Thomas Ransford

Université Laval, Québec

First Meeting on Asymptotics of Operator Semigroups Oxford, September 2009

- Introduction to pseudospectra
- O pseudospectra determine matrix behavior? (Joint work with Maxime Fortier Bourque, J. London Math. Soc., 2009)

General problem

Let A be a complex $N \times N$ matrix, thought of as acting on ℓ_N^2 . Determine the evolution of $||A^n||$ (or of $||e^{tA}||$).

General problem

Let A be a complex $N \times N$ matrix, thought of as acting on ℓ_N^2 . Determine the evolution of $||A^n||$ (or of $||e^{tA}||$).

First remarks: Let $\rho(A) =$ spectral radius of A.

• $||A^n|| \ge \rho(A)^n$ for all *n*, with equality if A normal.

General problem

Let A be a complex $N \times N$ matrix, thought of as acting on ℓ_N^2 . Determine the evolution of $||A^n||$ (or of $||e^{tA}||$).

First remarks: Let $\rho(A) =$ spectral radius of A.

• $||A^n|| \ge \rho(A)^n$ for all *n*, with equality if A normal.

•
$$\|A^n\|^{1/n} \to \rho(A)$$
 as $n \to \infty$.

Cautionary example:

Let A be the $N \times N$ matrix

$$A = \begin{pmatrix} 0 & 1 & & \\ 1/4 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1/4 & 0 & 1 \\ & & & 1/4 & 0 \end{pmatrix}$$

< ∃ > < ∃

Cautionary example:

Let A be the $N \times N$ matrix

$$A = \begin{pmatrix} 0 & 1 & & & \\ 1/4 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1/4 & 0 & 1 \\ & & & 1/4 & 0 \end{pmatrix}$$

The eigenvalues are
$$\lambda_j = \cos\Bigl(rac{j\pi}{{m N}+1}\Bigr), \; j=1,\ldots,{m N}.$$

< ∃ > < ∃

Let A be the $N \times N$ matrix

$$A=egin{pmatrix} 0&1&&&\ 1/4&0&1&&\ &\ddots&\ddots&\ddots&\ &&1/4&0&1\ &&&1/4&0 \end{pmatrix}$$

The eigenvalues are
$$\lambda_j = \cos\left(rac{j\pi}{N+1}
ight), \ j = 1, \dots, N.$$

In particular $ho(A) = \cos\left(rac{\pi}{N+1}
ight) < 1$, so $\|A^n\| o 0$ as $n o \infty$.

▶ 《문▶ 《문▶

э

Let A be the $N \times N$ matrix

$$A=egin{pmatrix} 0&1&&&\ 1/4&0&1&&\ &\ddots&\ddots&\ddots&\ &&1/4&0&1\ &&&1/4&0 \end{pmatrix}$$

The eigenvalues are $\lambda_j = \cos\left(\frac{j\pi}{N+1}\right), \ j = 1, \dots, N.$ In particular $\rho(A) = \cos\left(\frac{\pi}{N+1}\right) < 1$, so $||A^n|| \to 0$ as $n \to \infty$. Let's actually compute $||A^n|| \dots$

We'll consider the case N = 32.

п	$\ A^n\ $
1	
2	
4	
10	
20	
40	
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	
4	
10	
20	
40	
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	
10	
20	
40	
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	
20	
40	
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	
40	
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	4442.09
100	
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	4442.09
100	485866.04
200	
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	4442.09
100	485866.04
200	1043599.98
400	
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	4442.09
100	485866.04
200	1043599.98
400	544597.34
1000	
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	4442.09
100	485866.04
200	1043599.98
400	544597.34
1000	36339.67
10000	

We'll consider the case N = 32.

п	$\ A^n\ $
1	1.24
2	1.55
4	2.41
10	8.98
20	78.44
40	4442.09
100	485866.04
200	1043599.98
400	544597.34
1000	36339.67
10000	$6.63 imes10^{-14}$

Question: How to estimate $\max_{n\geq 0} ||A^n||$ in general?

