Stability of operator semigroups with regular norm-behaviour

László Kérchy

Ciprian Foias:

"Among the other outstanding works of Béla in that time let me mention the following two: First Béla's discovery that the Banch generalized limit (which until then was only a mathematical curiosity) can be made a nonconstructive but very effective tool in Operator Theory. A lot of mathematics came out from that discovery."

(Memorial Conference for Béla Szőkefalvi-Nagy, 1999, Szeged)

 \mathcal{H} complex Hilbert space, dim $\mathcal{H}=\aleph_0$ (Many of the following results can be extended to the general Banach space setting.)

 $T \in \mathcal{L}(\mathcal{H})$ power bounded operator:

$$\sup \{||T^n|| : n \in \mathbb{Z}_+\} < \infty.$$

$$\mathcal{H}_0(T) := \left\{ x \in \mathcal{H} : \inf_n ||T^n x|| = 0 \right\}$$
$$= \left\{ x \in \mathcal{H} : \lim_n ||T^n x|| = 0 \right\}$$
set of stable vectors

Classification:

$$T \in C_0$$
. if $\mathcal{H}_0(T) = \mathcal{H}$, T is stable

$$T \in C_1$$
. if $\mathcal{H}_0(T) = \{0\}$, T is asymp. non-vanishing

$$T \in C_{\cdot j}$$
 if $T^* \in C_j$.

$$C_{ij} = C_{i \cdot} \cap C_{\cdot j} \quad (i, j = 1, 2)$$

Sz.-Nagy's technique relying on Banach limits yields:

 $\exists V \in \mathcal{L}(\mathcal{K})$ isometry, $\exists X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$:

- $(1) (X\mathcal{H})^- = \mathcal{K},$
- (2) $\ker X = \mathcal{H}_0(T),$
- (3) XT = VX.

 $T \in C_1$. \iff X quasiaffinity $\implies T \prec V$

Sz.-Nagy – Foias: If $T \in C_{11}$ then

- (1) V is unitary,
- (2) $T \sim V$, that is $T \prec V$ and $V \prec T$

Sz.-Nagy:

If T is invertible and T^{-1} is also power bounded, then

- (1) V is unitary,
- (2) $T \approx V$.

Quasisimilarity:

preserves the existence of proper hyperinv. subsp., does not preserve spectra, canonical models for important classes of operators.

Similarity:

preserves the (hyper)invariant subspace lattices, preserves spectra.

Sz.-Nagy – Foias: rich theory for contractions

Foguel: T power bounded $\iff T \approx Q$ contraction

Müller – Tomilov:

 $T \in C_{11}$ power bounded $\iff T \approx Q$ contraction

T power bounded $\implies T \sim Q$ contraction

T polynomially bounded, if $\exists\, K\in\mathbb{R}_+,\ \forall\, p$ polynomial, $\|p(T)\|\leq K\max\{|p(z)|:|z|\leq 1\}.$

Pisier: T pol. bounded $\implies T \approx Q$ contraction

Bercovici – Prunaru:

T pol. bounded $\Longrightarrow \exists Q_1, Q_2 \text{ contractions}, Q_1 \prec T \prec Q_2$

OPEN: T pol. bounded $\Longrightarrow T \sim Q$ contraction?

AIM: Associate canonical isometries with non-power bounded operators extending Sz.-Nagy's method.

$$\ell^{\infty} := \ell^{\infty}(\mathbb{Z}_{+})$$
 Banach algebra

 $L \in (\ell^{\infty})^{\#}$ is a Banach limit, if

(1)
$$||L|| = L(\mathbf{1}) = 1$$
,

(2)
$$L(\xi) = L(B\xi) \ \forall \xi \in \ell^{\infty}$$
.

(Here $B\xi = \eta$, where $\eta(n) := \xi(n+1)$.)

Notation: L-lim $\xi = L(\xi)$

 \mathcal{B} : set of all Banach limits

If $\xi \in \ell^{\infty}$ is real, then

$$\{L(\xi): L \in \mathcal{B}\} = [\hat{q}(\xi), \check{q}(\xi)],$$

where

$$\check{q}(\xi) := \inf \left\{ \lim \sup_{k} \frac{1}{r} \sum_{j=1}^{r} \xi(n_j + k) : r \in \mathbb{N}, n_1, \dots, n_r \in \mathbb{Z}_+ \right\},$$

$$\hat{q}(\xi) := \sup \left\{ \lim \inf_{k} \frac{1}{r} \sum_{j=1}^{r} \xi(n_j + k) : r \in \mathbb{N}, n_1, \dots, n_r \in \mathbb{Z}_+ \right\}.$$

(Consequence of the Hahn-Banach Theorem.)

