

A Code-based Hash and Sign Signature Scheme

Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, **Thomas Debris-Alazard**, Philippe Gaborit, Pierre Karpman, Johanna Loyer, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith and Jean-Pierre Tillich

Inria, École Polytechnique

ROADMAP

- 1. Wave: standardization candidate (NIST),
- 2. Next steps,
- 3. Code-based hash and sign,
- 4. Design Rationale: Wave Trapdoor
- 5. Leakage free signatures (not today),
- 6. Removing Approximation in Prange (not today).

https://wave-sign.org

WAVE: STANDARDIZATION CANDIDATE (NIST)

GPV FRAMEWORK

Wave is a **hash and sign** digital signature scheme.

By proving that signatures are leakage-free,

→ Wave instantiates Gentry-Peikert-Vaikuntanathan (GPV) framework like Falcon, Squirrels, HuFu

But Wave security relies on coding problems

ADVANTAGES

Even if parameters are highly conservative

• Short signatures: linear scaling in the security

Post-quantum target security	Level I	Level III	Level V
Signature length (Bytes)	822	1249	1644

• Fast Verification: (Intel Core i5-1135G7 platform at 2.40GHz)

Post-quantum target security	Level I	Level III	Level V
Verification (MCycles)	1.2	2.5	4.3

- Immune to statistical attacks.
- Proven secure (Q)ROM with tight reductions.

LIMITATIONS

• Big public-key: quadratic scaling in the security

Post-quantum target security	Level I	Level III	Level V
Public-key size (MBytes)	3.6	7.8	13.6

- Signing and key generation rely on Gaussian elimination on large matrices
- Security based on fairly new assumption (2018): distinguishing random and generalized ($U \mid U + V$)-codes

ABOUT PARAMETERS

Wave parameters are highly conservative!

Attack model:

Cost of ${\mathcal A}$ to solve ${\mathcal P}$:

$$\alpha \stackrel{\text{def}}{=} \lim_{n \to +\infty} \frac{1}{n} \log_2 \text{Time} (\mathcal{A})$$

Then choose *n* s.t:

$$\alpha n = \lambda$$
 ($\alpha \approx 0.0149$)

→ It ignores (super-)polynomial factors and memory access!

For instance: considered attack to forge a signature

Time =
$$P(\lambda)2^{\lambda}$$
 and Memory = $Q(\lambda)2^{\lambda}$.

Next Step:

Providing parameters for "concrete" security.

A MORE OPTIMIZED/SECURE IMPLEMENTATION

Wave reference implementation

- portable C99,
- KeyGen and Sign in constant-time,
- bit-sliced arithmetic over \mathbb{F}_3 .

Bottleneck of Wave: Gaussian elimination on big matrices/memory access

(it impacts key generation and signing not verification)

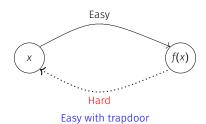
Next Step:

- Providing optimized implementation: AVX,
 - → Wavelet: AVX2 (intel) & ARM CORTEX M4 in verification (2x faster),
- Providing a Wave version with countermeasures, maskings,
- Providing (friendly) tools to ensure that Wave is properly implemented.

CODE-BASED HASH AND SIGN

FULL DOMAIN HASH SIGNATURE SCHEME

- ightharpoonup Hash(\cdot) hash function,
- ► *f* trapdoor one-way function



► To sign **m**:

Compute $\sigma \in f^{-1}(\operatorname{Hash}(\mathbf{m}))$.

f needs to be surjective!

▶ To verify (\mathbf{m}, σ) :

Check $f(\sigma) \stackrel{?}{=} Hash(m)$.

CODE-BASED ONE-WAY FUNCTION (1)

 \longrightarrow Coding theory provides one-way functions!

