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A quick overview of
mathematical notions



Elliptic curves and isogenies

y2 = x3 + x y2 = x3 − 4x

φ(x , y) =
(

x2+1
x , y x2−1

x2

)

The Isogeny Problem: Given two elliptic curves E1 and E2, find an
isogeny φ : E1 → E2.

1



Elliptic curves and isogenies

y2 = x3 + x y2 = x3 − 4x

φ(x , y) =
(

x2+1
x , y x2−1

x2

)

The Isogeny Problem: Given two elliptic curves E1 and E2, find an
isogeny φ : E1 → E2.

1



Elliptic curves and isogenies

y2 = x3 + x y2 = x3 − 4x

φ(x , y) =
(

x2+1
x , y x2−1

x2

)

The Isogeny Problem: Given two elliptic curves E1 and E2, find an
isogeny φ : E1 → E2.

1



The supersingular isogeny graph

Over Fp2 , supersingular curves with degree ℓ isogenies create a graph
that is

1. connected

2. ℓ+ 1-regular

3. Ramanujan

4. of size O(p)

Supersingular ℓ-Isogeny Problem: Given a prime p and two
supersingular curves E1 and E2 over Fp2 , compute an ℓe-isogeny

φ : E1 → E2 for e ∈ N⋆.

Best known attack: requires random walk in the isogeny graph.
Complexity is polynomial in the size of the graph.
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Endomorphisms

An endomorphism is an isogeny φ : E → E .

Supersingular curves/Fp2 ⇔ End(E ) is a maximal order in a quaternion
algebra B(p).

Endomorphisms are a bit like coordinates. With computations over the
quaternions we can get our position in the graph. This is what is called
the Deuring correspondence.

In particular, when we know the endomorphism ring of E1 and E2, we can
solve the isogeny problem!

Endomorphism Ring Problem: Given a supersingular elliptic curve E

over Fp2 , compute its endomorphism ring.
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The signature scheme



SQIsign: the protocol

Signature based on the Deuring correspondence and algorithms to
translate from quaternion to isogenies. Built from an identification
scheme with Fiat-Shamir.

For id: public key is a curve EA and secret key is End(EA). The
knowledge of End(EA) is proven by using quaternions to solve the isogeny
problem.

E0

E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny
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SQIsign: analysis

Pros

1. Compact: thanks to the good mixing property of the isogeny graph,
there is always a short response path σ that we can find.

2. Easy and efficient to verify (for isogenies): one simple isogeny
computation.

3. Stable security (for isogenies): soundness relies on a
well-understood problem. ZK is more ad hoc, but not affected by
recent attacks.

Cons

1. The signature is involved and slow: the Deuring correspondence
requires a lot of complex algorithms.

2. A costly parameter selection process.

5



SQIsign: sizes

Most compact PQ signature scheme: PK + Signature combined.

Parameter set Public key Secret key Signature

NIST-I 64 782 177

NIST-III 96 1138 263

NIST-V 128 1509 335

Table 1: SQIsign key and signature sizes in bytes for each security level.

Slight improvement in signature size since the research papers.
Signatures could be even more compact (≈ 5%) with more work. Secret
keys are big due to precomputation.
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History of SQIsign implementation

1. AC20 paper: first implementation at NIST-I with pari-gp for
quaternions.

2. EC23 paper: improved implementation at NIST-I (improved
algorithms, better finite field arithmetic), still with pari-gp.

3. NIST submission: reference implementation based on gmp and
without pari-gp at NIST-I,III,V. Clean inner heuristic algorithms. A
partly optimized implementation at NIST-I (performances are
currently worse than EC23 paper).
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SQIsign: performances

Parameter set KeyGen Sign Verify

Reference implementation (with default GMP installation)

NIST-I 2’834 4’781 103

NIST-III 21’359 38’84’84 687

NIST-V 84’944 160’458 2’051

Assembly-optimized implementation for Intel Broadwell or later

NIST-I 1’661 2’370 37

Table 2: SQIsign performance in 106 CPU cycles on an Intel Xeon Gold 6338
CPU (Ice Lake), compiled on Ubuntu with clang version 14. Results are the
median of 10 benchmark runs.
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Future work

A lot of work needs to be done:

1. Obtain a fully optimized implementation for all three levels (a lot
of open research questions remains). Going faster than EC23 paper
is definitely possible. On-going reasearch: some ideas for bigger
improvements.

2. Constant time implementation (in particular for the quaternion
part). Hard due to a lot of heuristics in the quaternion computations.

3. Side-channel analysis in general.

4. Various trade-offs to explore. Some variants are possible.

5. Continue cryptanalysis and gain confidence in the hardness of
isogeny-based cryptography.
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The material

1. SQISign: Compact Post-Quantum Signatures from Quaternions and
Isogenies, ASIACRYPT 2020
L. de Feo, D. Kohel, A. Leroux C. Petit and B. Wesolowski

2. New algorithms for the Deuring correspondence: toward practical
and secure SQISign signatures, EUROCRYPT 2023
L. De Feo, A. Leroux, P. Longa and B. Wesolowski

3. SQIsign specification, NIST Submission
J. Chavez-Saab, M. Corte-Real Santos, L. De Feo, J. Komada Eriksen, B. Hess,

D. Kohel, A. Leroux, P. Longa, M. Meyer, L. Panny, S. Patranabis, C. Petit, F.

Rodríguez Henríquez, S. Schaeffler, and B. Wesolowski

4. Website: https://sqisign.org

Thank you for listening!
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