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1. Introduction

Much of what is written in this note follows the line of argument in the excellent survey paper
by Ramakrishnan [Ram89]. The aim is to understand why the BSD conjecture (10) presents
so accurately the residue at the pole s = 1 and why so many global invariants of an elliptic
curve appear in this residue. A similar statement for the Dedekind zeta function attached
to a number field appears in the class number formula proven by Dirichlet and Dedekind
over one hundred years ago. After the formulation of the Birch-Swinnerton-Dyer conjecture
in the early 1960s, the question remained what generalisations of formulas of this type could
appear. Tate initiated this search by generalising to abelian varieties. The work of Borel
on regulators followed by the work of Quillen and Bass-Milnor-Serre on K-theory played
a key role in the creation of a platform suitable for generalisation. Interpreting regulator
maps and their connection to cycle maps through the development of higher Chow rings
and higher K-theory by Bloch and others formed the backbone of Beilinson’s influential
paper [Bei84] that led to vast generalisations of conjectures of the BSD type, most of which
remain unproven in generality.

2. From Riemann to Dedekind

Let K/Q be a number field of degree n and let Ok be its ring of integers. Denote by
r1, r2 the number of inequivalent real embeddings of K and the number of non-conjugate
complex embeddings of K respectively. Classical results in algebraic number theory give us
n = r1 + 2r2. Let NK/Q(I) = [OK : I] denote the norm of an ideal I in OK .
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Definition 2.1. The Dedekind zeta function is defined for s ∈ C as

ζK(s) =
∑

I⊂OK

NK/Q(I)−s

As with the Riemann zeta function, the above converges absolutely for Re(s) > 1 and
admits a (Euler) product formula

ζK(s) =
∏

P⊂OK

(1 − NK/Q(P )−s)−1

where the product ranges over all prime ideals in OK . Next, define

K → KC =
∏

τ∈Hom(K,C)

C : a 7→ (τ1a, . . . , τna)

j : K → KR = K
Gal(C/R)
C .

KR is called the Minkowski space of K and is a Euclidean real vector space. We have
isomorphisms KR

∼= K ⊗Q R ∼= Rr1+2r2 and KC
∼= K ⊗Q C. We then have that the image of

every ideal I in OK under the map j is a lattice in KR and one can prove that the volume
(induced by the metric on this Euclidean vector space) of this lattice is given by the formula

vol(jI) =
√

|DK |[OK : I] =
√

|DK |NK/Q(I)

With these notions in mind, one can set up a Haar measure and a suitable Melin transform
and more importantly, prove that ζK(s) can be meromorphically continued to a function
on the entire complex plane with a simple pole at s = 1 which has a functional equation
(Hecke, 1917). Namely, if we let

Γ(s) =

∫ ∞

0
e−tts−1dt(1)

ΓR(s) = π−s/2Γ( s
2)(2)

ΓC(s) = 2(2π)−sΓ(s)(3)

and write the “archimedean part” as ζK∞
(s) = (ΓR(s))r1(ΓC(s))2r2 and let ζ∗K(s) = ζK∞

(s)ζK(s)
then the functional equation reads

ζ∗K(s) = D
1
2−s

K ζ∗K(1 − s)

where DK is the discriminant of the number field K.

Note that ζK(s) is a product over all the non-archimedean places whereas ζ∗K(s) encodes all
the “local information”, that is archimedean and non-archimedean. The factors ΓR(s) and
ΓC(s) appear in a similar nature for the functional equation for the Riemann zeta function

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s)

whose proof goes back to Riemann himself who used a Melin transform argument.

What is remarkable here is that the functional equation applies when one considers every
single place of the number field and not just the non-archimedean ones. It is exactly this



THE BSD CONJECTURE, REGULATORS AND SPECIAL VALUES OF L-FUNCTIONS 3

type of “local to global” construction that Tate investigated in his famous thesis where he
develops an abstract Fourier theory and Pontryagin duality for locally compact Hausdorff
topological groups. As I will try and outline in the rest of this note, these results fall in a
huge category of results and deep conjectures, linking the geometry or topology of various
objects with many of their invariants.

The first non-trivial appearance of the above principle is majestically encoded in the follow-
ing theorem of Dedekind and Dirichlet which is often called the class number formula, even
though it gives us much more than simply a method of calculating the class number!