- A [n, k]-code C is a defined as a k dimension subspace of \mathbb{F}_q^n .
- \mathbb{F}_a^n embedded with Hamming weight,

$$\forall \mathbf{x} \in \mathbb{F}_q^n, \qquad |\mathbf{x}| \stackrel{\mathsf{def}}{=} \sharp \left\{ i, \ \mathbf{x}(i) \neq \mathbf{0} \right\}.$$

CODE-BASED ONE-WAY FUNCTION (2)

One-way in code-based crypto:

$$f_{\mathsf{W}}: (\mathsf{c},\mathsf{e}) \in \mathcal{C} \times \{\mathsf{e}: |\mathsf{e}| = \mathsf{w}\} \longmapsto \mathsf{c} + \mathsf{e}.$$

(inverting f_w : decoding C at distance w)

 \longrightarrow To hope $f_{\mathbf{W}}$ surjective: choose noise distance \mathbf{w} large enough

CODE-BASED ONE-WAY FUNCTION (2)

One-way in code-based crypto:

$$f_{\mathbf{w}}: (\mathbf{c}, \mathbf{e}) \in \mathcal{C} \times \{\mathbf{e}: |\mathbf{e}| = \mathbf{w}\} \longmapsto \mathbf{c} + \mathbf{e}.$$

(inverting f_w : decoding C at distance w)

 \longrightarrow To hope $f_{\mathbf{W}}$ surjective: choose noise distance \mathbf{w} large enough

But, be careful...

w parametrizes the hardness of inverting f_w !

 \longrightarrow for some w, it is easy to invert f_{w} ...

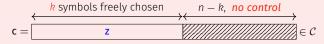
HARD OR EASY TO INVERT? PRANGE ALGORITHM

Inverting $f_{\mathbf{w}}$:

- Given: [n, k]-C, y uniformly distributed over \mathbb{F}_q^n and w,
- Find: $c \in C$ such that |y c| = w.

Fact: by linear algebra (Gaussian elimination)

 \mathcal{C} has dimension k: $\forall \mathbf{z} \in \mathbb{F}_q^k$, easy to compute $\mathbf{c} \in \mathcal{C}$ such that,



HARD OR EASY TO INVERT? PRANGE ALGORITHM

Inverting f_w :

- Given: [n, k]-C, y uniformly distributed over \mathbb{F}_q^n and w,
- Find: $c \in C$ such that |y c| = w.

Fact: by linear algebra (Gaussian elimination)

 \mathcal{C} has dimension k: $\forall z \in \mathbb{F}_q^k$, easy to compute $c \in \mathcal{C}$ such that,

$$c = \boxed{\begin{array}{c} k \text{ symbols freely chosen} & n-k, \text{ no control} \\ \hline \\ c = \boxed{\begin{array}{c} z \end{array}}$$

Given a uniform $\mathbf{y} \in \mathbb{F}_q^n$: compute $\mathbf{c} \in \mathcal{C}$,



INSTANTIATION TO A SIGNATURE SCHEME

▶ Public data: a hash function $Hash(\cdot)$, an [n, k]-code C and,

$$\mathbf{w} \notin \left[\frac{q-1}{q}(n-k), k + \frac{q-1}{q}(n-k)\right]$$
 (signing distance)

- ► Signing m:
- 1. Hashing: $\mathbf{m} \longrightarrow \mathbf{y} \stackrel{\text{def}}{=} \operatorname{Hash}(\mathbf{m}) \in \mathbb{F}_q^n$,
- 2. Decoding: find with a trapdoor $c \in C$ such that |y c| = w.
- ► Verifying (m, c):

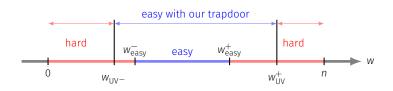
$$c \in \mathcal{C}$$
 and $|\mathsf{Hash}(\mathsf{m}) - c| = w$.

Security:

Signing distance w s.t hard to find $c \in C$ at distance w

 \longrightarrow Unless to own a secret/trapdoor structure on C!