🗇 🕨 🔺 臣 🕨 🔺 臣

æ

Question: How to estimate $\max_{n\geq 0} ||A^n||$ in general?

Kreiss matrix theorem (Leveque-Trefethen 1984, Spijker 1991)

$$\max_{\substack{n \ge 0}} \|A^n\| \ge \sup_{\substack{|z| > 1}} (|z| - 1) \|(A - zI)^{-1}\|$$
$$\max_{\substack{n \ge 0}} \|A^n\| \le \sup_{\substack{|z| > 1}} (|z| - 1) \|(A - zI)^{-1}\|.eA$$

□ > 《 E > 《 E >

Question: How to estimate $\max_{n\geq 0} ||A^n||$ in general?

Kreiss matrix theorem (Leveque-Trefethen 1984, Spijker 1991)

$$\max_{\substack{n \ge 0}} \|A^n\| \ge \sup_{\substack{|z| > 1}} (|z| - 1) \|(A - zI)^{-1}\|$$
$$\max_{\substack{n \ge 0}} \|A^n\| \le \sup_{\substack{|z| > 1}} (|z| - 1) \|(A - zI)^{-1}\|.eN$$

Moral: It's useful to look at $||(A - zI)^{-1}||$. But how to compute it?

回 と く ヨ と く ヨ と

Singular-value decomposition: We can always write

 $A = U_1 \Sigma U_2,$

where U_1, U_2 are unitary, and $\Sigma = \text{diag}(s_1, \ldots, s_N)$.

Singular-value decomposition: We can always write

 $A = U_1 \Sigma U_2,$

where U_1, U_2 are unitary, and $\Sigma = \text{diag}(s_1, \ldots, s_N)$. Hence:

• $\|A\| = s_{\max}(A)$

ヨッ イヨッ イヨッ

Singular-value decomposition: We can always write

 $A = U_1 \Sigma U_2,$

where U_1, U_2 are unitary, and $\Sigma = \text{diag}(s_1, \ldots, s_N)$. Hence:

||A|| = s_{max}(A)
 ||A⁻¹|| = 1/s_{min}(A)

Singular-value decomposition: We can always write

 $A = U_1 \Sigma U_2,$

where U_1, U_2 are unitary, and $\Sigma = \text{diag}(s_1, \ldots, s_N)$. Hence:

||A|| = s_{max}(A)
 ||A⁻¹|| = 1/s_{min}(A)

Basic trick for computing resolvent norms

$$||(A - zI)^{-1}|| = 1/s_{\min}(A - zI)$$

Level curves of $||(A - zI)^{-1}||$ for $A = \text{tridiag}(32, \frac{1}{4}, 0, 1)$

Thomas Ransford Super-identical pseudospectra

Level curves of $\|(A - zI)^{-1}\|$ for $A = \text{tridiag}(32, \frac{1}{4}, 0, 1)$

< ∃⇒

э

э

Definition of the ϵ -pseudospectrum of A

$$\sigma_{\epsilon}(\mathsf{A}) := \{ z \in \mathbb{C} : \| (\mathsf{A} - z\mathsf{I})^{-1} \| > 1/\epsilon \}.$$

э

Definition of the ϵ -pseudospectrum of A

$$\sigma_{\epsilon}(A) := \{z \in \mathbb{C} : \|(A - zI)^{-1}\| > 1/\epsilon\}.$$

Pseudospectra have applications in many fields, including:

atmospheric sciencemagnetohydrodynamicscontrol theoryMarkov chainsecologynon-hermitian quantum mechanicshydrodynamic stabilitynumerical solutions of odes/pdeslasersrounding error analysis...

Definition of the ϵ -pseudospectrum of A

$$\sigma_{\epsilon}(A) := \{z \in \mathbb{C} : \|(A - zI)^{-1}\| > 1/\epsilon\}.$$

Pseudospectra have applications in many fields, including:

atmospheric science	magnetohydrodynamics
control theory	Markov chains
ecology	non-hermitian quantum mechanics
hydrodynamic stability	numerical solutions of odes/pdes
lasers	rounding error analysis

Reference:

L. N. Trefethen, M. Embree, *Spectra and Pseudospectra*, Princeton University Press, 2005.

Question: Suppose that A, B have identical pseudospectra, i.e.