 $\xi \in \ell^{\infty}$ (complex) almost converges to $c \in \mathbb{C}$, if $\{L(\xi): L \in \mathcal{B}\} = \{c\}.$

Notation: a- $\lim \xi = c$

Lorentz: a-lim $\xi = c \iff$ $\lim_k \sup_n \left| \frac{1}{k} \sum_{j=n}^{n+k-1} \xi(j) - c \right| = 0.$

Lemma. Given $\xi \in \ell^{\infty}$ and $c \in \mathbb{C}$, TFAE:

- (i) a- $\lim |\xi c\mathbf{1}| = 0$,
- (ii) $L(\xi \eta) = cL(\eta) \ \forall \eta \in \ell^{\infty}, \ \forall L \in \mathcal{B}.$

 $T \in \mathcal{L}(\mathcal{H})$ is an arbitrary operator

$$p: \mathbb{Z}_+ \to (0, \infty)$$
 is a gauge function, if $\exists c \in (0, \infty), \text{ a-lim } \left| \frac{p(n+1)}{p(n)} - c \right| = 0.$

T has a p-regular norm-sequence, if

- (1) $||T^n|| \le p(n) \ \forall n \in \mathbb{Z}_+$ is true,
- (2) a- $\lim_{n} ||T^n||/p(n) = 0$ fails.

Then c = r(T).

The construction of the associated isometry:

$$L \in \mathcal{B}$$

$$w(x,y) := L\text{-}\lim\langle T^n x, T^n y \rangle p(n)^{-2} \quad (x,y \in \mathcal{H})$$

$$w(Tx, Ty) = L - \lim \langle T^{n+1}x, T^{n+1}y \rangle p(n+1)^{-2} \cdot p(n+1)^{2} p(n)^{-2}$$
$$= c^{2}w(x, y)$$

$$\exists ! \ A \in \mathcal{L}(\mathcal{H}), \ w(x,y) = \langle Ax, y \rangle$$

$$\mathcal{K} := (A\mathcal{H})^-; \quad X \in \mathcal{L}(\mathcal{H}, \mathcal{K}), \ Xx := A^{1/2}x$$

$$T^*AT = c^2A \implies ||XTx|| = c||Xx|| \ \forall x \in \mathcal{H}$$

$$\exists ! \ V \in \mathcal{L}(\mathcal{K}) \ \text{isometry}, \ XT = cVX$$

 $L \in \mathcal{B}$ can be chosen so that

$$\ker X = \mathcal{H}_0(T, p) := \{ x \in \mathcal{H} : \text{a-}\lim ||T^n x||/p(n) = 0 \}.$$

Connection between the commutants:

$$\forall C \in \{T\}', \ \exists! \ D \in \{V\}', \ XC = DX;$$

$$\gamma: \{T\}' \to \{V\}', \ C \mapsto D$$
 contractive algebra-hom.;

$$\sigma(C) \supset \sigma(D)$$
 and $\sigma_{\mathrm{p}}(C^*) \supset \sigma_{\mathrm{p}}(D^*) \quad \forall C \in \{T\}'.$

Properties of the isometry $V \in \mathcal{L}(\mathcal{K})$:

- (a) $\sigma(V) = \{1\} \implies V = I$ (Gelfand's theorem in the Banach space setting);
- (b) dim $K > 1 \implies V$ is not supercyclic $(\not\exists u \in K, \{\lambda V^n u : \lambda \in \mathbb{C}, n \in \mathbb{Z}_+ \}$ is dense in K);
- (c) $\{V\}''$ is semisimple $(Q \in \{V\}'' \text{ is quasinil potent } \Longrightarrow Q = 0).$

Consequences for operators with regular norm-sequence:

 $T \in \mathcal{L}(\mathcal{H})$ has p-regular norm-sequence

Theorem A. If $\sigma(T) \cap r(T)\mathbb{T}$ is countable and $\sigma_p(T^*) \cap r(T)\mathbb{T} = \emptyset$, then $\mathcal{H}_0(T,p) = \mathcal{H}$, that is a-lim $||T^n x||/p(n) = 0 \quad \forall x \in \mathcal{H}$.