DECODING WITH OUR TRAPDOOR



Trapdoor:

An [n, k]-code \mathcal{C} with a peculiar structure enabling to decode at distance $\mathbf{w} \notin [\mathbf{w}_{\text{easy}}^-], \mathbf{w}_{\text{easy}}^+]$

Security:

 ${\cal C}$ indistinguishable from a random code (unless to know its peculiar structure)

DECODING WITH OUR TRAPDOOR

Trapdoor:

An [n, k]-code C with a peculiar structure enabling to decode at distance $w \notin [w_{easy}^-, w_{easy}^+]$

Security:

 ${\cal C}$ indistinguishable from a random code (unless to know its peculiar structure)

SOME NOTATION

• Vector permutation:

$$\mathbf{x} = (\mathbf{x}(i))_{1 \leq i \leq n} \in \mathbb{F}_q^n$$
; π permutation of $\{1, \dots, n\}$.

$$\mathbf{x}^{\pi} \stackrel{\text{def}}{=} (\mathbf{x}(\pi(i)))_{1 \leq i \leq n}$$

• Component-wise product:

$$\mathbf{a} \star \mathbf{x} \stackrel{\text{def}}{=} (\mathbf{a}(i)\mathbf{x}(i))_{1 \leq i \leq n}$$

TRAPDOOR: GENERALIZED (U | U+V)-CODES

Generalized $(U \mid U + V)$ -codes:

Let U and V be $[n/2, k_U]$ and $[n/2, k_V]$ -codes

$$\mathcal{C} \stackrel{\text{def}}{=} \left\{ \left. \left(x_{\mathit{U}} + b \star x_{\mathit{V}} \mid c \star x_{\mathit{U}} + d \star x_{\mathit{V}} \right)^{\pi} : \; x_{\mathit{U}} \in \mathit{U} \; \text{and} \; x_{\mathit{V}} \in \mathit{V} \right\} \right.$$

where π permutation, $\mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{F}_q^{n/2}$ verify $\mathbf{c}(i) \neq 0$ and $\mathbf{d}(i) - \mathbf{b}(i)\mathbf{c}(i) = 1$.

 \longrightarrow It defines a code with dimension $k \stackrel{\text{def}}{=} k_U + k_V$

Secret-key/Trapdoor: $U, V, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and π .

Security assumption: Distinguishing Wave Key (DWK)

Hard to distinguish random and generalized $(U \mid U + V)$ codes.

OUR DECODING ALGORITHM (1)

Secret-key/Trapdoor: U, V, b, c, d and π .

- 1. Given $\operatorname{Hash}(\mathsf{m}) = \mathsf{y} \in \mathbb{F}_q^n$: decompose $\mathsf{y} = (\mathsf{y}_L \mid \mathsf{y}_R)^\pi$,
- 2. Compute any $\mathbf{x}_V \in V$ with Prange Algorithm,
- 3. Using Prange Algorithm: compute $\mathbf{x}_U \in U$ by choosing k_U symbols $\mathbf{x}_U(i)$'s such that

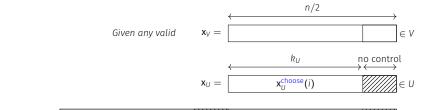
$$\begin{cases} x_U(i) + b(i)x_V(i) \neq y_L(i) \\ c(i)x_U + d(i)x_V(i) \neq y_R(i) \end{cases}$$

(i)
$$q \ge 3$$
, (ii) $c(i) \ne 0$ and (iii) $d(i) - b(i)c(i) = 1$.

4. Return $\mathbf{c} \stackrel{\text{def}}{=} (\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi} \in \mathcal{C}$ (public code).

What is the (typical) distance w between y and c?