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

- Must we have $||A^n|| = ||B^n||$ for all n?
- Must A, B be unitarily equivalent?

Question: Suppose that A, B have identical pseudospectra, i.e.

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

- Must we have $||A^n|| = ||B^n||$ for all n?
- Must A, B be unitarily equivalent?

Answers:

- **Yes**, if *N* = 1, 2.
- No, if $N \geq 4$.

Question: Suppose that A, B have identical pseudospectra, i.e.

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

- Must we have $||A^n|| = ||B^n||$ for all n?
- Must A, B be unitarily equivalent?

Answers:

- **Yes**, if *N* = 1, 2.
- No, if $N \geq 4$.
- Good news: we always have $1/2 \le ||A||/||B|| \le 2$.

Question: Suppose that A, B have identical pseudospectra, i.e.

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

- Must we have $||A^n|| = ||B^n||$ for all n?
- Must A, B be unitarily equivalent?

Answers:

- **Yes**, if N = 1, 2.
- No, if $N \geq 4$.
- Good news: we always have $1/2 \le ||A||/||B|| \le 2$.
- Bad news: given submultiplicative sequences (α_n) and (β_n), there exist A, B with identical pseudospectra such that

$$\|A^n\| = \alpha_n$$
 and $\|B^n\| = \beta_n$ $(2 \le n \le (N-3)/2).$

A, B have identical pseudospectra iff

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

A, B have identical pseudospectra iff

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

This is equivalent to

$$s_{\min}(A-zI) = s_{\min}(B-zI)$$
 for all $z \in \mathbb{C}$.

A, B have identical pseudospectra iff

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

This is equivalent to

$$s_{\min}(A-zI) = s_{\min}(B-zI)$$
 for all $z \in \mathbb{C}$.

Definition:

A, B have super-identical pseudospectra if

$$s_k(A-zI) = s_k(B-zI)$$
 for all $z \in \mathbb{C}$ and all k .

A, B have identical pseudospectra iff

$$\|(A - zI)^{-1}\| = \|(B - zI)^{-1}\|$$
 for all $z \in \mathbb{C}$.

This is equivalent to

$$s_{\min}(A-zI) = s_{\min}(B-zI)$$
 for all $z \in \mathbb{C}$.

Definition:

A, B have super-identical pseudospectra if

$$s_k(A-zI) = s_k(B-zI)$$
 for all $z \in \mathbb{C}$ and all k .

- Does this condition imply that $||A^n|| = ||B^n||$ for all *n*?
- Does it imply that A, B are unitarily equivalent?

Some reformulations

By definition, A, B have super-identical pseudospectra iff

$$s_k(A-zI) = s_k(B-zI)$$
 $(z \in \mathbb{C}, k = 1, \dots, N).$

By definition, A, B have super-identical pseudospectra iff

$$s_k(A-zI) = s_k(B-zI)$$
 $(z \in \mathbb{C}, k = 1, \dots, N).$

This is equivalent to

$$\sigma\Big((A-zI)(A^*-\overline{z}I)\Big)=\sigma\Big((B-zI)(B^*-\overline{z}I)\Big)\qquad (z\in\mathbb{C}).$$

By definition, A, B have super-identical pseudospectra iff

$$s_k(A-zI) = s_k(B-zI)$$
 $(z \in \mathbb{C}, k = 1, \dots, N).$

This is equivalent to

$$\sigma\Big((A-zI)(A^*-\overline{z}I)\Big)=\sigma\Big((B-zI)(B^*-\overline{z}I)\Big)\qquad(z\in\mathbb{C}).$$

This is equivalent to

$$\operatorname{tr}\left(\left[(A-zI)(A^*-\overline{z}I)\right]^k\right) = \operatorname{tr}\left(\left[(B-zI)(B^*-\overline{z}I)\right]^k\right) \quad (z\in\mathbb{C},\ k\geq 0).$$