Theorem 2.2. The residue at 1 of ζK(s) is given by the following formula

lim
s→1

(s − 1)ζK(s) =
2r1(2π)r2hKRK

wK

√
|DK |

(4)

Remark 2.3. A similar result exists for the Riemann zeta function. It is however trivial
since the residue of ζ(s) at 1 is simply 1. One way of seeing this would also be to use the
above theorem, since by letting K = Q, we have ζQ(s) = ζ(s) and noticing what each of
the terms on the right mean in the case.

Now I will try and briefly explain what each of these factors appearing on the right hand
side are, so that it is more obvious later how one can generalise these to objects other than
number fields. Firstly, hK is the class number, a very important invariant of a number field
which is defined as the order of the group of fractional ideals in OK modulo the principal
fractional ideals. In a sense this measures how far the ring of integers is from being a princi-
pal ideal domain. In the case that K = Q, we have hQ = 1. Next, wK denotes the number
of roots of unity µ(K) in K, that is the number of roots of polynomials of the form xn − 1
for n ∈ N. The discriminant, which also appeared before in the functional equation, is the
determinant of the trace form induced by the map TrK/Q : K → Q. As Milne describes (see
[Mil08a]) the discriminant is an invariant associated to OK , whereas the regulator described
below plays the same role for O∗

K .

The important term appearing in the right hand side of (4) that remains to be discussed is
the regulator RK . I will here digress a bit further since the notion of “regulator” generalises
vastly. What we aim is to gain information on the group of units O∗

K of the ring of integers
of our algebraic number field. A famous theorem of Dedekind gives us the structure of this
group as follows

O∗
K = µ(K) × Zr1+r2−1

Remember that we have a total of n = [K : Q] embeddings K → C, r1 of which are
in fact into the real numbers R. The regulator RK of K is defined as the determinant
of the (r1 + r2 − 1, r1 + r2 − 1)-submatrix of a matrix whose terms are the || log ei||j for
1 ≤ i, j ≤ r1 + r2 for ei the generators of the non-torsion of the unit group O∗

K and
||.||j = |σj(.)| the norm induced by each embedding σj : K∗ → R.
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Now consider the free Z-module generated by all the embeddings and denote it by XK .
Define the regulator map

r : O∗
K → XK ⊗Q R(5)

u 7→
∑

σ∈Hom(K,C)

log |u|σσ(6)

It turns out that this regulator map admits vast generalisations, mostly due to the work of
Borel leading on from the foundations of K-theory of Grothendieck (see [BG02] for example).
I will not digress too far into higher K-theory, but it is worth seeing the connection in
elementary terms. For R a Dedekind domain, define the lower K-groups as

K0(R) = Pic(R)

K1(R) = GL(R)/[GL(R), GL(R)], where GL(R) = colimn GLn(R)

In the Dedekind domain case (for example the ring of integers of a number field, see [Wei05]),
the Picard group (otherwise can be viewed as the Picard group of the affine scheme Spec(R))
in this case is the class group of R. On the other hand, we have that K1(OK) fits into the
following sequence of isomorphisms

K1(OK)
∼−→ H1(GLn(OK), Z)

∼−→ O∗
K

for any n ≥ 3. The above isomorphisms are a result of Bass-Milnor-Serre in [BMS67].

What is now more obvious is that we can interpret the regulator map of (6) as a map from
a K-group.

3. Hasse-Weil and the BSD

I briefly recall the definitions concerning the Hasse-Weil zeta function associated to an
elliptic curve E/Q. The definitions generalise naturally to any smooth projective variety

over a number field k. Denote by Ẽ/Fp the reduction modulo p of a global minimal model
of E/Q and let ∆E/Q be the discriminant of E .

Definition 3.1. let E/Q be an elliptic curve and let Fq be a finite field of order q = pn

for some prime number p. The local Hasse-Weil zeta function is defined as

ζE/Fq
(T ) = exp

(
∞∑

n=1

#E(Fqn)

n
T n

)

The global zeta function over Q is defined as

ζE/Q(s) =
∏

p prime

ζeE/Fp
(p−s)

The Hasse-Weil theorem states that for primes of good reduction, #E(Fn
q ) = qn−αn−βn+1

for all n ≥ 1 where α, β ∈ C such that |α| = |β| =
√

q. For n = 1 it is common to denote
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aq = α + β and so we have the following equalities for p a prime of good reduction for E

ζE/Fq
(T ) = exp

(
∞∑

n=1

#E(Fqn)

n
T n

)
=

(1 − αT )(1 − βT )

(1 − T )(1 − qT )
=

1 − aqT + qT 2

(1 − T )(1 − qT )
(7)

ζE/Q(s) =
∏

p

ζeE/Fp
(p−s) =

∏

p

Fp(p
−s)

(1 − p−s)(1 − p1−s)
=

ζ(s)ζ(s − 1)

L(E/Q, s)
(8)

where

Fp(T ) =

{
1 − apT + pT 2, p ∤ ∆

1 − apT, p | ∆

The function appearing in the denominator of the global zeta function above is the L-
function of E/Q which converges for Re(s) > 3

2 and is an isogeny invariant.