OUR DECODING ALGORITHM (2)



$$\mathbf{c} - (\mathbf{y}_{L}|\mathbf{y}_{R}) = \underbrace{\mathbf{x}_{U}^{\text{choose}}(i) + \mathbf{b}(i)\mathbf{x}_{V}(i) - \mathbf{y}_{L}(i)}_{n/2 - k_{U}} \underbrace{\mathbf{c}(i)\mathbf{x}_{U}^{\text{choose}}(i) + \mathbf{d}(i)\mathbf{x}_{V}^{1}(i) - \mathbf{y}_{R}(i)}_{n/2 - k_{U}}$$

Choose k_U symbols $\mathbf{x}_U^{\text{choose}}(i)$ such that: $\begin{cases} \mathbf{x}_U^{\text{choose}}(i) + \mathbf{b}(i)\mathbf{x}_V(i) - \mathbf{y}_L(i) \neq 0 \\ \mathbf{c}(i)\mathbf{x}_U^{\text{choose}}(i) + \mathbf{d}(i)\mathbf{x}_V(i) - \mathbf{y}_R(i) \neq 0 \end{cases}$

Typical distance:

$$w = 2k_U + 2\frac{q-1}{q}(n/2 - k_U) > w_{\text{easy}}^+ = (k_U + k_V) + \frac{q-1}{q}(n - (k_U + k_V))$$

as soon as: $k_U > k_V$ (parameter constraint in Wave)

BE CAREFUL: A HUGE ISSUE

Collecting signatures:

$$(\mathbf{x}_U + \mathbf{b} \star \mathbf{x}_V \mid \mathbf{c} \star \mathbf{x}_U + \mathbf{d} \star \mathbf{x}_V)^{\pi}$$

may enable to recover the secret, for instance π ...

BE CAREFUL: A HUGE ISSUE

Collecting signatures:

$$(x_U + b \star x_V \mid c \star x_U + d \star x_V)^{\pi}$$

may enable to recover the secret, for instance π ...

Above procedure leaks quickly π ...

Proper Wave specification/implementation:

Choose carefully internal distribution and perform rejection sampling to produce signatures immune to statistical attacks

AN IMPORTANT CHOICE OF PARAMETERS

In what follows:

We will work in \mathbb{F}_3 , q = 3.

A FORMAL POINT OF VIEW

A signature: $x \in f^{-1}(y)$.

 \longrightarrow x computed via a trapdoor/secret!

Ideal situation:

x distribution independent of the secret

 \longrightarrow For instance: x uniform over its domain when y uniform

A hard problem

In our case: exponential number of preimages

OUR AIM

Given uniform y: compute $(x_U + b \star x_V \mid c \star x_U + d \star x_V)^{\pi}$ such that

 $e^{\text{sgn}} \stackrel{\text{def}}{=} y - (x_U + b \star x_V \mid c \star x_U + d \star x_V)^{\pi}$ uniform over words of Hamming weight w.

OUR AIM

Given uniform y: compute $(x_U + b \star x_V \mid c \star x_U + d \star x_V)^{\pi}$ such that

 $e^{\text{sgn}} \stackrel{\text{def}}{=} y - (x_U + b \star x_V \mid c \star x_U + d \star x_V)^{\pi}$ uniform over words of Hamming weight w.

Important fact: as
$$d(i) - b(i)c(i) = 1$$
 for all i ,

$$\varphi: (z_U,z_V) \longmapsto (z_U+b \star z_V \mid c \star z_U+d \star z_V)^\pi \ \ \textit{bijection}.$$

- 1. Write $\mathbf{y} = (\mathbf{y}_U + \mathbf{b} \star \mathbf{y}_V \mid \mathbf{c} \star \mathbf{y}_U + \mathbf{d} \star \mathbf{y}_V)^{\pi}$
- 2. Deduce that $e^{\text{sgn}} = (e_U + b \star e_V \mid c \star e_U + d \star e_V)^{\pi}$ where $\begin{cases} e_V \stackrel{\text{def}}{=} y_V x_V \\ e_U \stackrel{\text{def}}{=} y_U x_U \end{cases}$

Here \mathbf{x}_V and \mathbf{x}_U are computed via Prange algorithm...

