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Part I: Introduction to pseudospectra

General problem

Let A be a complex N × N matrix, thought of as acting on ℓ2
N .

Determine the evolution of ‖An‖ (or of ‖etA‖).
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First remarks: Let ρ(A) = spectral radius of A.
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Part I: Introduction to pseudospectra

General problem

Let A be a complex N × N matrix, thought of as acting on ℓ2
N .

Determine the evolution of ‖An‖ (or of ‖etA‖).

First remarks: Let ρ(A) = spectral radius of A.

• ‖An‖ ≥ ρ(A)n for all n, with equality if A normal.

• ‖An‖1/n → ρ(A) as n → ∞.
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Cautionary example:

Let A be the N × N matrix

A =















0 1
1/4 0 1

. . .
. . .

. . .

1/4 0 1
1/4 0














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

The eigenvalues are λj = cos
( jπ

N + 1

)

, j = 1, . . . ,N.
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Let A be the N × N matrix
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The eigenvalues are λj = cos
( jπ

N + 1

)

, j = 1, . . . ,N.

In particular ρ(A) = cos
( π

N + 1

)

< 1, so ‖An‖ → 0 as n → ∞.
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Cautionary example:

Let A be the N × N matrix

A =















0 1
1/4 0 1

. . .
. . .

. . .

1/4 0 1
1/4 0















The eigenvalues are λj = cos
( jπ

N + 1

)

, j = 1, . . . ,N.

In particular ρ(A) = cos
( π

N + 1

)

< 1, so ‖An‖ → 0 as n → ∞.

Let’s actually compute ‖An‖ . . .
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1

2

4

10

20

40

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2

4

10

20

40

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4

10

20

40

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10

20

40

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20

40

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40 4442.09

100

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40 4442.09

100 485866.04

200

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40 4442.09

100 485866.04

200 1043599.98

400

1000

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40 4442.09

100 485866.04

200 1043599.98

400 544597.34
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40 4442.09

100 485866.04

200 1043599.98

400 544597.34

1000 36339.67

10000
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Cautionary example (continued)

We’ll consider the case N = 32.

n ‖An‖
1 1.24

2 1.55

4 2.41

10 8.98

20 78.44

40 4442.09

100 485866.04

200 1043599.98

400 544597.34

1000 36339.67

10000 6.63 × 10−14
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Resolvents

Question: How to estimate maxn≥0 ‖An‖ in general?
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Resolvents

Question: How to estimate maxn≥0 ‖An‖ in general?

Kreiss matrix theorem (Leveque–Trefethen 1984, Spijker 1991)

max
n≥0

‖An‖ ≥ sup
|z |>1

(|z | − 1)‖(A − zI )−1‖

max
n≥0

‖An‖ ≤ sup
|z |>1

(|z | − 1)‖(A − zI )−1‖.eN
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Resolvents

Question: How to estimate maxn≥0 ‖An‖ in general?

Kreiss matrix theorem (Leveque–Trefethen 1984, Spijker 1991)

max
n≥0

‖An‖ ≥ sup
|z |>1

(|z | − 1)‖(A − zI )−1‖

max
n≥0

‖An‖ ≤ sup
|z |>1

(|z | − 1)‖(A − zI )−1‖.eN

Moral: It’s useful to look at ‖(A− zI )−1‖. But how to compute it?
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Singular values

The singular values of A are the square roots of the eigenvalues
of AA∗. We shall denote them by s1, . . . , sN .
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Singular values

The singular values of A are the square roots of the eigenvalues
of AA∗. We shall denote them by s1, . . . , sN .

Singular-value decomposition: We can always write

A = U1ΣU2,

where U1,U2 are unitary, and Σ = diag(s1, . . . , sN).
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Singular values

The singular values of A are the square roots of the eigenvalues
of AA∗. We shall denote them by s1, . . . , sN .

Singular-value decomposition: We can always write

A = U1ΣU2,

where U1,U2 are unitary, and Σ = diag(s1, . . . , sN). Hence:

‖A‖ = smax(A)
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Singular values

The singular values of A are the square roots of the eigenvalues
of AA∗. We shall denote them by s1, . . . , sN .