By definition, A, B have super-identical pseudospectra iff

$$s_k(A-zI) = s_k(B-zI)$$
 $(z \in \mathbb{C}, k = 1, \dots, N).$

This is equivalent to

$$\sigma\Big((A-zI)(A^*-\overline{z}I)\Big)=\sigma\Big((B-zI)(B^*-\overline{z}I)\Big)\qquad(z\in\mathbb{C}).$$

This is equivalent to

$$\operatorname{tr}\left(\left[(A-zI)(A^*-\overline{z}I)\right]^k\right) = \operatorname{tr}\left(\left[(B-zI)(B^*-\overline{z}I)\right]^k\right) \quad (z\in\mathbb{C},\ k\geq 0).$$

This is also equivalent to the same condition, but with $1 \le k \le N$.

Theorem 1

Let F be a uniqueness set for polynomials in z, \overline{z} of bidegree N, N. Then A, B have super-identical pseudospectra iff

$$s_k(A-zI) = s_k(B-zI)$$
 $(z \in F, k = 1, \dots, N).$

Theorem 1

Let F be a uniqueness set for polynomials in z, \overline{z} of bidegree N, N. Then A, B have super-identical pseudospectra iff

$$s_k(A-zI) = s_k(B-zI)$$
 $(z \in F, k = 1, \dots, N).$

Theorem 2

If A, B have super-identical pseudospectra then, for every polynomial p,

$$\frac{1}{\sqrt{N}} \le \frac{\|p(A)\|}{\|p(B)\|} \le \sqrt{N}.$$

For $0 < \alpha < \beta \leq \pi/4$, define

$$A := \begin{pmatrix} 0 & \sec \alpha & 0 & 1 \\ 0 & 0 & \sec \beta \csc \beta & 0 \\ 0 & 0 & 0 & \csc \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and let B be the same matrix with the roles of α, β interchanged. Then A, B have super-identical pseudospectra, but

$$\|A^2\|/\|B^2\| = \cos\alpha/\cos\beta \neq 1$$

For $0 < \alpha < \beta \leq \pi/4$, define

$$A := \begin{pmatrix} 0 & \sec \alpha & 0 & 1 \\ 0 & 0 & \sec \beta \csc \beta & 0 \\ 0 & 0 & 0 & \csc \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and let B be the same matrix with the roles of α, β interchanged. Then A, B have super-identical pseudospectra, but

$$||A^2|| / ||B^2|| = \cos \alpha / \cos \beta \neq 1.$$

Consequences:

• In Theorem 2, cannot replace \sqrt{N} by 1 (but maybe by $\sqrt{2}$?).

For $0 < \alpha < \beta \leq \pi/4$, define

$$A := \begin{pmatrix} 0 & \sec \alpha & 0 & 1 \\ 0 & 0 & \sec \beta \csc \beta & 0 \\ 0 & 0 & 0 & \csc \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and let B be the same matrix with the roles of α, β interchanged. Then A, B have super-identical pseudospectra, but

$$||A^2|| / ||B^2|| = \cos \alpha / \cos \beta \neq 1.$$

Consequences:

- In Theorem 2, cannot replace \sqrt{N} by 1 (but maybe by $\sqrt{2}$?).
- Super-identical pseudospectra ⇒ unitary equivalence.

Super-identical pseudospectra and unitary equivalence

Theorem 3 (Discreteness theorem)

'Almost every' equivalence class wrt super-identical pseudospectra is a union of a finite number of unitary equivalence classes. The number is bounded by a constant depending only on N.

Super-identical pseudospectra and unitary equivalence

Theorem 3 (Discreteness theorem)

'Almost every' equivalence class wrt super-identical pseudospectra is a union of a finite number of unitary equivalence classes. The number is bounded by a constant depending only on N.