LEAKAGE-FREE SIGNATURES

$$\begin{split} \mathbf{e}^{\text{sgn}} &\stackrel{\text{def}}{=} (\mathbf{e}_U + \mathbf{b} \star \mathbf{e}_V \mid \mathbf{c} \star \mathbf{e}_U + \mathbf{d} \star \mathbf{e}_V)^{\pi} \quad \text{and} \quad \mathbf{e}^{\text{unif}} \text{ unif word of weight } w. \\ &\longrightarrow \text{Write: } \mathbf{e}^{\text{unif}} = (\mathbf{e}^{\text{unif}}_U + \mathbf{b} \star \mathbf{e}^{\text{unif}}_V \mid \mathbf{c} \star \mathbf{e}^{\text{unif}}_U + \mathbf{d} \star \mathbf{e}^{\text{unif}}_V)^{\pi} \end{split}$$

We would like,

$$e^{sgn} \sim e^{unif}$$

In a first step we want,

$$\mathbf{e}_{V} \sim \mathbf{e}_{V}^{\mathrm{unif}}$$
 where $\mathbf{e}_{V} = \mathbf{y}_{V} - \mathbf{x}_{V} = \mathbf{y}_{V} - \text{Prange}\left(V, \mathbf{y}_{V}\right)$

Important remark (function of weight):

$$\mathbb{P}\left(e_V^{unif} = x\right) = \frac{1}{\sharp \{y: |y| = t\}} \; \mathbb{P}\left(\left|e_V^{unf}\right| = t\right) \quad \text{when } |x| = t.$$

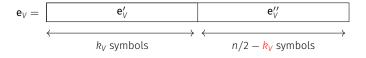
Approximation: Distribution of Prange algorithm, only function of the weight

$$\mathbb{P}(\mathsf{Prange}(\cdot) = \mathbf{x} \mid |\mathsf{Prange}(\cdot)| = t) = \frac{1}{\sharp \{\mathbf{y} : |\mathbf{y}| = t\}} \quad \mathsf{when} \ |\mathbf{x}| = t.$$

 \longrightarrow Uniformity property: enough to reach $|e_V| \sim |e_V^{unif}|$ as distribution

GUIDE THE WEIGHT OF EV

• We first look for $\mathbb{E}(|\mathbf{e}_V|) = \mathbb{E}(|\mathbf{e}_V^{\text{unif}}|)$

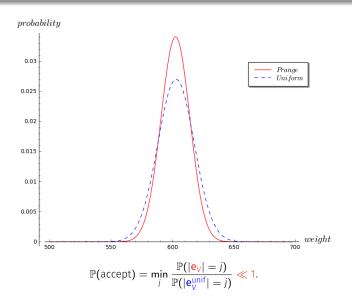


- \mathbf{e}_V'' follows a uniform law over $\mathbb{F}_3^{n/2-k_V}$: $\mathbb{E}(|\mathbf{e}_V''|) = \frac{2}{3}(n/2 k_V)$
- \mathbf{e}_V' can be chosen.

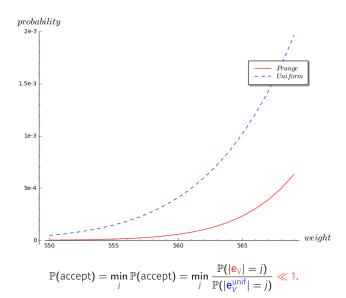
$$\longrightarrow k_V$$
 is fixed as: $\mathbb{E}(|\mathbf{e}_V'|) + \frac{2}{3}(n/2 - k_V) = \mathbb{E}\left(|\mathbf{e}_V^{\text{unif}}|\right)$

REJECTION SAMPLING

Perform rejection sampling!



REJECTION SAMPLING: TAIL



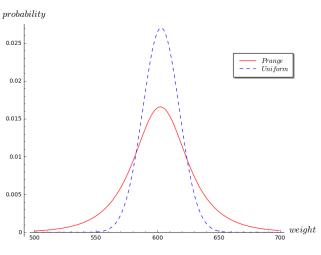
PROBABILISTIC CHOICE OF \mathbf{e}_{V}'

• $\mathbf{e}_{v}^{"}$ follows a uniform law: its variance is fixed,

Choose the weight of e'_{V} as a random variable!