Singular-value decomposition: We can always write

A = U1ΣU2,

where U1,U2 are unitary, and Σ = diag(s1, . . . , sN). Hence:

‖A‖ = smax(A)

‖A−1‖ = 1/smin(A)
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Singular values

The singular values of A are the square roots of the eigenvalues
of AA∗. We shall denote them by s1, . . . , sN .

Singular-value decomposition: We can always write

A = U1ΣU2,

where U1,U2 are unitary, and Σ = diag(s1, . . . , sN). Hence:

‖A‖ = smax(A)

‖A−1‖ = 1/smin(A)

Basic trick for computing resolvent norms

‖(A − zI )−1‖ = 1/smin(A − zI )
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Level curves of ‖(A − zI )−1‖ for A = tridiag(32, 1
4 , 0, 1)
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Level curves of ‖(A − zI )−1‖ for A = tridiag(32, 1
4 , 0, 1)
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Pseudospectra

Definition of the ǫ-pseudospectrum of A

σǫ(A) := {z ∈ C : ‖(A − zI )−1‖ > 1/ǫ}.
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Pseudospectra

Definition of the ǫ-pseudospectrum of A

σǫ(A) := {z ∈ C : ‖(A − zI )−1‖ > 1/ǫ}.

Pseudospectra have applications in many fields, including:

atmospheric science magnetohydrodynamics
control theory Markov chains
ecology non-hermitian quantum mechanics
hydrodynamic stability numerical solutions of odes/pdes
lasers rounding error analysis. . .
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Pseudospectra

Definition of the ǫ-pseudospectrum of A

σǫ(A) := {z ∈ C : ‖(A − zI )−1‖ > 1/ǫ}.

Pseudospectra have applications in many fields, including:

atmospheric science magnetohydrodynamics
control theory Markov chains
ecology non-hermitian quantum mechanics
hydrodynamic stability numerical solutions of odes/pdes
lasers rounding error analysis. . .

Reference:

L. N. Trefethen, M. Embree, Spectra and Pseudospectra,
Princeton University Press, 2005.
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Part II: Do pseudospectra determine matrix behavior?
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Part II: Do pseudospectra determine matrix behavior?

Question: Suppose that A,B have identical pseudospectra, i.e.

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

Must we have ‖An‖ = ‖Bn‖ for all n?

Must A,B be unitarily equivalent?
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Question: Suppose that A,B have identical pseudospectra, i.e.

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

Must we have ‖An‖ = ‖Bn‖ for all n?

Must A,B be unitarily equivalent?

Answers:

Yes, if N = 1, 2.

No, if N ≥ 4.
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Part II: Do pseudospectra determine matrix behavior?

Question: Suppose that A,B have identical pseudospectra, i.e.

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

Must we have ‖An‖ = ‖Bn‖ for all n?

Must A,B be unitarily equivalent?

Answers:

Yes, if N = 1, 2.

No, if N ≥ 4.

Good news: we always have 1/2 ≤ ‖A‖/‖B‖ ≤ 2.
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Part II: Do pseudospectra determine matrix behavior?

Question: Suppose that A,B have identical pseudospectra, i.e.

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

Must we have ‖An‖ = ‖Bn‖ for all n?

Must A,B be unitarily equivalent?

Answers:

Yes, if N = 1, 2.

No, if N ≥ 4.

Good news: we always have 1/2 ≤ ‖A‖/‖B‖ ≤ 2.

Bad news: given submultiplicative sequences (αn) and (βn),
there exist A,B with identical pseudospectra such that

‖An‖ = αn and ‖Bn‖ = βn (2 ≤ n ≤ (N − 3)/2).
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Super-identical pseudospectra

A,B have identical pseudospectra iff

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.
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Super-identical pseudospectra

A,B have identical pseudospectra iff

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

This is equivalent to

smin(A − zI ) = smin(B − zI ) for all z ∈ C.
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Super-identical pseudospectra

A,B have identical pseudospectra iff

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

This is equivalent to

smin(A − zI ) = smin(B − zI ) for all z ∈ C.

