Asymptotic Behaviour of Semigroups before 2000 Part 2: Positive Semigroups

Wolfgang Arendt

University of Ulm

First Meeting on Asymptotics of Operator Semigroups St. John's College, Oxford, September 3–5, 2009

 $(T(t))_{t\geq 0}$ C₀-semigroup on X.

$$T(t) \ge 0 :\iff [f \ge 0 \Rightarrow T(t)f \ge 0] \&$$

 $X = L^p, \ 1 \le p < \infty.$

R. Nagel (ed.): *One-parameter Semigroups of Positive Operators*, Springer LN 1184 (1986).

Theorem (L. Weis 1995)

$$X = L^p$$
, $T(t) \ge 0$, $\lambda < 0$ for all $\lambda \in \sigma(A)$.
 $\implies \exists \varepsilon > 0$, $M \ge 0$ such that

$$||T(t)|| \leq M e^{-\varepsilon t}$$
 $(t \geq 0).$

Wrong on $X = L^p(\Omega) \cap L^q(\Omega)$, $p \neq q$. Wrong on $X = H^1(0, 1)$ (Sobolev space).

$\mathcal{T} \text{ is called } \textit{ergodic} \text{ if } \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathcal{T}(s) x \, \mathrm{d}s \text{ exists for all } x \in X.$

$\mathcal{T} \text{ is called } \textit{ergodic} \text{ if } \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathcal{T}(s) x \, \mathrm{d}s \text{ exists for all } x \in X.$

T is called *completely ergodic* if $(e^{-i\eta t}T(t))_{t\geq 0}$ is ergodic for all $\eta \in \mathbb{R}$.

T is called *ergodic* if $\lim_{t\to\infty} \frac{1}{t} \int_0^t T(s) x \, \mathrm{d}s$ exists for all $x \in X$.

T is called *completely ergodic* if $(e^{-i\eta t}T(t))_{t\geq 0}$ is ergodic for all $\eta \in \mathbb{R}$.

- X reflexive, $||T(t)|| \le M \Rightarrow T$ is completely ergodic.
- The Gaussian semigroup of *L*¹(ℝ) is positive, bounded, not ergodic.

$$egin{aligned} X_0 &\coloneqq \{x \in X : \lim_{t o \infty} T(t)x = 0\} \ X_{ ext{ap}} &\coloneqq \overline{ ext{span}}\{x \in X : \exists \eta \in \mathbb{R} \ T(t)x = \mathrm{e}^{it\eta}x\} \end{aligned}$$

$$egin{aligned} X_0 &\coloneqq \{x \in X : \lim_{t o \infty} \mathcal{T}(t) x = 0\} \ X_{ ext{ap}} &\coloneqq \overline{ ext{span}} \{x \in X : \exists \eta \in \mathbb{R} \ \mathcal{T}(t) x = \mathrm{e}^{it\eta} x\} \end{aligned}$$

Remark

$$T(t)x = e^{it\eta}x, t \ge 0 \Leftrightarrow x \in D(A), (i\eta - A)x = 0.$$

$$egin{aligned} &X_0\coloneqq \{x\in X: \lim_{t o\infty} \mathcal{T}(t)x=0\}\ &X_{\mathrm{ap}}\coloneqq \overline{\mathrm{span}}\{x\in X: \exists\eta\in \mathbb{R}\ \mathcal{T}(t)x=\mathrm{e}^{it\eta}x\} \end{aligned}$$

Remark

$$T(t)x = e^{it\eta}x, t \ge 0 \Leftrightarrow x \in D(A), (i\eta - A)x = 0.$$

General ABLV-Theorem

- (a) $||T(t)|| \le M;$
- (b) $\sigma(A) \cap i\mathbb{R}$ countable;
- (c) T is completely ergodic.

 $\implies X = X_0 \oplus X_{\mathrm{ap}}.$

$$egin{aligned} X_0 &\coloneqq \{x \in X : \lim_{t o \infty} \mathcal{T}(t) x = 0\} \ X_{ ext{ap}} &\coloneqq \overline{ ext{span}} \{x \in X : \exists \eta \in \mathbb{R} \ \mathcal{T}(t) x = \mathrm{e}^{it\eta} x\} \end{aligned}$$

Remark

$$T(t)x = e^{it\eta}x, t \ge 0 \Leftrightarrow x \in D(A), (i\eta - A)x = 0.$$

General ABLV-Theorem

(a)
$$||T(t)|| \le M;$$

- (b) $\sigma(A) \cap i\mathbb{R}$ countable;
- (c) T is completely ergodic.

$$\implies X = X_0 \oplus X_{\mathrm{ap}}.$$

Remark

If
$$(\lambda - A)^{-1}$$
 is compact, then (a) \Rightarrow (b) and (c).

- 1. An Every-Day Perron-Frobenius Theorem
- 2. A Dynamical System Theorem
- 3. Kernel Operators

The Every-Day Perron-Frobenius Theorem

Theorem (Greiner 1981)

 $T(t) \ge 0$, $||T(t)|| \le M$, $i\eta \in \sigma(A)$. $\implies i\eta m \in \sigma(A) \ \forall m \in \mathbb{Z}$ (cyclicity of the boundary spectrum).

The Every-Day Perron-Frobenius Theorem

Theorem (Greiner 1981)

 $T(t) \ge 0$, $||T(t)|| \le M$, $i\eta \in \sigma(A)$. $\implies i\eta m \in \sigma(A) \ \forall m \in \mathbb{Z}$ (cyclicity of the boundary spectrum).