Similarly, in the case of a number field K/Q, we have an L-function defined by

L(E/K, s) =
∏

P

FP (q−s)−1

where q = NK/Q(P ) and P ranges over the prime ideals in OK . In this case we have defined

FP (T ) = 1−aP T +qT 2 for primes P of good reduction or FP (T ) = 1−aP T for bad primes,
where aP = q + 1 − #E(Fq).

Remark 3.2. One of the key steps in the proof of the Weil conjectures is the Lefschetz
trace formula which expresses Nm = #X/Fqm , for a non-singular projective variety over Fq

of dimension d, as follows (see Milne [Mil08b])

Nm =
∑

r

(−1)r Tr (Fm|Hr
et(X, Ql))

where F denotes the Frobenius map. One can then deduce the rationality of the local zeta
function in the following form

Z(X, t) =
P1(X, t)P3(X, t) · · · P2d−1(X, t)

P0(X, t)P2(X, t) · · · P2d(X, t)

where Pi(X, t) = det
(
1 − Ft|H i

et(X, Ql)
)
. In the case of elliptic curves, looking at the

equations given in (7) and (8) we see that we only have a P1(X, t) term on the numerator
which corresponds to the first étale cohomology group of X and the product of all these
terms gives us the L-function, whereas the terms in the numerator come from the 0th and
2nd étale cohomology groups and form ζ(s) and ζ(s − 1) respectively.

In correspondence with the case of the Dedekind zeta function, to obtain a suitable functional
equation one must consider the terms arising from the archimedean places. One defines

L∗(E/K, s) =

(
Γ(s)

(√
N

2π

)s)[K:Q]

L(E/K, s)

where N is the conductor of E/K, defined in table (1).
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Conjecture 1. (Hasse-Weil Conjecture) Let E/K be an elliptic curve. The L-function
L(E/K, s) has an analytic continuation to C and satisfies a functional equation

L∗(E/K, s) = w(E/K)L∗(E/K, 2 − s)

Remark 3.3. The case K = Q has been proven in various papers of Taylor, Wiles, Breuil,
Conrad and Diamond.

Remark 3.4. One would expect a functional equation from Poincaré duality in étale
cohomology, at least in the local case (that is over the reduction to a finite field). Namely,
for a smooth projective variety X/Fq of dimension d, we have a perfect pairing of groups

H2d−r
et (X, Ql) × Hr(X, Ql(d)) → H2d(X, Ql) → Ql

which implies the functional equation

Z(X,
1

qdt
) = ±(qd/2t)χZ(X, t)

where χ =
∑

r(−1)rβr is the Euler characteristic given by the Betti numbers βr.

On the other hand, the Hasse-Weil conjecture should come as no surprise to the keen eye.
In fact it fits in suitably with the aforementioned “local to global” principle described in the
first section on the Dedekind zeta function. One would thus naturally expect a result simi-
lar to (4) in the Hasse-Weil settings. This is exactly the Birch-Swinnerton-Dyer conjecture.

For K/Q a number field and E/K an elliptic curve and r = rk E/K its rank

Conjecture 2. (Birch-Swinnerton-Dyer)

ords=1 L(E/K, s) = r(9)

lim
s→1

L(E/K, s)

(s − 1)r
=

R · |X(E/K)| ·∏v cv√
|∆K | · |Etors|2

(10)

Remark 3.5. The above conjecture generalises almost word to word for general abelian
varieties and as far as I could find, was first stated in Tate’s paper [Tat95]. I will not include
it here as it would involve talking about the dual of an abelian variety which would not be
in alignment with the general motivation of this note.

Before I explain what all the terms appearing in the quotient are, I should mention that
there is another more restricted conjecture which would be implied by the BSD which has
applications to rank calculations for elliptic curves.

Conjecture 3. (Parity Conjecture)

(−1)r = w(E/K)(11)

Remark 3.6. The parity conjecture is known to hold for elliptic curves over a number
field assuming the finiteness of X(E/K).

