TUOV Triangular Unbalanced Oil and Vinegar

Boru Gong

tuovsig@gmail.com, Jintai.Ding@gmail.com

September 4, 2023

Preliminaries

- Multivariate Signature Scheme
- MQ Problem
- 2 UOV Scheme
 - Description
 - Attacks on UOV
 - Parameters and Performances

3 TUOV Scheme

- Design Rationale
- Description
- Security Proof for TUOV
- Attacks on TUOV
- Parameters and Performances

Multivariate Signature Scheme MQ Problem

Multivariate Signature Scheme

• Public Key:

$$\mathcal{P}(x_1,\cdots,x_n)=(p_1(x_1,\cdots,x_n),\cdots,p_m(x_1,\cdots,x_n)),$$

where each p_i is a multivariate polynomial over \mathbb{F}_q .

- **Private Key**: a way to compute \mathcal{P}^{-1} .
- Signing a hash of a document:

$$(x_1,\cdots,x_n)\in\mathcal{P}^{-1}(y_1,\cdots,y_m).$$

• Verifying:

$$(y_1,\cdots,y_m)\stackrel{?}{=}\mathcal{P}(x_1,\cdots,x_n).$$

Multivariate Signature Scheme MQ Problem

Multivariate Signature Schemes

- The public key P(x₁, · · · , x_n) should be almost surjective;
 n ≥ m is necessary.
- The signing and verification should be efficient;
- Key sizes should be as *small* as possible.

Multivariate Signature Scheme MQ Problem

Theoretical Foundation

Direct attack is to solve the set of equations:

$$\mathcal{P}(x_1,...,x_n) = (y'_1,...,y'_m).$$

Multivariate Signature Scheme MQ Problem

Quadratic Constructions

• Efficiency considerations lead to mainly *quadratic* constructions.

$$p_{\ell}(x_1,\ldots,x_n)=\sum_{i,j}\alpha_{\ell ij}x_ix_j+\sum_i\beta_{\ell i}x_i+\gamma_{\ell}.$$

• Mathematical structure consideration: any set of *higher* degree polynomial equations can be reduced to a set of quadratic equations.

• For instanve, $x_1x_2x_3 = 5$ is equivalent to

$$\begin{array}{rcl} x_1x_2 - y &=& 0\\ yx_3 &=& 5. \end{array}$$

Multivariate Signature Scheme MQ Problem

What is MQ Problem

MQ Problem

Given: a multivariate quadratic equation system with *m* equations and *n* variables over \mathbb{F}_q . **Find**: a solution over \mathbb{F}_q .

Multivariate Signature Scheme MQ Problem

Hardness of MQ Problem

Theorem

- MQ problem is NP-complete. [Garey-Johnson 1979]
- OMQ problem can be solved in polynomial time, when: $m \le n^2/2$ [Shamir 1999], when: $n \ge m^2/2$ and $\operatorname{char}(\mathbb{F}_q) = 2$ [Miura-Hashimoto-Takagi 2013].

Moreover, it is *believed* $\exists 0 < \varepsilon < 1/2$ s.t. MQ problem is hard when $n = \alpha m^2$ and $\varepsilon < \alpha < 1/2$.

Description Attacks on UOV Parameters and Performances

(Unbalanced) Oil and Vinegar Scheme

- The original *balanced* version was introduced by Jacques Patarin in 1997.
 - Inspired by **linearization attack** to Matsumoto-Imai cryptosystem.
 - n = 2m.
- Kipnis and Shamir proposed an attack which breaks this balanced OV scheme in 1998.
- Kipnis, Patarin and Goubin proposed a modified scheme called *Unbalanced* Oil and Vinegar (UOV) signature scheme in 1999.

• n > 2m.

Description Attacks on UOV Parameters and Performances

(Unbalanced) Oil and Vinegar Scheme

- Let $\mathbb{F} = \mathbb{F}_q$ be a finite field with q elements;
- v: the number of vinegar variables;
 m = o: the number of oil variables;
 n := v + m: the number of variables.
- $V = \{1, ..., v\}$, $O = \{v + 1, ..., n\}$. We denote the variables x_i $(i \in V)$ as Vinegar variables, $x_{v+1}, ..., x_n$ as Oil variables.

