A Simple Noncommutative UOV Scheme SNOVA digital signature scheme

Po-En Tseng
Department of Applied Mathematics
National Dong Hwa University

Outline

UOV scheme

SNOVA Scheme

Security Analysis

Parameters and comparison

Unbalanced Oil and Vinegar

One of the best studied multivariate signature schemes since 1999

Central map of UOV

Let n = v + o, m = o and $F = [F_1, \cdots, F_m] : \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^m$ where

-
$$F_i = \sum_{j=1}^{v} \sum_{k=j}^{v+o} f_{i,jk} x_j x_k, \ i = 1, \dots, m$$

- $f_{i,jk}$ are chosen randomly from \mathbb{F}_q
- \triangleright Vinegar variables: $x_i, j=1,\cdots,v$ Oil variables: x_i , $j = v + 1, \dots, n$
- ▶ If 1 < j < v then we say j is in the vinegar range. If $v+1 \le j \le n$ then we say j is in the oil range.
- ▶ Terms as $x_i x_k$, $j, k = v + 1, \dots, n$ are not in F_i

Public key of UOV

The public key of UOV is $P = [P_1, \cdots, P_m] = F \circ T : \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^m$ with

- $T: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n$ is a invertible linear map chosen randomly
- the corresponding matrix is of the from

$$[T] = \begin{bmatrix} I^{11} & T^{12} \\ 0 & I^{22} \end{bmatrix}$$

$$\hookrightarrow [P_i] = [T]^t [F_i] [T] \text{ since } \vec{\mathbf{x}} = [T] \vec{\mathbf{u}}$$

Advantages and Limitations

- UOV scheme is quite efficient
- Signature of UOV is short
- Suffer from large public keysize
- ln practice, required that 2o < v to resist attacks (Note that it is also not secure when v is much bigger than o, e.g., $v \simeq o^2/2$)

How to generalize UOV over rings?

- Is it a good idea to naively generalize UOV over commutative rings like \mathbb{Z}_n ?
 - The answer is no, because of Chinese Remainder Theorem
- Can we generalize UOV over non-commutative rings? Yes, but with some modifications
- With these modifications, we can reduce the key size of UOV while keeping the advantages of UOV

(Noncommutative) Ring UOV

- lackbox Central map of UOV: $F_i = \sum\limits_{}^{v} \sum\limits_{}^{v+o} f_{i,jk} x_j x_k$
- Central map of ring UOV:

$$F_i(X_1, \dots, X_n) = \sum_{(j,k)\in\Omega} \phi(X_j) F_{i,jk} X_k$$

where

- X_i's are ring variables
- $F_{i,ik}$ are coefficients in ring
- ϕ is a ring map with "factor order reversed" property, i.e., $\phi\left(\sum C_i X_i\right) = \sum \phi\left(X_i\right) \phi\left(C_i\right)$
- $\Omega = \{(j,k): 1 < j, k < n\} \setminus \{(j,k): v+1 < j, k < n\}$ i.e., i, k can not both in oil range

4 D > 4 A > 4 B > 4 B >

An example of Ring UOV

- lacksquare Choose the noncommutative ring to be $\mathcal{R} = \mathsf{Mat}_{l imes l}(\mathbb{F}_q)$
- lacktriangle Choose the ring map ϕ to be the matrix transpose.
- Central map of ring UOV:

$$F_i(X_1, \dots, X_n) = \sum_{(j,k)\in\Omega} X_j^t F_{i,jk} X_k$$

▶ $P = F \circ T$ where $T : \mathcal{R}^n \longrightarrow \mathcal{R}^n$ is the ring linear map corresponding to the matrix

$$[T] = \begin{bmatrix} I^{11} & T^{12} \\ 0 & I^{22} \end{bmatrix},$$

and T^{12} is a $v \times o$ random matrix over \mathcal{R} and I^{11}, I^{22} are identity matrices over \mathcal{R} .

Sparsity of ring UOV

Ring UOV as a UOV scheme over \mathbb{F}_q Pros.

- kernel of this UOV is still the oil space $T^{-1}(\mathcal{O})$

Cons:

- central map and public key are both sparse
 - \rightarrow degree of regularity decreases

In SNOVA scheme, we will introduce some tricks to eliminate the sparsity of the public key of ring UOV

Simple Non-commutative Oil and Vinegar with Alignment

Basic settings

- $ightharpoonup \mathbb{F}_q$: finite field of order q
- $ightharpoonup \mathcal{R} = \mathsf{Mat}_{l imes l}(\mathbb{F}_q)$:
 matrix ring consisting by l imes l matrices over \mathbb{F}_q
- ▶ The subring $\mathbb{F}_q[S]$.

$$\mathbb{F}_q[S] = \{a_0 + a_1S + \dots + a_{l-1}S^{l-1} : a_0, a_1, \dots, a_{l-1} \in \mathbb{F}_q\}$$
 where S is an $l \times l$ symmetric matrix randomly chosen from \mathcal{R} .

