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1 Introduction

This brief introduction concerns various notions of pseudoprimes and their relation to classical
composite tests, that is, algorithms which can prove numbers composite, but might not identify all
composites as such and hence cannot prove numbers prime. In the talk I hope to also present one
of the classical algorithms to prove a number n prime. In contrast to modern algorithms, these are
often either not polynomial-time algorithms, heavily depend on known factorisations of numbers
such as n− 1 or are restricted to certain classes of candidates n.

One of the simplest composite tests is based on Fermat's Little Theorem, stating that for any
prime p and any integer a coprime to p we have ap−1 ≡ 1 (mod p). Hence we can prove an integer
n > 1 composite by �nding an integer b coprime to n with the property that bn−1 6≡ 1 (mod n).

De�nition 1. Let n > 1 be an odd integer and b > 1 with (b, n) = 1. We call n a pseudo-prime

to base b if bn−1 ≡ 1 (mod n), that is, if the pair n, b satis�es the conclusion of Fermat's Little
Theorem.

De�nition 2. If n is a positive odd composite integer which is a pseudo-prime to all bases b, we
call n a Carmichael number.

Using this criterion, we can easily check that e.g. 561 = 3× 11× 17 is a Carmichael number. It
has been shown that there are in�nitely many Carmichael numbers [1].

De�nition 3. Let n > 1 be an odd integer and b > 1 with (b, n) = 1. We call n an Euler pseudo-

prime if b(n−1)/2 ≡ (b|n) (mod n), that is, if the pair n, b satis�es Euler's criterion for the evaluation
of Legendre symbols.

It is a fact, discovered independently by Solovay and Strassen as well as by Lehmer, that if n > 1
is an Euler pseudo-prime for all bases b then n is a prime number. Also, Solovay and Strassen [9]
showed that for a given composite integer n, n is an Euler pseudo-prime for at most half of the bases
b ∈ {1, . . . , n− 1}. This result provides a fast probabilistic primality test.

Theorem 4. Let n ≥ 3 be odd. Then n is prime i� E(n) = (Z/nZ)∗ where E(n) ⊂ (Z/nZ)∗ is the
set of bases to which n is an Euler pseudo-prime.

Proof. For the interesting direction, suppose that E(n) = (Z/nZ)∗ but n is composite. Then
bn−1 ≡ (b|n)2 ≡ 1 (mod n) for all b ∈ (Z/nZ)∗. Thus n is a Carmichael number and hence
square-free, so we can write n = pr with p prime and (p, r) = 1. Choose a quadratic nonresidue g
modulo p and choose an integer a such that a ≡ g (mod p) and a ≡ 1 (mod r). Using the rules to
evaluate Jacobi symbols,(a

n
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p

) (
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r

)
= (−1)(+1) = −1.

But by assumption (a|n) ≡ a(n−1)/2 (mod n) and so a(n−1)/2 ≡ −1 (mod r), contradicting a ≡ 1
(mod r).
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De�nition 5. Let n > 1 be an odd integer, write n − 1 = 2st and let b > 1 be an integer with
(b, n) = 1. We call n a strong pseudo-prime if either

(i) bt ≡ 1 (mod n), or

(ii) there exists an r ∈ {0, . . . , s− 1} such that b2rt ≡ −1 (mod n).

It is not di�cult (but slightly technical) to show that if n is a strong pseudo-prime to base b
then n is also a an Euler pseudo-prime to base b. It is easy to prove that if p is an odd prime
then p is a strong pseudo-prime to every base. As a partial converse, Knuth [4] showed that, for
odd composite n > 1, n is a strong pseudo-prime to at most n/4 of the bases b ∈ {1, . . . , n − 1}.
The probabilistic primality test derived from this is called the Rabin�Miller test and it supersedes
the Solovay�Strassen test in every way. Assuming the Generalised Riemann Hypothesis, it can be
turned into a deterministic test using the following result1.

Theorem 6. Let n > 1 a an odd composite integer. Assuming the Generalised Riemann Hypothesis,
there exists an integer b coprime to n with 1 < b < 2(log n)2 such that n is not a strong pseudo-prime
to base b.

To shed some more light of how the Generalised Riemann Hypothesis is involved, without further
proof we state a theorem of Ankeny, which can be found e.g. in [2]. First de�ne

G(n) = min{x ∈ N : (Z/nZ)∗ is generated by primes ≤ x}.

Theorem 7 (Ankeny). Assume the Generalised Riemann Hypothesis. Then G(n) is O((log n)2).
In particular, every non-trivial subgroup of (Z/nZ)∗ omits a positve number that is O((log n)2).

2 Problems

Problem 1. Given b > 1, there exists in�nitely many composite integers n such that n is a pseudo-
prime to base b.

Problem 2 (Korselt, 1899). A compositive integer n > 1 is a Carmichael number i� n is square-free
and all prime factors p of n satisfy p− 1 | n− 1.

Problem 3. Show that if, for k ≥ 1, the numbers 6k + 1, 12k + 1 and 18k + 1 are all prime then
their product is a Carmichael number.

Problem 4 (Erd®s). Let p > 3 be a prime number. Show that (22p − 1)/3 is a pseudo-prime to
base 2.

Problem 5 (Rotkiewicz). Let p > 5 be a prime number. Show that (22p + 1)/5 is a pseudo-prime
to base 2.

Problem 6 (Malo; Sierpi«ski). Let n be a pseudo-prime to base 2. Show that 2n − 1 is also a
pseudo-prime to the base 2.

Problem 7. Let p be an odd prime. Then p is a strong pseudo-prime to every base b.

I have �rst found these problems in the Part II course Number Theory at the University of
Cambridge by Prof. J.H. Coates in 2006�07, or in the books by Cohen [3] and Bach and Shallit [2].
At the moment, I do not know how to solve Problems 4, 5 and 6, although admittedly I have not
spent much time on them. Supposedly, the last two of these problems are solved in [7], [5] and [8].

1I think the result is strongly related to this article by Miller [6], although the language there is slightly di�erent.
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