•
$$|\mathbf{e}'_V|$$
 s.t:
$$\begin{cases} \mathbb{E}(|\mathbf{e}'_V|) + \frac{2}{3}(n/2 - k_V) = \mathbb{E}\left(|\mathbf{e}^{\text{unif}}_V|\right) \\ |\mathbf{e}'_V| \text{ high variance!} \end{cases}$$

REJECTION SAMPLING



$$\mathbb{P}(\text{accept}) = \min_{j} \mathbb{P}(\text{accept}) = \min_{j} \frac{\mathbb{P}(|\mathbf{e}_{V}| = j)}{\mathbb{P}(|\mathbf{e}_{V}^{\text{unif}}| = j)} \approx C^{\text{ste}}.$$

REMOVING THE REJECTION SAMPLING

 \longrightarrow Distribution $|\mathbf{e}_V|'$ can be **precisely** chosen s.t. $\mathbb{P}(\text{accept}) \approx 1$

Using Renyi divergence argument: removing rejection sampling!

CONCLUSION

Signing algorithm: signatures don't leak any information on the secret-key!

→ It enables to reduce the security (EUF-CMA in (Q)ROM) to the hardness of:

Security reduction ((Q)ROM):

- Decoding a random linear code at distance $w \approx 0.9n$,
- Distinguishing random and generalized $(U \mid U + V)$ -codes.

PRANGE ALGORITHM: GAUSSIAN ELIMINATION

To represent C: use a basis/generator-matrix $G \in \mathbb{F}_q^{k \times n}$,

$$\mathcal{C} = \left\{ \mathbf{x}\mathbf{G} \ : \ \mathbf{x} \in \mathbb{F}_q^k \right\} \quad \left(\text{rows of } \mathbf{G} \text{ form a basis of } \mathcal{C} \right).$$

Prange algorithm: by linear algebra (Gaussian elimination)

 \mathcal{C} has dimension k: $\forall \mathbf{z} \in \mathbb{F}_q^k$, easy to compute $\mathbf{c} \in \mathcal{C}$ such that,

$$c = \begin{bmatrix} z \end{bmatrix}$$
 symbols freely chosen $n - k$, no control $k \in \mathbb{Z}$

The k symbols are not freely chosen!

- 1. Pick $\mathcal{I} \subseteq \{1, \dots, n\}$ such that $G_{\mathcal{I}}$ has rank k (columns of G indexed by \mathcal{I}),
- 2. Compute the codeword xG where $x \stackrel{\text{def}}{=} zG_{\mathcal{T}}^{-1}$.

NON-UNIFORMITY OF PRANGE

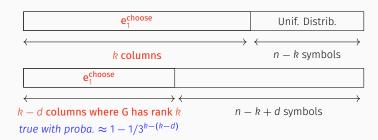
$$\mathbb{P}\left(\mathsf{Prange}(\cdot) = \mathsf{x} \mid |\mathsf{Prange}(\cdot)| = t\right) = \frac{1}{\sharp \{\mathsf{y} : |\mathsf{y}| = t\}} \quad : \mathsf{only} \approx$$

 \longrightarrow Only \approx as we cannot invert the system for all k coordinates!

NON-UNIFORMITY OF PRANGE

$$\mathbb{P}(\text{Prange}(\cdot) = \mathbf{x} \mid |\text{Prange}(\cdot)| = t) = \frac{1}{\sharp \{\mathbf{y} : |\mathbf{y}| = t\}} \quad : \text{only } \approx$$

 \longrightarrow Only \approx as we cannot invert the system for all k coordinates!



NON-UNIFORMITY OF PRANGE

$$\mathbb{P}(\text{Prange}(\cdot) = x \mid |\text{Prange}(\cdot)| = t) = \frac{1}{\sharp \{y : |y| = t\}} : \text{only } \approx$$

 \longrightarrow Only \approx as we cannot invert the system for all k coordinates!