Description Attacks on UOV Parameters and Performances

(Unbalanced) Oil and Vinegar Scheme

OV-polynomial

An (n, m)-**OV-polynomial** f over \mathbb{F} is defined as

$$\sum_{i=1}^{n-m}\sum_{j=1}^{n}\alpha_{i,j}\cdot x_ix_j + \sum_{i=1}^{n}\beta_i\cdot x_i + \gamma$$

The homogeneous quadratic part of f can be uniquely represented in a upper-triangular quadratic form: $\begin{bmatrix} \mathbf{A}^{(1)} & \mathbf{A}^{(2)} \\ \mathbf{0}_{m \times (n-m)} & \mathbf{0}_{m \times m} \end{bmatrix}$. Note that there is no "Oil \times Oil" part in an OV-polynomial.

Description Attacks on UOV Parameters and Performances

Key Generation

UOV Central Map

$$\mathcal{F} = (f_1, \ldots, f_m)$$
, where each f_k is an

$$(n, m)$$
-OV-polynomial, $k = 1, \ldots, m$.

• Private Key is $= (\mathcal{T}, \mathcal{F})$, where

• $\mathcal{F}: \mathbb{F}^n \to \mathbb{F}^m$ is a UOV central map.

•
$$\mathcal{F} = (f_1, ..., f_m).$$

- $\mathcal{T}: \mathbb{F}^n \to \mathbb{F}^n$ is an affine map;
- Public Key is $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$.

Description Attacks on UOV Parameters and Performances

Signature Generation

- $\mathbf{z} \leftarrow \mathsf{Sign}(\mu)$:
 - Use a hash function *H* : {0,1}* → 𝔽^m to compute a digest w = *H*(µ).
 - **2** Find a pre-image $\mathbf{y} \in \mathbb{F}^n$ of \mathbf{w} under the central map \mathcal{F} .
 - Sompute the signature $z \in \mathbb{F}^n$ by $z = \mathcal{T}^{-1}(y)$.

Description Attacks on UOV Parameters and Performances

How to find \mathcal{F}^{-1}

Inversion of \mathcal{F}^{-1} is efficient indeed:

- Fix values for vinegar variables x'_1, \dots, x'_v .
- $\mathcal{F}(x'_1, \cdots, x'_{\nu}, \cdots) : \mathbb{F}_q^m \to \mathbb{F}_q^m$ is a linear system in oil variables $x_{\nu+1}, \cdots, x_n$.

Description Attacks on UOV Parameters and Performances

Signature Verification

Signature verification is fast:

Check whether H(d) = P(z). If so, then the signature z is accepted, otherwise rejected.

Description Attacks on UOV Parameters and Performances

Attacks on UOV

- Kipnis-Shamir attack (*i.e.*, UOV attack)
- Reconciliation attack
- Collision attack
- Direct attack
- Intersection attack
- MinRank attack
- Quantum attack

Description Attacks on UOV Parameters and Performances

UOV: Parameter Sets

	NIST S.L.	n	m	q	epk (bytes)	esk (bytes)	cpk (bytes)	csk (bytes)	signature (bytes)
uov-Ip	1	112	44	256	278 432	237896	43576	48	128
uov-Is	1	160	64	16	412160	348704	66576	48	96
uov-III	3	184	72	256	1225440	1044320	189232	48	200
uov-V	5	244	96	256	2869440	2436704	446992	48	260

Figure: Recommended parameter sets and and the corresponding key/signature sizes for UOV.

Description Attacks on UOV Parameters and Performances

UOV: Performances

			Haswell		11		Skylake	
		KeyGen	Sign	Verify		KeyGen	Sign	Verify
uov-Ip-classic		3311188	116 624	82 668		2903434	105324	90 336
uov-Ip-pkc		3393872		311 720		2858724		224 006
uov-Ip-pkc+skc		3287336	2251440			2848774	1876442	
uov-Is-classic		4945376	123 376	60 832		4332050	109314	58274
uov-Is-pkc		5002756		398 596		4376338		276 520
uov-Is-pkc+skc		5448272	3042756			4450838	2473254	
uov-III-classic		22046680	346 424	275 216		17603360	299316	241588
uov-III-pkc		22389144		1 280 160		17534058		917402
uov-III-pkc+skc		21779704	11381092			17157802	9965110	
uov-V-classic		58162124	690 752	514100		48480444	591 812	470 886
uov-V-pkc		57315504		2842416		$46\ 656\ 796$		2 032 992
uov-V-pkc+skc		57306980	26021784			45492216	22992816	
Dilithium 2 [†] [28]		97621^*	281 078*	108 711*		70548	194892	72633
Falcon-512 [44]		19189801^*	792 360*	103 281*		$26\ 604\ 000$	948132	81 0 36
SPHINCS+ [‡] [25]		1334220	33651546	2 1 5 0 2 9 0		1510712^*	50084397^*	2254495^*

[†] Security level II. [‡] Sphincs+-SHA2-128f-simple. * Data from SUPERCOP [20].