(Extension of the Arendt–Batty–Lyubich–Vu Theorem.)

Theorem B. If T is supercyclic, then $\dim \mathcal{H}_0(T,p)^{\perp} \leq 1$.

(Extension of the Ansari–Bourdon Theorem: supercyclic power bounded operators are stable.)

Theorem C. (K – Vu).

If T is cyclic and $C \in \{T\}'$ is quasinilpotent, then $\operatorname{a-lim} \|T^n Cx\|/p(n) = 0 \quad \forall x \in \mathcal{H}.$

T has regular norm-sequence $\implies r(T) > 0$

r(T) > 0, $\{||T^n||^{1/n}\}$ decreasing $\implies T$ has reg. norm-seq.

 $r(T) > 0 \iff T$ has regular norm-seq.

(K – Müller: complete characterization)

 $T \in \mathcal{L}(\mathcal{H}) \hookrightarrow \rho: \mathbb{Z}_+ \to \mathcal{L}(\mathcal{H}), n \mapsto T^n \text{ representation}$

S discrete abelian semigroup

Assume: S is additive, cancellative, 0 is the only invertible element

Example: $S = \mathbb{Z}_+^k$

 $s_1 \prec s_2 \text{ if } \exists s_3, \ s_1 + s_3 = s_2$

 (S, \prec) directed set \rightarrow limiting process is available

 \hat{q} and \check{q} can be defined

 $M \in \ell^{\infty}(S)^{\#}$ is an invariant mean, if

(1)
$$||M|| = M(\mathbf{1}) = 1$$
,

(2)
$$M(\xi_t) = M(\xi) \ \forall \xi \in \ell^{\infty}(S), \ \forall t \in S.$$

(Here
$$\xi_t(s) := \xi(s+t)$$
.)

 $\mathcal{M}(S)$: set of invariant means

M.M. DAY: $\mathcal{M}(S) \neq \emptyset$, and $\mathcal{M}(S)$ is infinite provided S has no finite ideals.

 $\xi \in \ell^{\infty}(S)$ almost converges to $c \in \mathbb{C}$, if

$$\{M(\xi): M \in \mathcal{M}(S)\} = \{c\}.$$

Notation: $a-\lim \xi = c$

 $\rho: S \to \mathcal{L}(\mathcal{H})$ representation:

(1)
$$\rho(0) = I$$
,

(2)
$$\rho(s+t) = \rho(s)\rho(t) \quad \forall s, t \in S.$$

 $p: S \to (0, \infty)$ gauge function, if

$$\forall t \in S, \exists c_p(t) \in (0, \infty), \text{ a-lim}_s |p(s+t)/p(s) - c_p(t)| = 0.$$

 ρ has p-regular norm-function, if

- (1) $\|\rho(s)\| \le p(s) \quad \forall s \in S$ is true,
- (2) a- $\lim_{s} \|\rho(s)\|/p(s) = 0$ fails.

 $c_{\rho}(s) := c_{p}(s) \ (s \in S)$ is independent of the choice of p, positive character on S, $c_{\rho}(s) \leq r(\rho(s)) \quad \forall \, s \in S$.

$$S_r(\rho) := \left\{ s \in S : c_\rho(s) = r(\rho(s)) \right\} \subset S$$

If S is generated by $\{s_1, \ldots, s_n\}$, then $S_r(\rho) \supset (s_1 + \cdots + s_n) + S$.

If $\rho(s)$ is invertible for every $s \in S$, then $S_r(\rho) = S$.

In both cases $S_r(\rho)$ is absorbing:

$$\forall s \in S, \exists s' \in S_r(\rho), s + s' \in S_r(\rho).$$

 \mathcal{A}_{ρ} : abelian Banach algebra, generated by $\{\rho(s):s\in S\}$

 Σ_{ρ} : spectrum of \mathcal{A}_r

Algebraic spectrum of ρ :

$$\sigma_{\mathbf{a}}(\rho) := \{ h \circ \rho : h \in \Sigma_{\rho} \} \subset S^{\#} \text{ (characters on } S).$$

Peripheral spectrum of ρ :

$$\sigma_{\rm per}(\rho) := \{ \chi \in \sigma_{\rm a}(\rho) : |\chi| = c_{\rho} \}.$$

If $S_r(\rho)$ is absorbing, then $\sigma_{\rm per}(\rho) \subset \sigma_{\rm ap}(\rho)$.

