Semigroup Growth Bounds

First Meeting on Asymptotics of Operator Semigroups

E.B. Davies

King's College London

Oxford, September 2009

E.B. Davies (KCL)

Semigroup Growth Bounds

Oxford, September 2009 1 / 19

There are several distinct issues for a one-parameter semigroup $T_t = e^{At}$ acting in a Banach space \mathcal{B} .

- The long time asymptotics of $\|T_t\|$;
- The short time asymptotics of $||T_t||$;
- The intermediate time behaviour of $||T_t||$;
- The spectrum of *A*;
- The behaviour of the norms of the resolvent operators $R_z = (zl A)^{-1}$.

Every semigroup has a bound of the form

 $\|T_t\| \leq M \mathrm{e}^{at}$ for all $t \geq 0$.

This implies that

$$\|R_z\| \leq M(\operatorname{Re}(z) - a)^{-1}$$

for all z satisfying $\operatorname{Re}(z) > a$.

The precise form of the converse was proved by Feller, Miyadera and Phillips.

If \mathcal{B} is a Hilbert space and

 $\operatorname{Re}\left\langle Af,f
ight
angle \leq a$

for all $f \in Dom(A)$ then

 $\|T_t\| \le e^{at}$ for all $t \ge 0$

and conversely.

The Asymptotic Growth Rate

The infimum of all possible *a* is given by

$$\omega_0 = \lim_{t \to +\infty} t^{-1} \log(\|T_t\|).$$

This implies that

 $\operatorname{Spec}(A) \subseteq \{z : \operatorname{Re}(z) \leq \omega_0\}$

and

 $||T_t|| \ge e^{\omega_0 t}$ for all t > 0.

$\operatorname{Spec}(T_t) \supseteq \left\{ \operatorname{e}^{zt} : z \in \operatorname{Spec}(A) \right\}.$

but the two sides need not be equal.

¹Zabczyk 1975

$\operatorname{Spec}(T_t) \supseteq \left\{ \operatorname{e}^{zt} : z \in \operatorname{Spec}(A) \right\}.$

but the two sides need not be equal.

There exists a one-parameter group T_t acting in a Hilbert space \mathcal{H} such that

 $\operatorname{Spec}(A) \subseteq i\mathbf{R}$

but

$$\|T_t\| = e^{|t|}$$
 for all $t \in \mathbf{R}$.

¹Zabczyk 1975

The Schrödinger Group²

The operators $T_t = e^{i\Delta t}$ are unbounded on $L^p(\mathbb{R}^n)$ for all $p \neq 2$ and $0 \neq t \in \mathbb{R}$ in spite of the fact that

 $\operatorname{Spec}(\Delta) \subseteq \mathbf{R}.$

²Hormander 1960

The Schrödinger Group²

The operators $T_t = e^{i\Delta t}$ are unbounded on $L^p(\mathbb{R}^n)$ for all $p \neq 2$ and $0 \neq t \in \mathbb{R}$ in spite of the fact that

 $\operatorname{Spec}(\Delta) \subseteq \mathbf{R}.$

The resolvents of Δ satisfy

 $\|R_z\| \leq c_p |\mathrm{Im}\,(z)|^{-1}$

for all $z \notin \mathbf{R}$, where $c_p \to 1$ as $p \to 2$.

²Hormander 1960

If $\mathcal{H} = L^2(-\pi,\pi)$ and $0 < \varepsilon < 2$ and

$$(Lf)(\theta) = \varepsilon \frac{\mathrm{d}}{\mathrm{d}\theta} \left\{ \sin(\theta) \frac{\mathrm{d}f}{\mathrm{d}\theta} \right\} + \frac{\mathrm{d}f}{\mathrm{d}\theta}$$

then

$$\frac{\mathrm{d}f}{\mathrm{d}t} = Lf(t)$$

describes the evolution of a thin fluid layer inside a rotating cylinder.

³Benilov, O'Brien, Sazonov, Weir et al. 2000-2008

If $0 < \varepsilon < 2$ then *L* has purely imaginary spectrum consisting of a discrete sequence of eigenvalues.

⁴Benilov, O'Brien, Sazonov, Weir et al. 2000-2008

If $0 < \varepsilon < 2$ then *L* has purely imaginary spectrum consisting of a discrete sequence of eigenvalues.