Figure: Benchmarking results of AVX2 implementations. Numbers are the median CPU cycles of 1000 executions each.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Why we do TUOV?

- The hardness of the UOV scheme relies on the **UOV** assumption, *i.e.*, it is hard to find a pre-image of \mathcal{P} .
- On the one hand, it is know that

find a pre-image of $\mathcal{P} \leq$ solve MQ problem.

• On the other hand, it is not know whether

find a pre-image of
$$\mathcal{P} \stackrel{?}{=}$$
 solve MQ problem.

• a large part of coefficients in \mathcal{F} are zeroes, which makes $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$ failed to be proved as random as MQ map.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Our solution:

- \bullet add some nonzero parts in $\mathcal{F};$ and
- keep \mathcal{F} efficiently invertible.

Our result: the *Triangular* Unbalanced Oil and Vinegar (TUOV) scheme.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Triangular Map

Definition

The **T**riangular in the name TUOV refers to a triangular map (or, *de Jonquiére* map) as

$$\mathcal{J}: \mathbb{F}_q^n \to \mathbb{F}_q^n,$$

$$\mathbf{x} \mapsto (x_1, x_2 + g_2(x_1), \cdots, x_n + g_n(x_1, \dots, x_{n-1}))$$

where g_i is a polynomial over \mathbb{F}_q .

The triangular map $\mathcal J$ is efficiently invertible.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

TUOV notations

- parameters: let m, v, o_1 be integers and the number of variables is given by $n = v + o_1 + (m o_1)$.
- index sets:

$$V = \{1, \dots, v\},\ O_1 = \{v + 1, \dots, v + o_1\},\ O_2 = \{v + o_1 + 1, \dots, n\}.$$

• variables: denote x_i ($i \in V$) as Vinegar variables, and x_{v+1}, \ldots, x_n ($O_1 \cup O_2$) as **Oil variables**.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

TOV-polynomial

Definition

For $d \ge 1$, an (n, m, d)-**TOV-polynomial** f over $\mathbb{F} = \mathbb{F}_q$ is defined as

$$\sum_{i=n-m+1}^{n-m+d}\sum_{j=n-m+1}^{n-m+d}\alpha_{i,j}\cdot x_ix_j + \sum_{i=1}^{n-m}\sum_{j=1}^n\alpha_{i,j}\cdot x_ix_j + \sum_{i=1}^n\beta_i\cdot x_i + \gamma.$$

The homogeneous quadratic part of f:

$$\begin{bmatrix} \mathsf{A}^{(1)} & \mathsf{A}^{(2)} & \mathsf{A}^{(3)} \\ 0 & \mathsf{A}^{(5)} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(n, m, d)-TOV-polynomial adds an " $O_1 \times O_1 (o_1 = d)$ " part.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

TUOV Central Map

Definition

A TUOV central map with parameters (n, m, m_1, m_2, q) is $\mathcal{F} = (f_1, \ldots, f_m)$, where f_k is

 $\begin{cases} (n, m)\text{-}\mathsf{OV}\text{-}\mathsf{polynomial}, & k = 1, \dots, m_1 \\ (n, m, k - m_1)\text{-}\mathsf{TOV}\text{-}\mathsf{polynomial}, & k = m_1 + 1, \dots, m_2 \\ (n, m - m_2 + m_1 - 1)\text{-}\mathsf{OV}\text{-}\mathsf{polynomial}, & k = m_2 + 1, \dots, m. \end{cases}$

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

TUOV Central Map

Boru Gong TUOV Triangular Unbalanced Oil and Vinegar

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

• Private Key: $(\mathcal{S}, \mathcal{F}, \mathcal{T})$, where

- $\mathcal{S}: \mathbb{F}^m \to \mathbb{F}^m$, $\mathcal{T}: \mathbb{F}^n \to \mathbb{F}^n$ are affine maps;
- $\mathcal{F}: \mathbb{F}^n \to \mathbb{F}^m$ is a TUOV central map.