Theorem. If $\sigma_{per}(\rho)$ is countable and $\sigma_{p}(\rho^*) \cap \sigma_{per}(\rho) = \emptyset$, then

$$\operatorname{a-lim}_s \|\rho(s)x\|/p(s) = 0 \quad \forall x \in \mathcal{H}.$$

(Extension of ABLV)

Locally compact abelian semigroups

L. K. – Z. Léka

G locally compact, σ -compact, Hausdorff abelian group

S closed subsemigroup of G:

$$S - S = G, \ S \cap (-S) = \{0\}, \ S^{\circ} \neq \emptyset$$

Example: $G = \mathbb{R}^k$, $S = \mathbb{R}^k_+$

 $s \prec t \text{ if } t - s \in S$

 (S, \prec) directed set \rightarrow limiting process

 $\widetilde{\mu}$ Haar measure on G

 μ restriction of $\widetilde{\mu}$ to S

$$L^\infty(S):=L^\infty(\mu),\ L^1(S):=L^1(\mu)$$

 $M \in L^{\infty}(S)^{\#}$ is an invariant mean, if

- (1) $||M|| = M(\mathbf{1}) = 1$,
- (2) $M(f) = M(f_t) \quad \forall f \in L^{\infty}(S), \ \forall t \in S.$

 $\mathcal{M}(S)$ set of invariant means

Markov-Kakutani Fixed Point Theorem $\implies \mathcal{M}(S) \neq \emptyset \implies \exists \{K_n\}_{n=1}^{\infty} \text{ compact sets in } S^{\circ}:$

- (1) $K_n^{\circ} \neq \emptyset \quad \forall n,$
- (2) $\lim_n \sup_{s \in K} \mu((K_n + s) \triangle K_n) / \mu(K_n) = 0$ $\forall K \subset S \text{ compact.}$

Folner sequence

$$\mathcal{G} := \left\{ g \in L^1(S) : g \ge 0 \text{ and } \int_S g \, d\mu = 1 \right\}$$

$$\forall f \in L^{\infty}(S), \ \forall g \in \mathcal{G}, \ f * g \in L^{\infty}(S), \text{ where}$$

$$(f * g)(t) := \int_{S} f(s+t)g(s) \, d\mu(s)$$

 $M \in L^{\infty}(S)^{\#}$ is a topologically invariant mean, if

$$(1) ||M|| = M(\mathbf{1}) = 1,$$

(2)
$$M(f * g) = M(f) \quad \forall f \in L^{\infty}(S), \ \forall g \in \mathcal{G}.$$

 $\mathcal{M}_{\mathrm{t}}(S)$ set of topologically invariant means

$$\mathcal{M}_{\mathrm{t}}(S) \subset \mathcal{M}(S)$$

 $\mathcal{M}_{\mathrm{t}}(S) \neq \mathcal{M}(S)$ if S is non-compact and non-discrete

If $K \subset S$ is compact and $\mu(K) > 0$, then $\varphi_K \in L^{\infty}(S)^{\#} \text{ and } \|\varphi_K\| = \varphi_K(\mathbf{1}) = 1, \text{ where}$ $\varphi_K(f) := \mu(K)^{-1} \int_K f \, d\mu.$

 $\mathcal{M}_{\mathrm{t}}(S) = \text{weak-* closure of the convex hull of all}$ weak-* cluster points of the sequences $\{\varphi_{K_n+s_n}\}_{n=1}^{\infty}, \quad \{s_n\}_{n=1}^{\infty} \subset S,$ $\text{where } \{K_n\}_n \text{ is any fixed Folner sequence.}$

 $f \in L^{\infty}(S)$ almost converges to $c \in \mathbb{C}$, if $\left\{M(f): M \in \mathcal{M}(S)\right\} = \{c\}.$

Notation: a- $\lim f = c$

 $f \in L^{\infty}(S)$ topologically almost converges to $c \in \mathbb{C}$, if $\{M(f): M \in \mathcal{M}_{\mathrm{t}}(S)\} = \{c\}.$

Notation: $ta-\lim f = c$

a-lim $f = c \implies$ ta-lim $f = c \iff$ $\lim_n \sup_{t \in S} \left| \mu(K_n)^{-1} \int_{K_n} f(t+s) \, d\mu(s) - c \right| = 0,$ where $\{K_n\}_n$ is a Folner sequence.

