)

Raccoon - masked signature

Sign(sk = [s],vk = (A, t), msg) — sig

@ Generate a masked short ephemeral secret [r] using “AddRepNoise” > Fast

@ Compute the commitment [w] = A - [r] > Fast
© Unmask [w] to obtain w > Fast
@ Compute the challenge ¢ = H(w, msg, vk) > No mask
© Compute the response [z] = [s] - ¢ + [r] > Fast
® Unmask [z] to obtain z > Fast

@ (No more rejection sampling!)

© Signature is sig = (c, z)

Total masking overhead: O(dlogd)

Impact on the modulus

Key recovery (LWE) Forgery (SIS)
> >
Dilithium: sl Iell/lsl | a/liell
>

HVZK (rej. samp.)
q

Impact on the modulus

Key recovery (LWE)

>

Forgery (SIS)

>

Dilithium: sl

[Ir(l/llsl]

a/llrll

—>

HVZK (rej. samp.)

q

Key recovery (LWE)

—>

Forgery (SIS)

—>

Raccoon: IIs|

[Irll/llsl]

a/llrll

HVZK (Rényi div.)

q

@ Removing rejection sampling increases ||r||/||s|| from ©(dims) to © ({|c||v/Queries)

Impact on the modulus ‘"SHIELD

Key recovery (LWE) Forgery (SIS)
> >
Dilithium: s Irll/lsll a/llr
—>
HVZK (rej. samp.)
I q 1
Key recovery (LWE) Forgery (SIS)
Raccoon: [Isl| Irll/ sl a/llr

HVZK (Rényi div.)
g

@ Removing rejection sampling increases ||r||/||s|| from ©(dims) to © ({|c||v/Queries)
@ The increased q in turn requires increasing ||s||, q/||r|| and/or the dimensions.

]

Performances on a Desktop

Speed (ms)

100

—e— Dilithium
—=— Raccoon

80

60

40

20

16 32
Number of shares d

© With some tricks [SR23], RAM consumption is < 128 kB

Conclusion

Raccoon is a specific-purpose scheme aimed at high side-channel resistance:
© Same assumptions as Dilithium
© Simpler
© Verification key size is similar
©@ Signature is 4x larger
® When masked, orders of magnitude faster than other schemes are

Dmitri Asonov and Rakesh Agrawal.

Keyboard acoustic emanations.

In 2004 IEEE Symposium on Security and Privacy, pages 3-11. IEEE Computer
Society Press, May 2004.

Wim Van Eck.
Electromagnetic radiation from video display units: An eavesdropping risk?
Computers & Security, 4:269-286, 1985.

Emre Karabulut and Aydin Aysu.

FALCON down: Breaking FALCON post-quantum signature scheme through
side-channel attacks.

In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA,
USA, December 5-9, 2021, pages 691-696. IEEE, 2021.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.

Differential power analysis.

In Michael J. Wiener, editor, CRYPTO'?9, volume 1666 of LNCS, pages 388-397.
Springer, Heidelberg, August 1999.

Paul C. Kocher.

Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems.

In Neal Koblitz, editor, CRYPTO'%6, volume 1109 of LNCS, pages 104-113.
Springer, Heidelberg, August 1996.

Markku-Juhani O. Saarinen and Mélissa Rossi.

Mask compression: High-order masking on memory-constrained devices.
Cryptology ePrint Archive, Paper 2023/1117, 2023.
https://eprint.iacr.org/2023/1117.

Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang.
Improved power analysis attacks on falcon.
Cryptology ePrint Archive, Paper 2023/224, 2023.
https://eprint.iacr.org/2023/224.

https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/224

	Introduction
	Side-Channel Attacks
	Dilithium and Raccoon (simplified)