Idea: recall that A, B have super-identical pseudospectra iff

$$\operatorname{tr}\left([(A-zI)(A^*-\overline{z}I)]^k\right) = \operatorname{tr}\left([(B-zI)(B^*-\overline{z}I)]^k\right) \quad (z\in\mathbb{C},\ k\geq 0).$$

Theorem 3 (Discreteness theorem)

'Almost every' equivalence class wrt super-identical pseudospectra is a union of a finite number of unitary equivalence classes. The number is bounded by a constant depending only on N.

Idea: recall that A, B have super-identical pseudospectra iff

$$\operatorname{tr}\left([(A-zI)(A^*-\overline{z}I)]^k\right) = \operatorname{tr}\left([(B-zI)(B^*-\overline{z}I)]^k\right) \quad (z\in\mathbb{C},\ k\geq 0).$$

Also, by a theorem of Specht, A, B are unitarily equivalent iff

 $\operatorname{tr}(w(A,A^*))=\operatorname{tr}(w(B,B^*)) \quad \text{for all words } w.$

Theorem 3 (Discreteness theorem)

'Almost every' equivalence class wrt super-identical pseudospectra is a union of a finite number of unitary equivalence classes. The number is bounded by a constant depending only on N.

Idea: recall that A, B have super-identical pseudospectra iff

$$\operatorname{tr}\left([(A-zI)(A^*-\overline{z}I)]^k\right) = \operatorname{tr}\left([(B-zI)(B^*-\overline{z}I)]^k\right) \quad (z\in\mathbb{C},\ k\geq 0).$$

Also, by a theorem of Specht, A, B are unitarily equivalent iff

$$tr(w(A, A^*)) = tr(w(B, B^*))$$
 for all words w .

Algebraicity theorem

Given a word w, the polynomial tr(w(X, Y)) is algebraic over the algebra generated by $\{tr([(X - zI)(Y - \overline{z}I)]^k) : k \ge 0, z \in \mathbb{C}\}.$

 Modeling of experiments by linear dynamical systems gives rise to the problem of estimation of ||Aⁿ|| or of ||e^{tA}||.

- Modeling of experiments by linear dynamical systems gives rise to the problem of estimation of ||Aⁿ|| or of ||e^{tA}||.
- For non-normal matrices, standard eigenvalue analysis tells only part of the story, and can sometimes even be misleading.

- Modeling of experiments by linear dynamical systems gives rise to the problem of estimation of ||Aⁿ|| or of ||e^{tA}||.
- For non-normal matrices, standard eigenvalue analysis tells only part of the story, and can sometimes even be misleading.
- We can get more information by looking at level curves of the resolvent (pseudospectra). These can be rapidly computed using singular values.

- Modeling of experiments by linear dynamical systems gives rise to the problem of estimation of ||Aⁿ|| or of ||e^{tA}||.
- For non-normal matrices, standard eigenvalue analysis tells only part of the story, and can sometimes even be misleading.
- We can get more information by looking at level curves of the resolvent (pseudospectra). These can be rapidly computed using singular values.
- Pseudospectra are not sufficient to determine matrix behavior. The notion of super-identical pseudospectra leads to more satisfactory results.

- Modeling of experiments by linear dynamical systems gives rise to the problem of estimation of ||Aⁿ|| or of ||e^{tA}||.
- For non-normal matrices, standard eigenvalue analysis tells only part of the story, and can sometimes even be misleading.
- We can get more information by looking at level curves of the resolvent (pseudospectra). These can be rapidly computed using singular values.
- Pseudospectra are not sufficient to determine matrix behavior. The notion of super-identical pseudospectra leads to more satisfactory results.
- How to implement this notion in practice?

- Modeling of experiments by linear dynamical systems gives rise to the problem of estimation of ||Aⁿ|| or of ||e^{tA}||.
- For non-normal matrices, standard eigenvalue analysis tells only part of the story, and can sometimes even be misleading.
- We can get more information by looking at level curves of the resolvent (pseudospectra). These can be rapidly computed using singular values.
- Pseudospectra are not sufficient to determine matrix behavior. The notion of super-identical pseudospectra leads to more satisfactory results.
- How to implement this notion in practice?

THANK YOU!