If $\varepsilon > 2$ then the spectrum of *L* includes the entire imaginary axis and probably the entire complex plane.

⁴Benilov, O'Brien, Sazonov, Weir et al. 2000-2008

If $0 < \varepsilon < 2$ then *L* has purely imaginary spectrum consisting of a discrete sequence of eigenvalues.

If $\varepsilon > 2$ then the spectrum of *L* includes the entire imaginary axis and probably the entire complex plane.

If $0 < \varepsilon < 2$ the resolvent operators are all compact but e^{Lt} is unbounded for all $t \neq 0$.

⁴Benilov, O'Brien, Sazonov, Weir et al. 2000-2008

An Example with an Oscillating Norm

Let

$$(T_t f)(x) = \frac{a(x+t)}{a(x)}f(x+t)$$

for all $f \in L^2(0,\infty)$ and all $t \ge 0$.

An Example with an Oscillating Norm

Let

$$(T_t f)(x) = \frac{a(x+t)}{a(x)}f(x+t)$$

for all $f \in L^2(0,\infty)$ and all $t \ge 0$.

If c > 1 then the choice

$$a(x) = 1 + (c - 1)\sin^2(\pi x/2)$$

leads to $||T_{2n}|| = 1$ and $||T_{(2n+1)}|| = c$ for all positive integers *n*.

Study of N(t)

We define N(t) to be the upper log-concave envelope of $||T_t||$.

In other words $\nu(t) = \log(N(t))$ is defined to be the smallest concave function satisfying $\nu(t) \ge \log(||T_t||)$ for all $t \ge 0$.

⁵The following is based on EBD 2004, inspired by L N Trefethen

E.B. Davies (KCL)

Semigroup Growth Bounds

Oxford, September 2009 11 / 19

We define N(t) to be the upper log-concave envelope of $||T_t||$.

In other words $\nu(t) = \log(N(t))$ is defined to be the smallest concave function satisfying $\nu(t) \ge \log(||T_t||)$ for all $t \ge 0$.

It is immediate that N(t) is continuous for t > 0, and that

 $1 = N(0) \leq \lim_{t \to 0+} N(t).$

 5 The following is based on EBD 2004, inspired by L N Trefethen

E.B. Davies (KCL)

Semigroup Growth Bounds

We replace T_t by $T_t e^{-\omega_0 t}$ or, equivalently, normalize our problem by assuming that $\omega_0 = 0$.

This implies that $\operatorname{Spec}(A) \subseteq \{z : \operatorname{Re}(z) \le 0\}$.

It also implies that $||T_t|| \ge 1$ for all $t \ge 0$.

We replace T_t by $T_t e^{-\omega_0 t}$ or, equivalently, normalize our problem by assuming that $\omega_0 = 0$.

This implies that $\operatorname{Spec}(A) \subseteq \{z : \operatorname{Re}(z) \le 0\}$.

It also implies that $||T_t|| \ge 1$ for all $t \ge 0$.

N(t) is increasing function of t but it increases sub-exponentially as $t \rightarrow +\infty$.

The Legendre Transform

We study the function N(t) via a transform, defined for all $\omega > 0$ by

 $M(\omega) = \sup\{\|T_t\|e^{-\omega t} : t \ge 0\}.$

 $M(\omega)$ is a monotonic decreasing function of ω which satisfies

 $\lim_{\omega \to +\infty} M(\omega) = \limsup_{t \to 0} \|T_t\|.$

Hence $M(\omega) \ge 1$ for all $\omega > 0$.

The Legendre Transform

We study the function N(t) via a transform, defined for all $\omega > 0$ by

 $M(\omega) = \sup\{\|T_t\|e^{-\omega t} : t \ge 0\}.$

 $M(\omega)$ is a monotonic decreasing function of ω which satisfies

 $\lim_{\omega\to+\infty}M(\omega)=\limsup_{t\to0}\|T_t\|.$

Hence $M(\omega) \ge 1$ for all $\omega > 0$.

 $N(t) = \inf\{M(\omega)e^{\omega t} : 0 < \omega < \infty\}$

for all t > 0 by the theory of the Legendre transform.

