SQUIRRELS

Square

Unstructured

Intege<u>RR</u>

Euclidean

Lattice

<u>Signature</u>

A panorama of signatures (sizes)

SMALL ... BUT ALSO UNSTRUCTURED

XMLSS

Lattice

Lattice


```
Sign (sk, msg)

1.m <- Hash (msg)

2.v <- Discrete Gaussian sample (m)

3.Return s = (m-v)</pre>
```

Verif (pk, msg, s)

- 1.Assert || s || small
- 2.Assert **s**-Hash(msg) is in L
- 3.Accept


```
Sign (sk, msg)

1.m <- Hash (msg)

2.v <- Discrete Gaussian sample (m)

3.Return s = (m-v)
```

Verif (pk, msg, s)

1.Assert ||s|| small

2.Assert s-Hash(msg) is in L

3.Accept


```
Sign (sk, msg)

1.m <- Hash (msg)

2.v <- Discrete Gaussian sample (m)

3.Return s = (m-v)
```


Find a lattice point close to the hash

Verification: check that

- 1. candidate is inside L
- 2. close to hash

[<u>Closest Vector Problem</u> (CVP) instance]

"The better the basis, the easier my problem becomes"

Every lattice cryptographer ever

FORGING A SIGNATURE

Find a lattice point close to the hash

Should be hard:

- > small distance gaussian (= small variance)
- > 'good private basis (= short vectors)

"The better the basis, the easier my problem becomes"

Every lattice cryptographer ever

KEY RECOVERY Find the secret key directly

Lattice reduction / SVP (find short vectors)

Goes from public lattice to short vectors

"Finding short vectors in a lattice is hard!"
Ajtai '98

Should be hard:

- > large dimension (> hard reduction)
- > bad private basis (= long vectors)

"Finding short vectors in a lattice is hard!"
Ajtai '98

PRIVATE BASIS PUBLIC BASIS

KEYGEN

GAUSSIAN SAMPLER

VERIFICATION

SIGNING

PRIVATE BASIS

QUALITY

GAUSSIAN SAMPLER

KLEIN SAMPLER

KEYGEN

VERIFICATION

SIGNING

PRIVATE BASIS
GOOD GEOMETRY

QUALITY

GAUSSIAN SAMPLER

KLEIN SAMPLER

SIGNING

KEYGEN

VERIFICATION

SIGNING

KEYGEN

Signing

KEYGEN

SIGNING

SIGNING

What does "good" means?

GOOD GEOMETRIC STRUCTURE [flat basis profile]

Klein sampler's quality <a max Gram-Schmidt norms

- > low decay
- > construct one vector after another by sampling in the good corresponding region of the space

"Co-representation" of integer lattice as **ker** of a map

$$A: \mathbb{Z}^n \to (\mathbb{Z}/q\mathbb{Z})^m$$

$$v \in \mathcal{L} \Leftrightarrow Av = 0 \pmod{q}$$

$$> m = 1$$
: single equation mod q! $\langle v, \underline{a} \rangle = 0 \pmod{q}$

Cocyclic lattices — enforced by forcing the det to be squarefree

Dimension 2 example

Dimension 2 example

Not a lattice yet...

Now it's a lattice

VERIFICATION

SINGLE LINEAR EQUATION

 $-x + 4y = 0 \pmod{q}$

PRIVATE BASIS
GOOD GEOMETRY
SPECIAL ARITHMETIC $\begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$

PUBLIC BASIS
HERMITE FORM

$$\begin{pmatrix} q & 4 \\ 0 & -1 \end{pmatrix}$$

Concrete values (raw!)

	BIT SECURITY classical/quantum	SIG-SIZE BYTES	KEY-SIZE BYTES	KEYGEN SECOND	VERIFICATION SIG PER SEC.	SIGN TIME SIG PER SEC.
1	125/112	1019	681780	34	601	13099
11	141/128	1147	874576	52	509	11871
111	192/174	1554	1629640	127	266	6594
ne IV	211/192	1676	188870	179	208	5765
Ne V	256/232	2025	278680	351	177	3937

(Performances measured on a Ryzen Pro 7 5850U (16CPU threads at 3GHz)

Size-wise

SQUIRRELS