- ightarrow Elements in $\mathbb{F}_q[S]$ are symmetric, i.e., $Q^t=Q$
- ightarrow matrix multiplication in $\mathbb{F}_q[S]$ is commutative, i.e.,

$$Q_1Q_2 = Q_2Q_1, \ \forall Q_1, Q_2 \in \mathbb{F}_q[S]$$

Central map $\tilde{F}: \mathcal{R}^n \longrightarrow \mathcal{R}^m$

For $i=1,\cdots,m$,

$$\tilde{F}_i(X_1, \dots, X_n) = \sum_{\alpha=1}^{l^2} A_\alpha \cdot \left(\sum_{(j,k) \in \Omega} X_j^t \left(Q_{\alpha 1} F_{i,jk} Q_{\alpha 2} \right) X_k \right) \cdot B_\alpha$$

where

- $-\Omega = \{(j,k): 1 \le j, k \le n\} \setminus \{(j,k): v+1 \le j, k \le n\}$
- $F_{i.ik}$'s, A_{α} , B_{α} are chosen randomly from \mathcal{R}
- $Q_{\alpha 1}$, $Q_{\alpha 2}$ are invertible and chosen randomly from $\mathbb{F}_q[S]$
- X_1, \dots, X_n : vinegar variables, X_{n+1}, \dots, X_n : oil variables

Invertible linear map $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$

T is the map that corresponding to the matrix $[T] = \begin{bmatrix} I^{11} & T^{12} \\ 0 & I^{22} \end{bmatrix}$, where

- T^{12} is a $v \times o$ matrix consisting of nonzero elements T_{ij} we choose randomly from $\mathbb{F}_q[S]$
- I^{11},I^{22} are identity matrices over ${\cal R}$

The entries of the core part of F_i

$$\tilde{F}_i(X_1, \dots, X_n) = \sum_{\alpha=1}^{l^2} A_{\alpha} \cdot \left(\sum_{(j,k) \in \Omega} X_j^t \left(Q_{\alpha 1} F_{i,jk} Q_{\alpha 2} \right) X_k \right) \cdot B_{\alpha}$$

The core part:
$$[F_i] = [F_{i,jk}] = \begin{bmatrix} F_i^{11} & F_i^{12} \\ F_i^{21} & 0 \end{bmatrix}$$

where

- F_i^{11} : $v \times v$ matrices over \mathcal{R}
- F_i^{12} : $v \times o$ matrices over \mathcal{R}
- F_i^{21} : $o \times v$ matrices over \mathcal{R}

Note: This $[F_i]$ is the same as the matrix representation of the central map of the ring UOV

Public key
$$\tilde{P} = \tilde{F} \circ T$$

For i = 1, 2, ..., m,

$$\tilde{P}_i(\vec{\mathbf{U}}) = \tilde{F}_i(T(\vec{\mathbf{U}})) = \sum_{\alpha=1}^{l^2} \sum_{d_i=1}^n \sum_{d_k=1}^n A_\alpha \cdot U_{d_j}^t(Q_{\alpha 1} P_{i,d_j d_k} Q_{\alpha 2}) U_{d_k} \cdot B_\alpha$$

where

$$P_{i,d_jd_k} = \sum_{\Omega} T_{j,d_j}^t \cdot F_{i,jk} \cdot T_{k,d_k} = \sum_{\Omega} T_{j,d_j} \cdot F_{i,jk} \cdot T_{k,d_k}$$

The entries of the core part of the public map \tilde{P}_i :

$$[P_i] = \left[P_{i,d_i d_k} \right] = [T]^t [F_i] [T]$$

Public key and private key of SNOVA

▶ Public key: The map $\tilde{P}: \mathcal{R}^n \longrightarrow \mathcal{R}^m$, i.e., the entries of the core part of the map \tilde{P}_i

$$[P_i], i=1,\cdots,m$$

and

$$A_{\alpha}, B_{\alpha}, Q_{\alpha 1}, Q_{\alpha 2}, \ \alpha = 1, 2, \dots, l^2$$

Private key: (\tilde{F},T) , i.e., the matrix [T], the matrices $[F_i]$ and

$$A_{\alpha}, B_{\alpha}, Q_{\alpha 1}, Q_{\alpha 2}, \ \alpha = 1, 2, \dots, l^2$$

Structure of SNOVA

- An equation over $\mathcal R$ gives l^2 equations over $\mathbb F_q$ \to The public map of a (v,o,q,l) SNOVA over $\mathcal R$ can be regard as an (l^2v,l^2o,q) UOV scheme over $\mathbb F_q$
- ▶ When l = 1, SNOVA degenerates to UOV

A note of our analysis: Ring UOV

Central map of SNOVA:

$$\tilde{F}_i(X_1, \dots, X_n) = \sum_{\alpha=1}^{l^2} A_{\alpha} \cdot \left(\sum_{(j,k) \in \Omega} X_j^t \left(Q_{\alpha 1} F_{i,jk} Q_{\alpha 2} \right) X_k \right) \cdot B_{\alpha}$$