In tables (1) and (2) I summarise the various invariants that appear, assuming for brevity
that K = Q. Note however that similar calculations can be performed for number fields
which are in general not much more cumbersome. I will also make the assumption (wherever
this applies) that p 6= 2, 3 as these cases tend to be a bit more involved, especially in the



THE BSD CONJECTURE, REGULATORS AND SPECIAL VALUES OF L-FUNCTIONS 7

case of additive reduction. In general, the source for such matters are Silverman’s books
[Sil86],[Sil94].

Symbol Name Definition Notes

w(E/Q) Global root number (−1)#{v|∞}
∏

v w(E/Qp) p = 2, 3 harder

w(E/Qp) Local root number See table (2) Additive case harder

NE/Q Conductor of E/Q
∏

p pnp Tate’s algorithm

N Conductor of L(E/Q, s) NE/Q

∣∣∆E/Q

∣∣2

X(E/Q) Shafarevich-Tate group See below Difficult

cv Tamagawa numbers See below Depend on differentials

Table 1. Invariants associated to an elliptic curve E/Q

Reduction Type Roots of f̃(x) Fp(T ) np w(E/Qp) cv

Good 3 1 − apT + pT 2 0 1 1

Split multiplicative 2 1 − T 1 −1 vp(∆E/Q)

Non-split mult. 2 1 + T 1 1 2 if 2 | vp(∆E/Q), 1 o/w

Additive 1 1 2 (−1)⌊
p
I ⌋ ≤ 4, Tate’s algo.

Table 2. Local invariant factors for E/Q : y2 = f(x) = x3 + Ax + B where
p 6= 2, 3

The remaining pieces to the remarkable formula predicted by the BSD are the order of the
Shafarevich-Tate group X and the regulator R. I have singled these out as they are much
more complicated and of deeper meaning. Firstly the Shafarevich-Tate group is defined as
follows, for G = Gal(K/K) and Gp = Gal(Kp/Kp)

X(E/Q) = ker

(
H1(G, E(K)) →

∏

p

H1(Gp, E(K))

)

Note here that H1(G, E(K)) is as a group isomorphic to the Weil-Châtelet group of E which
is defined as the group of torsors (principal homogeneous spaces) of E modulo isomorphism.
The group law on the Weil-Châtelet group comes from Galois cohomology. A standard
result in Weil-Châtelet groups states that a torsor C is trivial in H1(G, E(K)) if and only
if it has a rational point over K (see [Sil86]). Thus a more intuitive way of thinking about
elements of X is as certain other genus 1 curves C with a map to E , which have points
everywhere locally (ie over every field Kp). This group is remarkably hard to compute in
general. The following conjecture is however one of the big unsolved problems in this area.
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Conjecture 4. The Shafarevich-Tate group X(E/K) is finite.

The regulator R of E requires knowledge of the P1, . . . , Pr (for r = rkE/K) generators of
the Mordell-Weil group E(K) modulo torsion. It is defined as the determinant of the matrix
with i, j entries 〈Pi, Pj〉 where 〈., .〉 denotes the Néron-Tate pairing

(E(K) ⊗ R) × (E(K) ⊗ R) → R

4. Generalisations - A novice’s survey

This section will attempt to very roughly sketch how the class number formula and BSD
conjecture fit into a more general framework of conjectures on special values of L-functions
formulated mostly by Beilinson and Deligne. A good source on this material are the survey
paper by Schneider [Sch88] and Ramakrishnan [Ram89] but also Minhyong Kim’s notes
given at a summer school on motivic L-functions found on his website.

Fix X a smooth projective variety over Q and let X = X × Q. Let d = dim X and fix an
integer 0 ≤ i ≤ 2d. Let M denote the motive associated to X and i, which is the collection
of the following cohomology groups

• H i
et(X, Ql) the l-adic cohomology

• H i
DR(X(C)) the de Rham cohomology of the complex manifold X(C)

• H i(X(C), Q) the singular cohomology.