• Public Key: $\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T}$.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Signature Generation

- $\mathbf{z} \leftarrow \mathsf{Sign}(\mu)$:
 - Use a hash function *H* : {0,1}* → 𝔽^m to compute a digest w = *H*(µ).
 - 2 Compute $\mathbf{x} = S^{-1}(\mathbf{w}) \in \mathbb{F}^m$.
 - **③** Find a pre-image $\mathbf{y} \in \mathbb{F}^n$ of \mathbf{x} under the central map \mathcal{F} .
 - Compute the signature $z \in \mathbb{F}^n$ by $z = \mathcal{T}^{-1}(y)$.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

How to find the pre-image under \mathcal{F} (1/2)

Step 1: Use one (n, m)-OV-polynomial and all TOV-polynomials in \mathcal{F} :

$$g(x_{\nu+1}) + \sum_{j=\nu+1}^{n} L_{1,j}(x_1, \cdots, x_{\nu}) x_j + Q_1(x_1, \cdots, x_{\nu}) \\ g(x_{\nu+1}) + \sum_{j=\nu+1}^{n} L_{2,j}(x_1, \cdots, x_{\nu}) x_j + Q_2(x_1, \cdots, x_{\nu}) \\ \cdots$$

$$g(x_{\nu+1}, \cdots, x_{\nu+o_1-1}) + \sum_{j=\nu+1}^{n} L_{o_1,j}(x_1, \cdots, x_{\nu}) x_j + Q_{o_1}(x_1, \cdots, x_{\nu})$$

Solve linear equations of x_i ($i \in V$), so that the red parts = 0 and blue parts = 1. Substitute the solution, then we can solve x_i ($i \in O_1$) efficiently – by trianglar map.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

How to find the pre-image under \mathcal{F} (2/2)

Step 2: Use remaining OV-polynomials in \mathcal{F} : Substitute x_i ($i \in V \cup O_1$), we can get x_i ($i \in O_2$) by solving linear system.

Note

Note that a (n, m, d)-TOV-polynomial adds a (n, m)-polynomial is still a (n, m, d)-TOV-polynomial, thus we can randomly add (n, m)-polynomials to (n, m, d)-TOV-polynomial to get random x_i $(i \in V)$ at the beginning.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Signature Verification

Check whether H(d) = P(z). If so, then the signature z is accepted, otherwise rejected.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Security Proof

Definition: Hardness of MQ problem

The *MQ* problem parameterized by (n, m, q) is called (t, ε) -hard, if there exists no algorithm that, given a random MQ-map $\mathcal{M} : \mathbb{F}^n \to \mathbb{F}^m$, on input $\mathbf{y} := \mathcal{M}(\mathbf{w})$ with $\mathbf{w} \stackrel{\$}{\leftarrow} \mathbb{F}^n$, outputs \mathbf{w}' such that $\mathcal{M}(\mathbf{w}') = \mathbf{y}$ with probability no less than ε in processing time *t*.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Security Proof

TUOV map

TUOV map is $\mathcal{P} = S \circ \mathcal{F} \circ \mathcal{T} : \mathbb{F}^n \to \mathbb{F}^m$ where $S : \mathbb{F}^m \to \mathbb{F}^m$ and $\mathcal{T} : \mathbb{F}^n \to \mathbb{F}^n$ are invertible affine transformations and $\mathcal{F} : \mathbb{F}^n \to \mathbb{F}^m$ is a TUOV central map.

Definition: Hardness of TUOV problem

TUOV problem with params (n, m, m_1, m_2, q) is (t, ε) -hard if there exists no algorithm that, given a random TUOV map $\mathcal{P} : \mathbb{F}^n \to \mathbb{F}^m$, on input $\mathbf{z} = \mathcal{P}(\mathbf{w})$ with $\mathbf{w} \stackrel{\$}{\leftarrow} \mathbb{F}^n$, outputs \mathbf{w}' such that $\mathcal{P}(\mathbf{w}') = \mathbf{z}$ with probability no less than ε in processing time t.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Security Proof

Theorem

If MQ problem with params $(n = \frac{11}{24} \cdot m^2, m, q)$ is (t, ε) -hard, then TUOV problem with params $(n = \frac{1}{2} \cdot m^2, m, m_1 = \frac{1}{2} \cdot m, m_2 = \frac{3}{4} \cdot m, q)$ is (t, ε) -hard.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Proof Sketch

- Our goal is to prove: it is highly probable that for a random MQ-map *M*, there exists an invertible affine map *Q* and a TUOV central map *F* such that *M* = *F* ∘ *Q*.
- Hence, if there exists an algorithm \mathcal{A} that solves TUOV problem, we can construct an algorithm $\mathcal{B}^{\mathcal{A}}$ that solves MQ-problem.
- Specifically, when taking MQ input $(\mathcal{M}, \mathbf{y})$, $\mathcal{B}^{\mathcal{A}}$ can randomly sample an \mathcal{S} , make query $(\mathcal{P} = \mathcal{S} \circ \mathcal{M}, \mathbf{z} = \mathcal{S}(\mathbf{y}))$ on \mathcal{A} and output the \mathbf{w}' returned by \mathcal{A} .