Security Analysis

 \rightarrow the core part of the public key is generated via $[P_i] = [T]^t [F_i] [T].$

Central map of ring UOV:

$$F_i(X_1, \dots, X_n) = \sum_{(j,k)\in\Omega} X_j^t F_{i,jk} X_k$$

 \rightarrow the matrix representation of the public map $P_i = F_i \circ T$ of ring UOV are also generated by

$$[P_i] = [T]^t [F_i] [T]$$

A note of our analysis: key recovery attacks

Hence

 the matrix representation of ring UOV and the core part of SNOVA both are generated by the same congruence relation

$$[T]^t [F_i] [T]$$

- SNOVA and its corresponding ring UOV have the same T
- kev recovery attack against SNOVA: recover T by attacking its corresponding ring UOV

Forgery attack: direct attack

▶ Goal: Find $\vec{\mathbf{u}}$ such that $P(\vec{\mathbf{u}}) = \vec{\mathbf{y}} = Hash(\mathbf{digest}||\mathbf{salt})$

- ▶ In the case of SNOVA, try to solve $\tilde{P}(\vec{\mathbf{U}}) = \vec{\mathbf{Y}}$ (an MQ over \mathcal{R})
 - \rightarrow there is no efficient algorithm
 - \rightarrow regarded a (v, o, q, l) SNOVA as an (l^2v, l^2o, q) UOV
 - \rightarrow each equation over \mathcal{R} yields l^2 equations over \mathbb{F}_q
 - $A_{\alpha} \to l^2$ copies with different A_{α} , $Q_{\alpha 1}$, $Q_{\alpha 2}$, and B_{α} in F_i makes such a quadratic system behaves like a random systems
- The complexity of direct attack is

$$\mathsf{Comp}_{\mathsf{Direct}} = \min_{k} \ q^{k} \cdot MQ(l^{2}m - k - \alpha_{k} + 1, \ l^{2}m - \alpha_{k}, \ q)$$

Forgery attack: collision attack

- ▶ Goal: obtain the values of M signatures and N hash values
 - \rightarrow if there exists a collision $\tilde{P}(\overline{\mathbf{U}_i}) = Hash(\mathbf{digest}||\mathbf{salt}_k)$

- \rightarrow we obtain a valid fake signature
- ▶ Under the assumption that $MN = q^{l^2m}$, where M is the no. of signatures and N is the no. of hash values, the complexity can be estimated by

$$2 \cdot \left(q^{l^2 m} (l^2 m) \left(2(\log_2 q)^2 + 3 \cdot \log_2 q\right) \cdot 2^{17}\right)^{1/2}$$

Key recovery attack: equivalent key attack

▶ Goal: find the submatrix $(T^{-1})^{12}$ of matrix $[T^{-1}]$ \rightarrow considering the system

$$\left[T^{-1}\right]^{t}\left[P_{i}\right]\left[T^{-1}\right] = \left[F_{i}\right]$$

- \rightarrow comparing both sides of equation at ring level
- \rightarrow once $[T^{-1}]$ is found, \tilde{F} can be recovered
- we have a system of $m \cdot m^2 \cdot l^2$ quadratic equations in $l \cdot v \cdot o$ variables over \mathbb{F}_a
- the complexity is

$$\mathsf{Comp}_{T^{-1}}\mathsf{SNOVA} = MQ(lvo + 1, m^3l^2, q)$$

Parameters and comparison

UOV scheme

SL	(v, o, q, l)	Dir.	Col.	$\left[T^{-1}\right]$
I(143/61)	(28, 17, 16, 2)	171/124	151	192/192
	(25, 8, 16, 3)	175/126	159	231/231
	(24, 5, 16, 4)	188/134	175	286/286
III(207/125)	(43, 25, 16, 2)	240/175	215	279/279
	(49, 11, 16, 3)	230/162	213	530/530
	(37, 8, 16, 4)	291/214	271	424/424
V(272/189)	(61, 33, 16, 2)	308/224	279	386/386
	(66, 15, 16, 3)	307/220	285	707/707
	(60, 10, 16, 4)	355/255	335	812/812

The complexity of KS attack and intersection attack are much higher than the security level.

Comparison table

Signature Scheme	Size of public key (Bytes)	Size of signature (Bytes)
Dilithium-2	1312	2420
Falcon-512	897	666
SPHINCS+-128s	32	7856
SPHINCS ⁺ -128f	32	17088
SNOVA(24, 5, 16, 4)	1000	232(+16)
SNOVA(19, 6, 16, 4)	1728	200(+16)
SNOVA(25, 8, 16, 3)	2304	148.5(+16)
SNOVA(28, 17, 16, 2)	9826	90(+16)

The public key size of UOV scheme is about 40 KB to 60 KB in the literature.

Thanks for your attention!