Theorem

If a > 0, $b \in \mathbb{R}$ and $a \| R_{a+ib} \| = c \ge 1$ then

$$M(\omega) \geq ilde{M}(\omega) := \left\{egin{array}{cc} (a-\omega)c/a & ext{if } 0 < \omega \leq r = a(1-1/c) \ 1 & ext{otherwise.} \end{array}
ight.$$

Theorem

If a > 0, $b \in \mathbf{R}$ and $a \| R_{a+ib} \| = c \ge 1$ then

 $M(\omega) \geq ilde{M}(\omega) := \left\{ egin{array}{cc} (a-\omega)c/a & ext{if } 0 < \omega \leq r = a(1-1/c) \ 1 & ext{otherwise.} \end{array}
ight.$

Proof.

The formula

$$R_{a+ib} = \int_0^\infty T_t \mathrm{e}^{-(a+ib)t} \,\mathrm{d}t$$

implies that

$$c/a \leq \int_0^\infty N(t) \mathrm{e}^{-at} \, \mathrm{d}t \leq \int_0^\infty M(\omega) \mathrm{e}^{\omega t - at} \, \mathrm{d}t = M(\omega)(a - \omega)^{-1}$$

for all ω such that $0 < \omega < a$.

The following theorem implies that if the resolvent norm is significantly larger than 1/a for some large *a* then N(t) must grow rapidly for small t > 0.

The following theorem implies that if the resolvent norm is significantly larger than 1/a for some large a then N(t) must grow rapidly for small t > 0.

TheoremIf
$$a \| R_{a+ib} \| = c \ge 1$$
 and $r = a(1 - 1/c)$ then $N(t) \ge \min\{e^{rt}, c\}$ for all $t \ge 0$.Proof.This uses $N(t) = \inf\{M(\omega)e^{\omega t} : \omega > 0\} \ge \inf\{\tilde{M}(\omega)e^{\omega t} : \omega > 0\}.$

Schrodinger operators

Schrödinger Operators with Non-Negative Potentials

Theorem

Let $H = -\Delta + V$, acting in $L^1(\mathbb{R}^n)$, where $V \ge 0$. Then

$$(\mathrm{e}^{-Ht}f)(x) = \int_{\mathbf{R}^n} K(t,x,y)f(y) \,\mathrm{d}y$$

where

$$0 \le K(t, x, y) \le (4\pi t)^{-n/2} e^{-|x-y|^2/4t}$$

This can be proved by functional integration or the Trotter product formula.

Theorem

Let $H = -\Delta + V$, acting in $L^1(\mathbb{R}^n)$, where V is continuous and bounded below, with $c = -\inf\{V(x) : x \in \mathbb{R}^N\}.$

Then

$$c = \min\{\omega : \|e^{-Ht}\| \le e^{\omega t} \text{ for all } t \ge 0\}.$$

Note that the situation is quite different in $L^2(\mathbb{R}^n)$.

Theorem (Murata 1984, 1985 and Davies-Simon 1991.)

Let $N \ge 3$. There exists a Schrödinger semigroup e^{-Kt} acting in $L^1(\mathbb{R}^N)$ and positive constants c_1 , c_2 , σ_1 and σ_2 such that

 $c_1(1+t)^{\sigma_1} \le \|\mathrm{e}^{-\kappa t}\| \le c_2(1+t)^{\sigma_2}$

for all $t \ge 0$, even though K is non-negative considered as an operator acting in $L^2(\mathbb{R}^N)$.

The constants σ_1 and σ_2 are more or less equal.

The proof involves zero energy resonances.

The Explicit Example

The potential is given by

$$V(x) = \begin{cases} -c|x|^{-2} & \text{if } |x| \ge 1\\ 0 & \text{otherwise.} \end{cases}$$

where

$$0 < c < \frac{(n-2)^2}{4}.$$

The Explicit Example

The potential is given by

$$V(x) = \begin{cases} -c|x|^{-2} & \text{if } |x| \ge 1\\ 0 & \text{otherwise.} \end{cases}$$

where

$$0 < c < \frac{(n-2)^2}{4}.$$

The zero energy resonance is of the form

$$0 < \eta(x) = \begin{cases} |x|^{-\alpha_1} - \beta |x|^{-\alpha_2} & \text{if } |x| \ge 1\\ 1 - \beta & \text{otherwise} \end{cases}$$

for certain positive constants α_1 , α_2 and β .