Theorem (Every-Day Perron-Frobenius Theorem)

(a)
$$T(t) \ge 0;$$

(b) $T: (0, \infty) \rightarrow \mathscr{L}(L^p)$ norm-continuous;
(c) $||T(t)|| \le M;$
(d) T ergodic.

$$\Longrightarrow \lim_{t\to\infty} T(t)f$$
 exists for all $f\in L^p$.

The Every-Day Perron-Frobenius Theorem

Theorem (Greiner 1981)

 $T(t) \ge 0$, $||T(t)|| \le M$, $i\eta \in \sigma(A)$. $\implies i\eta m \in \sigma(A) \ \forall m \in \mathbb{Z}$ (cyclicity of the boundary spectrum).

Theorem (Every-Day Perron-Frobenius Theorem)

(a)
$$T(t) \ge 0$$
;
(b) $T: (0, \infty) \rightarrow \mathscr{L}(L^p)$ norm-continuous;
(c) $||T(t)|| \le M$;
(d) T ergodic.

$$\implies \lim_{t\to\infty} T(t)f$$
 exists for all $f\in L^p$.

Proof.

$$T$$
 norm-continuous $\Rightarrow \sigma(A) \cap i\mathbb{R}$ bounded.

Wolfgang Arendt

Theorem (Goersmeyer-Weis 1999)

$$X = L^{p}(\Omega), \ 1 \leq p < \infty, \ T(t) \geq 0, \ \lim_{|\eta| \to \infty} \|(i\eta - A)^{-1}\| = 0.$$

 \implies T norm-continuous.

false on Banach spaces: Tamás Matrai 2008, Chill-Tomilov 2009 true on Hilbert spaces: Puhong-You 1992, El-Mennaoui-Engel 1996

$$X = L^p$$
, $1 \le p < \infty$.

Theorem (Batty, W.A. 1992)

 $T(t) \ge 0$, $||T(t)|| \le M$, ergodic \implies completely ergodic

false on C(K).

```
A closed ideal of L^{p}(\Omega) is a set of the form

L^{p}(S) := \{f \in L^{p}(\Omega) : f = 0 \text{ on } \Omega \setminus S\}

(S \subset \Omega \text{ measurable}).
```

A closed ideal of $L^{p}(\Omega)$ is a set of the form $L^{p}(S) := \{f \in L^{p}(\Omega) : f = 0 \text{ on } \Omega \setminus S\}$ $(S \subset \Omega \text{ measurable}).$

Definition

T is *irreducible* if

$$T(t)L^p(S) \subset L^p(S) \Longrightarrow \mu(S) = 0 ext{ or } \mu(\Omega \setminus S) = 0.$$

Theorem

 $T(t) \ge 0$, $||T(t)|| \le M$, T irreducible, ergodic, $\sigma(A) \cap i\mathbb{R}$ countable. $\implies X = X_0 \oplus X_{ap}$ and $T(t)|_{X_{ap}}$ is a periodic group.

Theorem

 $T(t) \ge 0$, $||T(t)|| \le M$, T irreducible, ergodic, $\sigma(A) \cap i\mathbb{R}$ countable. $\implies X = X_0 \oplus X_{ap}$ and $T(t)|_{X_{ap}}$ is a periodic group.

Theorem (Greiner 1981)

 $T(t) \ge 0, ||T(t)|| \le M, T \text{ irreducible, } \sigma_p(A) \cap i\mathbb{R} \not\subset \{0\}.$ $\implies \exists \tau > 0: \sigma_p(A) \cap i\mathbb{R} \subset i\frac{2\pi}{\tau}\mathbb{Z}.$

Now:

$$T(t)x = e^{i\eta \frac{2\pi}{\tau}t}x \Longrightarrow T(t+\tau)x = T(t)x$$

Trivial Point Spectrum

Theorem (E.B. Davies JEE 2005)

$$T(t) \geq 0$$
, $\|T(t)\| \leq 1$.

(a) $X = \ell^p$

(b) or $X = L^{p}(\Omega)$, $\Omega \subset \mathbb{R}^{d}$ open, $T(t)f \in C(\Omega) \ \forall t > 0$, $f \in L^{p}(\Omega)$.

$$\implies \sigma_p(A) \cap i\mathbb{R} \subset \{0\}.$$

Trivial Point Spectrum

Theorem (E.B. Davies JEE 2005)

$$T(t) \ge 0, ||T(t)|| \le 1.$$
(a) $X = \ell^p$
(b) or $X = L^p(\Omega), \ \Omega \subset \mathbb{R}^d$ open, $T(t)f \in C(\Omega) \ \forall t > 0, f \in L^p(\Omega).$

$$\implies \sigma_p(A) \cap i\mathbb{R} \subset \{0\}.$$

Theorem

$$T(t) \ge 0, \|\lambda(\lambda - A)^{-1}\| \le M \ (\lambda > 0),$$

$$T(t_0) \text{ kernel operator for some } t_0 > 0.$$

$$\implies \sigma(A) \cap i\mathbb{R} \subset \{0\}.$$

Remark

(a) or (b)
$$\Rightarrow$$
 $T(t)$ is a kernel operator.

Wolfgang Arendt

Asymptotic Behaviour of Semigroups before 2000

Theorem

 $X = L^{p}, T(t) \ge 0, ||T(t)|| \le M, T(t)$ kernel operator, T irreducible, Ker $A \ne \{0\}$. Then $\lim_{t\to\infty} T(t)f = Pf, f \in L^{p}, P$ a rank-1-projection.

G. Greiner: Spektrum and Asymptotik stark stetiger Halbgruppen positiver Operatoren. Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse (1982), 3. Abhandlung.

W.A.: Positivity 2008

Thank you for your attention!