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Proof Sketch

Without loss of generality, we consider quadratic polynomials only with their quadratic part.

• Set the matrix representation of \mathcal{Q}^{-1} to be

$$\mathbf{Q} = \begin{bmatrix} \mathbf{I}_{n-m} & \mathbf{Q}^{(2)} \\ \mathbf{0}_{m \times (n-m)} & \mathbf{I}_m \end{bmatrix}$$

- There are $(n m) \times m$ unknown variables.
- Recall our goal is to find \mathcal{F} and \mathcal{Q} such that $\mathcal{M} = \mathcal{F} \circ \mathcal{Q}$.
- Hence we want $\mathcal{M} \circ \mathcal{Q}^{-1}$ to be some TUOV central map, i.e. it satisfies some equations.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Proof Sketch

The total number of equations to solve is

$$\begin{array}{l} \frac{m_1}{2}(m+1)m\\ +\frac{m_2-m_1}{6}\left(3m(m+1)-(m_2-m_1)^2-3(m_2-m_1)-2\right)\\ +\frac{m-m_2}{2}(m-m_2+m_1-1)(m-m_2+m_1).\end{array}$$

If we pick $m_1 = \frac{1}{2}m$ and $m_2 = \frac{3}{4}m$, *i.e.*, $m_2 - m_1 = \frac{1}{4}m$, then we have roughly $\frac{11}{24}m^3$ equations. As long as the number of variables is no less than equations, *i.e.*, $n \ge \frac{11}{24} \cdot m^2$, there exists invertible linear transformation Q such that $\mathcal{M} \circ Q^{-1}$ is TUOV central map with high probability.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

Attacks on TUOV

To our knowledge, attacks against UOV is applicable to TUOV, and vice versa.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

TUOV: Parameter Sets

For efficient implementation, we choose $m_1 = m_2$.

	1	NIST Security Level (n, m, m_1, q)	upk (bytes)	usk (bytes)	cpk (bytes)	csk (bytes)	$ \sigma $ (bytes)
tuov-Ip	1	(112, 44, 22, 256)	278 432	239391	42608	48	112
tuov-Is	1	(160, 64, 32, 16)	412160	350272	65552	48	80
tuov-III	3	(184, 72, 36, 256)	1 225 440	1048279	186640	48	184
tuov-V	5	(244, 96, 48, 256)	2869440	2443711	442384	48	244

Figure: Recommended parameter sets and and the corresponding key/signature sizes for TUOV.

Design Rationale Description Security Proof for TUOV Attacks on TUOV Parameters and Performances

TUOV: Performances

	Optimized Implementations (AV)				
Schemes	KeyGen	Sign	Verify		
tuov-Ip	10 682 834	220 702	127,722		
tuov-Ip-pkc	10,082,854	220,192	401 120		
<pre>tuov-Ip-pkc+skc</pre>	6,617,102	$6,\!698,\!588$	431,120		
tuov-Is	32 007 030	272 304	103,746		
tuov-Is-pkc	52,001,950	212,334	570 104		
tuov-Is-pkc+skc	$15,\!635,\!380$	$21,\!534,\!990$	570,194		
Dilithium-II	113,316	272,332	123,916		
tuov-III	57 222 074	608 604	442,770		
tuov-III-pkc	51,522,014	008,004	1 014 056		
tuov-III-pkc+skc	33,336,974	33,409,538	1,914,050		
Dilithium-III	197,026	448,172	199,656		
tuov-V	120 048 218	1 122 058	786,450		
tuov-V-pkc	139,940,210	1,135,956	4 520 748		
tuov-V-pkc+skc	85,778,546	74,923,822	4,020,140		
Dilithium-V	303,434	551,760	313,096		

Figure: Benchmarking results of AVX2 implementations. Numbers are the median CPU cycles of 10000 executions each.

- UOV is competitive with the new NIST standards by most measures, except for public key size.
- with the triangular structure, TUOV has slower signing speed than UOV, while it gains a reduction to hard problem (MQ-problem when $n = \alpha m^2$ where $\varepsilon < \alpha < 1/2$).

Thanks and Any Questions?

tuovsig@gmail.com, Jintai.Ding@gmail.com