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The Weil conjectures describe the number of rational points on a nonsingular variety
over a finite field.

We concern ourselves with the first “interesting” case of the Weil conjectures, the case
of an elliptic curve, that is a smooth irreducible projective curve of genus 1 together with a
distinguished point, called the origin.

Note that the presence of a distinguished point may not seem so stringent a restriction
if you’re used to thinking about varieties over algebraically closed fields, but a genus 1 curve
over, say, Q can fail to have any rational points. However we shall see that a genus 1 curve
over a finite field always has rational points, and so the Theorem always applies to them.

Theorem 1 (Hasse). Let E be an elliptic curve over Fq. Then there exist complex numbers
α and β with |α| = |β| = √

q such that for each k ∈ N, #E(Fqk) = 1 + qk − αk − βk.

Corollary 2 (Hasse). For E an elliptic curve over Fq, |#E(Fq)− 1− q| ≤ 2
√

q.

A fundamental property of elliptic curves is the addition law, which turns the points of
an elliptic curve into an abelian group. For an elliptic curve E given as a nonsingular cubic
in P2 with origin O, this can be described geometrically as follows. Given points A and B on
E, let C be the third intersection of the line AB with E. Then A+B is the third intersection
of the line OC with E. Although this definition is most useful for explicit computations, it
requires some effort to verify that the addition law is associative.

We also need the notion of an isogeny between elliptic curves E1 with E2, with origins O1

and O2, respectively. It is simply a regular map from E1 to E2 mapping O1 to O2. One can
show that such a map is automatically a group homomorphism, and if it is not the zero map
then it is finite and surjective. The degree of the isogeny is its degree as a finite map, that is,
the degree of the field extension of function fields induced by the isogeny. (By convention,
the degree of the zero isogeny is 0.) The isogeny is said to be separable or purely inseparable
if this field extension is separable or purely inseparable, respectively. For our purposes we
can think of the degree of a separable isogeny as the cardinality of the kernel.

Examples of isogenies include the multiplication by n isogeny [n] : E → E for n ∈ Z,
which is separable of degree n2, and for an elliptic curve defined over a finite field of order
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q, the Frobenius isogeny F : E → E, which applies the map x → xq to the coordinates of
points, F is purely inseparable of degree q.

The following constuction, of the dual isogeny , will be of great use to us. If you are
interested in the proofs, take a looks at [J.H. Silverman, The Arithmetic of Elliptic Curves,
Springer (GTM 106), 1986].

Proposition 3. To every isogeny φ : E1 → E2 can be associated a unique isogeny φ̂ : E2 →
E1 such that φ̂ ◦ φ = [deg φ]E1 and φ ◦ φ̂ = [deg φ]E2. The following also hold:

1. [̂n] = [n];

2. for φ1, φ2 : E1 → E2, φ̂1 + φ2 = φ̂1 + φ̂2;

3. for φ1 : E1 → E2 and φ2 : E2 → E3, φ̂2 ◦ φ1 = φ̂1 ◦ φ̂2;

4. deg φ̂ = deg φ;

5.
̂̂
φ = φ.

This proposition gives us a way of computing the degree of an isogeny by manipulating
the isogeny and its dual. This is the key to the proof of the Weil conjectures.

We shall prove Theorem 1 and we shall also see that every genus 1 curve over a finite
field is elliptic.
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