Definition:

A,B have super-identical pseudospectra if

sk(A − zI ) = sk(B − zI ) for all z ∈ C and all k.
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Super-identical pseudospectra

A,B have identical pseudospectra iff

‖(A − zI )−1‖ = ‖(B − zI )−1‖ for all z ∈ C.

This is equivalent to

smin(A − zI ) = smin(B − zI ) for all z ∈ C.

Definition:

A,B have super-identical pseudospectra if

sk(A − zI ) = sk(B − zI ) for all z ∈ C and all k.

Does this condition imply that ‖An‖ = ‖Bn‖ for all n?

Does it imply that A,B are unitarily equivalent?
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Some reformulations

By definition, A,B have super-identical pseudospectra iff

sk(A − zI ) = sk(B − zI ) (z ∈ C, k = 1, . . . ,N).
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Some reformulations

By definition, A,B have super-identical pseudospectra iff

sk(A − zI ) = sk(B − zI ) (z ∈ C, k = 1, . . . ,N).

This is equivalent to

σ
(

(A − zI )(A∗ − zI )
)

= σ
(

(B − zI )(B∗ − zI )
)

(z ∈ C).
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Some reformulations

By definition, A,B have super-identical pseudospectra iff

sk(A − zI ) = sk(B − zI ) (z ∈ C, k = 1, . . . ,N).

This is equivalent to

σ
(

(A − zI )(A∗ − zI )
)

= σ
(

(B − zI )(B∗ − zI )
)

(z ∈ C).

This is equivalent to

tr
(

[(A−zI )(A∗−zI )]k
)

= tr
(

[(B−zI )(B∗−zI )]k
)

(z ∈ C, k ≥ 0).
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Some reformulations

By definition, A,B have super-identical pseudospectra iff

sk(A − zI ) = sk(B − zI ) (z ∈ C, k = 1, . . . ,N).

This is equivalent to

σ
(

(A − zI )(A∗ − zI )
)

= σ
(

(B − zI )(B∗ − zI )
)

(z ∈ C).

This is equivalent to

tr
(

[(A−zI )(A∗−zI )]k
)

= tr
(

[(B−zI )(B∗−zI )]k
)

(z ∈ C, k ≥ 0).

This is also equivalent to the same condition, but with 1 ≤ k ≤ N.
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Some easy consequences

Theorem 1

Let F be a uniqueness set for polynomials in z , z of bidegree N,N.
Then A,B have super-identical pseudospectra iff

sk(A − zI ) = sk(B − zI ) (z ∈ F , k = 1, . . . ,N).
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Some easy consequences

Theorem 1

Let F be a uniqueness set for polynomials in z , z of bidegree N,N.
Then A,B have super-identical pseudospectra iff

sk(A − zI ) = sk(B − zI ) (z ∈ F , k = 1, . . . ,N).

Theorem 2

If A,B have super-identical pseudospectra then, for every
polynomial p,

1√
N

≤ ‖p(A)‖
‖p(B)‖ ≤

√
N .
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An example

For 0 < α < β ≤ π/4, define

A :=









0 secα 0 1
0 0 sec β csc β 0
0 0 0 csc α
0 0 0 0









and let B be the same matrix with the roles of α, β interchanged.
Then A,B have super-identical pseudospectra, but

‖A2‖/‖B2‖ = cos α/ cos β 6= 1.
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An example

For 0 < α < β ≤ π/4, define

A :=









0 secα 0 1
0 0 sec β csc β 0
0 0 0 csc α
0 0 0 0









and let B be the same matrix with the roles of α, β interchanged.
Then A,B have super-identical pseudospectra, but

‖A2‖/‖B2‖ = cos α/ cos β 6= 1.