 $\rho: S \to \mathcal{L}(\mathcal{H})$ is a representation:

- (1) $\rho(0) = I$,
- (2) $\rho(s+t) = \rho(s)\rho(t) \quad \forall s, t \in S,$
- (3) $\rho_x: S \to \mathcal{H}, \ s \mapsto \rho(s)x$ is continuous $\forall x \in \mathcal{H}$.

 $p: S \to [1, \infty)$ is a gauge function, if

- (1) locally bounded, measurable,
- (2) $\forall t \in S, p_t/p \in L^{\infty}(S),$
- (3) $\forall t \in S, \exists c_p(t) \in (0, \infty),$ $\text{a-lim}_s |p(t+s)/p(s) - c_p(t)| = 0.$

(Topological gauge functions can be defined analogously.)

 ρ has p-regular norm-function, if

- (1) $\|\rho(s)\| \le p(s)$ holds $\forall s \in S$,
- (2) a- $\lim_{s} \|\rho(s)\|/p(s) = 0$ fails.

 $c_{\rho} := c_{p} \colon S \to [1, \infty)$ is independent of the choice of p, continuous,

$$c_{\rho}(s+t) = c_{\rho}(s)c_{\rho}(t) \quad \forall s, t \in S,$$

 $c_{\rho}(s) \le r(\rho(s)) \quad \forall s \in S.$

 $\chi: S \to \mathbb{C}$ is a character, if

- (1) $\chi(0) = 1$,
- (2) $\chi(s+t) = \chi(s)\chi(t) \quad \forall s, t \in S,$
- (3) continuous.

 $S^{\#}$: set of all characters

 $S_{\mathrm{b}}^{\#} := \left\{\chi \in S^{\#} : \chi(s) \neq 0 \; \forall \, s \in S \right\} \; \; \text{balanced characters}$

 $C_c(S)$: continuous functions with compact support

$$\forall f \in C_c(S), \ \widehat{f}(\rho) \in \mathcal{L}(\mathcal{H}), \text{ where}$$

$$\widehat{f}(\rho)x := \int_{S} f(s)\rho(s)x \,d\mu(s) \quad (x \in \mathcal{H});$$

$$\widehat{f}(\chi) := \int_S f(s)\chi(s) \, d\mu(s) \quad (\chi \in S^\#)$$
 Fourier transform

Algebraic spectrum of ρ :

$$\sigma_{\mathbf{a}}(\rho) := \left\{ \chi \in S^{\#} : |\widehat{f}(\chi)| \le \|\widehat{f}(\rho)\| \quad \forall f \in C_c(S) \right\}$$

Balanced spectrum of ρ :

$$\sigma_{\mathbf{b}}(\rho) := \sigma_{\mathbf{a}}(\rho) \cap S_{\mathbf{b}}^{\#}$$

Spectrum of ρ :

$$\sigma(\rho) := \left\{ \chi \in \sigma_{\mathbf{a}}(\rho) : |\chi| \le c_{\rho} \right\}$$

Peripheral spectrum of ρ :

$$\sigma_{\rm per}(\rho) := \{ \chi \in \sigma(\rho) : |\chi| = c_{\rho} \}$$

 $\sigma_{\rm b}(\rho) \subset \sigma(\rho)$ always holds

$$S = \mathbb{R}^k_+ \implies S^\# = S_b^\# \implies \sigma_a(\rho) = \sigma_b(\rho) = \sigma(\rho)$$

Constructing associated isometric representation, applying results of Batty and Vu on isometric representations, we obtain the following extension of ABLV (related to a result of Batty and Yeates):

Theorem.

If $\sigma_{\rm per}(\rho)$ is countable and $\sigma_{\rm p}(\rho^*) \cap \{\chi \in S^\# : |\chi| = c_\rho\} = \emptyset$, then

$$\operatorname{a-lim}_s \|\rho(s)x\|/p(s) = 0 \quad \forall x \in \mathcal{H},$$

and so

$$\lim_n \mu(K_n)^{-1} \int_{K_n} \|\rho(s)x\|/p(s) d\mu(s) = 0 \quad \forall x \in \mathcal{H},$$
 where $\{K_n\}_n$ is any Folner sequence.