Let G = Gal(Q/Q) and let Ip and Dp be the inertia and decomposition groups in G of a
prime p lying over a prime number p. For p 6= l let F denote geometric Frobenius (ie raises
every coordinate of a point to the p-th power) and note that this is an element of Dp/Ip. I
will not go into much detail about this but one can define an L-function for M as follows

L(M,s) =
∏

p

Pp(p
−s)−1 =

∏

p

1

det
(
1 − Fp−s;H i

et(X, Ql)Ip
)

Just as with the Dedekind zeta function and with the Hasse-Weil zeta function, L(M,s)
encodes the local information over all prime numbers. The trick is though that if one wants
to set up a functional equation for a motivic zeta function, one considers contributions from
the de Rham cohomology as the “infinity factor”. In a nutshell, we have an isomorphism
and a Hodge structure on H i

DR(X(C))

H i
DR(X(C))

∼−→ H i(X(C), C) =
⊕

p+q=i
p,q≥0

Hpq

such that the de Rham filtration agrees with the Hodge decomposition as follows

F pH i
DR(X(C)) =

⊕

p′≥p

Hp′q

There are standard conjectures generalising that of Hasse-Weil in the previous section which
predict that L(M,s) converges absolutely for Re(s) > i/2 + 1 and has a meromorphic
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continuation to C with a potential pole at s = i/2 + 1 if i is even. More importantly, we
can form ζ(M,s) = L(M,s)L∞(M,s) where

L∞(M,s) =





∏
p<q

p+q=i
(ΓC(s − p))h

pq

for odd i

∏
p<q

p+q=i
(ΓC(s − p))h

pq

(ΓR(s − i/2))hi/2+

(ΓR(s − i/2 + 1))hi/2−

for even i

for the Hodge numbers hpq = dimC Hpq and hp± = dimC Hp,±(−1)p
and ΓR,ΓC as defined in

(3). It is conjectured that there is a functional equation around s 7→ i+1− s. To formulate
the conjectures of Deligne and Beilinson one would have to develop Deligne cohomology,
but the idea is that Deligne’s conjecture gives us the the leading coefficient of L(M,m) for
an integer m ≤ i/2 + 1 in terms of a higher regulator (Deligne periods, cycle class map).
On the other hand Beilinson’s conjectures (among other things) give a full framework for
this line of argument and more specifically tells us the order of the vanishing of L(M,s)
at s = m in terms of the dimension of absolute cohomology groups (Deligne cohomology,
higher K-theory).

I would also like to outline how this line of thought fits in with the BSD. Denote by Cm(X)
the group of codimension m algebraic cycles which are defined as elements of the form∑r

i=1 niZi where Zi are closed irreducible subvarieties of codimension m in X and ni ∈ Z.
Note that Weil divisors are algebraic cycles of codimension 1. There is a cycle class map
from C2m(X) into the singular cohomology group H2m(X(C), Q(m)) which extends to a
map into Hodge cycles, the image of which is explained by the Hodge conjectures. As with
Weil divisors, there is an equivalence relation on algebraic cycles (in fact there are many). We
say that two algebraic cycles in Cm(X) are rationally equivalent if their difference in Cm(X)
is given by a sum of divisors of functions on various other closed irreducible subvarieties of
X. Namely, we let for f in the coordinate ring of a closed irreducible subvariety Y ⊂ X of
codimension m − 1

div(f) =
∑

all Z

divZ(f)Z

where the sum ranges over closed irreducible subvarieties of X of codimension m and divZ(f)
is defined as the length of OY,Z/fOY,Z if Z ⊂ Y or 0 otherwise. Note here that OY,Z

is the local ring at the unique generic point of Z. Define the Chow group CHm(X) of
codimension m of X as Cm(X) modulo rational equivalence. Note that CH0(X) = Z
and CH1(X) = Pic(X). The cycle class map mentioned earlier factors through the Chow
group and we define the kernel of this map to be CHm(X)0. The Beilinson-Bloch refined
conjectures expect that

Conjecture 5. (Beilinson-Bloch)

(1) CHm(X)0 is finite dimensional,
(2) there is a non-degenerate “height pairing”

〈., .〉m : CHm(X)0 × CHd−m+1(X)0 → Q,

(3) ords=m L(M,s) = dimQ CHm(X)0 and
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(4) the leading coefficient L∗(M,m) of L(M,m) is given by

L∗(M,m) ≡ cM (m) det〈., .〉m mod Q∗

where cM (m) is the Deligne period.

The first part of the conjecture would be a generalisation of the Mordell-Weil theorem on the
finite generation of the group E(Q) for E an elliptic curve. The height pairing corresponds
to the Néron-Tate pairing for elliptic curves, attempting to encode the notion of “regulator”.
The last two parts of the conjecture act as a generalised Birch-Swinnerton-Dyer conjecture.
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