Consequences:

In Theorem 2, cannot replace
√

N by 1 (but maybe by
√

2 ?).
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An example

For 0 < α < β ≤ π/4, define

A :=









0 secα 0 1
0 0 sec β csc β 0
0 0 0 csc α
0 0 0 0









and let B be the same matrix with the roles of α, β interchanged.
Then A,B have super-identical pseudospectra, but

‖A2‖/‖B2‖ = cos α/ cos β 6= 1.

Consequences:

In Theorem 2, cannot replace
√

N by 1 (but maybe by
√

2 ?).

Super-identical pseudospectra 6⇒ unitary equivalence.
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Super-identical pseudospectra and unitary equivalence

Theorem 3 (Discreteness theorem)

‘Almost every’ equivalence class wrt super-identical pseudospectra
is a union of a finite number of unitary equivalence classes. The
number is bounded by a constant depending only on N.
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Super-identical pseudospectra and unitary equivalence

Theorem 3 (Discreteness theorem)

‘Almost every’ equivalence class wrt super-identical pseudospectra
is a union of a finite number of unitary equivalence classes. The
number is bounded by a constant depending only on N.

Idea: recall that A,B have super-identical pseudospectra iff

tr
(

[(A−zI )(A∗−zI )]k
)

= tr
(

[(B−zI )(B∗−zI )]k
)

(z ∈ C, k ≥ 0).
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Super-identical pseudospectra and unitary equivalence

Theorem 3 (Discreteness theorem)

‘Almost every’ equivalence class wrt super-identical pseudospectra
is a union of a finite number of unitary equivalence classes. The
number is bounded by a constant depending only on N.

Idea: recall that A,B have super-identical pseudospectra iff

tr
(

[(A−zI )(A∗−zI )]k
)

= tr
(

[(B−zI )(B∗−zI )]k
)

(z ∈ C, k ≥ 0).

Also, by a theorem of Specht, A,B are unitarily equivalent iff

tr(w(A,A∗)) = tr(w(B ,B∗)) for all words w .
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Super-identical pseudospectra and unitary equivalence

Theorem 3 (Discreteness theorem)

‘Almost every’ equivalence class wrt super-identical pseudospectra
is a union of a finite number of unitary equivalence classes. The
number is bounded by a constant depending only on N.

Idea: recall that A,B have super-identical pseudospectra iff

tr
(

[(A−zI )(A∗−zI )]k
)

= tr
(

[(B−zI )(B∗−zI )]k
)

(z ∈ C, k ≥ 0).

Also, by a theorem of Specht, A,B are unitarily equivalent iff

tr(w(A,A∗)) = tr(w(B ,B∗)) for all words w .

Algebraicity theorem

Given a word w , the polynomial tr(w(X ,Y )) is algebraic over the
algebra generated by {tr([(X − zI )(Y − zI )]k) : k ≥ 0, z ∈ C}.
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Conclusion

Modeling of experiments by linear dynamical systems gives
rise to the problem of estimation of ‖An‖ or of ‖etA‖.
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only part of the story, and can sometimes even be misleading.
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For non-normal matrices, standard eigenvalue analysis tells
only part of the story, and can sometimes even be misleading.

We can get more information by looking at level curves of the
resolvent (pseudospectra). These can be rapidly computed
using singular values.

Thomas Ransford Super-identical pseudospectra



Conclusion

Modeling of experiments by linear dynamical systems gives
rise to the problem of estimation of ‖An‖ or of ‖etA‖.

For non-normal matrices, standard eigenvalue analysis tells
only part of the story, and can sometimes even be misleading.
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using singular values.

Pseudospectra are not sufficient to determine matrix behavior.
The notion of super-identical pseudospectra leads to more
satisfactory results.
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Conclusion

Modeling of experiments by linear dynamical systems gives
rise to the problem of estimation of ‖An‖ or of ‖etA‖.

For non-normal matrices, standard eigenvalue analysis tells
only part of the story, and can sometimes even be misleading.

We can get more information by looking at level curves of the
resolvent (pseudospectra). These can be rapidly computed
using singular values.

Pseudospectra are not sufficient to determine matrix behavior.
The notion of super-identical pseudospectra leads to more
satisfactory results.

How to implement this notion in practice?
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