One-parameter semigroups: $S = \mathbb{R}_+$

 $T: \mathbb{R}_+ \to \mathcal{L}(\mathcal{H})$ representation (C_0 -semigroup) with p-regular norm-function

Then
$$c_{\rho}(s) = r(T(s)) = e^{\omega_0 s} \quad \forall s \in \mathbb{R}_+, \text{ where}$$

$$\omega_0 := \lim_{s \to \infty} s^{-1} \log ||T(s)||$$

$$= \inf \left\{ \omega \in \mathbb{R} : \exists K \in \mathbb{R}_+, \forall s \in \mathbb{R}_+, ||T(s)|| \le K e^{\omega s} \right\}.$$

 $\Psi: \mathbb{C} \to \mathbb{R}_+^{\#}, \ \alpha \mapsto \chi_{\alpha} \text{ identification, where } \chi_{\alpha}(s) := e^{\alpha s}$

Spectrum of T:

$$\sigma(T) := \{ z \in \mathbb{C} : |\widehat{f}(z)| \le \|\widehat{f}(T)\| \ \forall f \in C_c(\mathbb{R}_+) \},$$
where $\widehat{f}(z) := \int_0^\infty f(s)e^{zs} ds$ Laplace transform.

Peripheral spectrum of T:

$$\sigma_{\rm per}(T) := \{ z \in \sigma(T) : \text{Re } z = \omega_0 \}.$$

Infinitesimal generator of T:

$$A: \mathcal{D} \to \mathcal{H}, \ Ax := \lim_{s \to 0} s^{-1}(T(s)x - x)$$

closed linear operator

$$\sigma(A) \subset \{z \in \mathbb{C} : \text{Re } z \leq \omega_0\} \text{ closed}$$

 $\rho_{\infty}(A)$ component of $\mathbb{C} \setminus \sigma(A)$ containing $\omega_0 + 1$

$$\sigma(T) = \mathbb{C} \setminus \rho_{\infty}(A) \implies \sigma_{\mathrm{per}}(T) = \{ z \in \sigma(A) : \operatorname{Re} z = \omega_0 \}$$

$$\sigma_{\mathbf{p}}(T^*) = \{ \chi_{\alpha} : \alpha \in \sigma_{\mathbf{p}}(A^*) \}$$

Theorem.

then $\forall x \in \mathcal{H}$,

If
$$\sigma(A) \cap \{z \in \mathbb{C} : \text{Re } z = \omega_0\}$$
 is countable and $\sigma_p(A^*) \cap \{z \in \mathbb{C} : \text{Re } z = \omega_0\} = \emptyset$,

$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}_+} \mu(K_n)^{-1} \int_{K_n} ||T(s+t)x|| / p(s+t) \, ds = 0,$$

where $\{K_n\}_n$ is any Folner sequence (e.g., $K_n = [0, n]$).

From the extension of the Ansari–Bourdon Theorem to representations of discrete semigroups we can derive:

Theorem.

If $T: \mathbb{R}_+ \to \mathcal{L}(\mathcal{H})$ is a supercyclic, bounded representation, consisting of operators with dense range, then T is stable.

G locally compact (not necessarily abelian) group

 $\widetilde{\mu}$ is a (left) Haar measure on G, if

- (1) regular Borel measure,
- (2) $\widetilde{\mu}(x+E) = \widetilde{\mu}(E) \ \forall x \in G, \ \forall E \subset G \text{ Borel set.}$

$$L^{\infty}(G) := L^{\infty}(\widetilde{\mu})$$

 $M \in L^{\infty}(G)^{\#}$ is a left invariant mean, if

- $(1) ||M|| = M(\mathbf{1}) = 1,$
- (2) $M(f_t) = M(f) \ \forall f \in L^{\infty}(G), \ \forall t \in G,$ where $f_t(s) := f(t+s).$

 $\mathcal{M}(G)$: set of left invariant means

- (A) G is amenable: $\mathcal{M}(G) \neq \emptyset$
- (B) $\forall \rho: G \to \mathcal{L}(\mathcal{H})$ bounded representation, $\exists \psi: G \to \mathcal{L}(\mathcal{K})$ unitary representation, $\exists S \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ invertible, $\rho(s) = S^{-1}\psi(s)S \ \forall s \in G$.

 $DAY - DIXMIER: (A) \implies (B)$

(Extension of Sz.-Nagy's theorem)

OPEN: (B) \Longrightarrow (A)?