An index theorem,
the spectral flow,
and the spectral shift function
for relatively trace class perturbations

Fritz Gesztesy Yuri Latushkin Konstantin Makarov Fedor Sukochev Yuri Tomilov

University of Missouri-Columbia, USA University of New South Wales, Australia Nicholas Copernicus University, Poland

- 1 A sneak preview
  - The Fredholm index and the spectral flow
  - What's new?
- 2 Literature
- 3 The main results
  - The index and the  $\xi$ -function
  - The Pushnitski formula
  - Difference of the Morse projections
- 4 Examples
  - Schrödinger operator
  - Dirac operator
- 5 The Krein Spectral Shift Function
- 6 Intermezzo
- 7 Setting and assumptions
- 8 Major steps in the proofs
- 9 Double operator integrals
- 10 Proof of the main lemma



## **Prehistory**

UNC - Chapel Hill Winter 2006 Maslov index

Chris Jones / Deng: Morse theory for PDEs

Chris Jones and Richard Rimanyi

Tomilov Torun 2006, 2007 – A. Pushnitski

J. Robbin and D. Salamon, The spectral flow and the Maslov index,

Bull. London Math. Soc. **27**, 1–33 (1995)

"Atiyah, Patodi and Singer studied operators of the form  $D_A = rac{d}{dt} + A(t)$ "

Here and below  $(D_A u)(t) = u'(t) + A(t)u(t)$ ,  $u \in L^2(\mathbb{R}; \mathcal{H})$ ,  $t \in \mathbb{R}$ 

The Fredholm index of  $D_A$ , Ind  $D_A = \dim \ker D_A - \dim \ker D_A^*$ 

is equal to the spectral flow of  $\{A(t)\}_{t=-\infty}^{+\infty}$ 

A(t) are unbounded selfadjoint operators on a Hilbert space  ${\cal H}$  with

compact resolvent (thus discrete spectrum) and constant domains

 $A_{\pm} = \lim_{t \to \pm \infty} A(t)$  exist and are invertible

 $A_+$  and  $A_-$  are invertible throughout the talk

# What is the spectral flow?

Spectral flow= (the number of eigenvalues of A(t) that cross 0 rightward) minus (the number of eigenvalues of A(t) that cross 0 leftward) as t runs from  $-\infty$  to  $+\infty$ 



### Before and after

We prove: Fredholm index = spectral shift function at 0 = spectral flowThis allows one to handle more general families of operators than before Before:







## Literature guide

We generalize recent results regarding  $D_A = \frac{d}{dt} + A(t)$  on  $L^2(\mathbb{R};\mathcal{H})$  in **A. Pushnitski,** The spectral flow, the Fredholm index, and the spectral shift function, in Spectral Theory of Differential Operators: M. Sh. Birman 80th Anniversary Collection, 2008, pp. 141–155. Pushnitski studied the case of trace class perturbations  $A(t) - A_-$  We study the case of **relatively** trace class perturbations  $A(t) - A_-$  E. g., when  $A_- = -\partial_x^2$  and  $A(t) = -\partial_x^2 + V(t,x)$  in  $\mathcal{H} = L^2(\mathbb{R})$ , the Schrödinger operator with sufficiently fast decaying potential

#### Earlier related papers:

**C. Callias**, Axial anomalies and index theorems on open spaces, Commun. Math. Phys. **62**, 213–234 (1978) (famous Callias' formula for  $\mathcal{H} = \mathbb{R}^d$  gives the index of the Dirac operator for odd dimensions)

## Literature guide continued

**D.** Bolle, F. Gesztesy, H. Grosse, W. Schweiger, and B. Simon, Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics, J. Math. Phys. **28**, 1512–1525 (1987) (the scalar case when A(t) is a function)

The literature on the spectral flow is endless (M. Atiyah, V. Patodi, I. Singer; B. Boos-Bavbnek, K. Furutani, P. Kirk, M. Lesch, N. Nicolaescu, J. Phillips)

There are noncommutative versions of the theory (N. Azamov, M. T. Banamaur, A. Carov, B. Dodds, A. Banaia, E. Sukashav,

M.-T. Benameur, A. Carey, P. Dodds, A. Rennie, F. Sukochev,

K. P. Wojciechowski)

A standing assumption: the resolvents of  $A_+$  and  $A_-$  are compact (or the operators  $(A_+^2 + I)^{-1/2}$  and  $(A_-^2 + I)^{-1/2}$  are compact)

We can handle:  $A_+ - A_-$  is of trace class relatively to  $A_-$ 

(e.g., this implies that the *difference* of the resolvents of  $A_+$  and  $A_-$  or the difference  $A_+(A_+^2+I)^{-1/2}-A_-(A_-^2+I)^{-1/2}$  is of trace class)

#### Third Main Theorem:

Assume that  $A(t) = A_- + B(t)$  where B(t) is an appropriate relatively trace class perturbation,  $B(t)(A_- - z)^{-1} \in \mathcal{B}_1(\mathcal{H})$ 

#### Theorem.

Under appropriate (relatively trace class perturbation) assumptions, the Fredholm index of the operator  $D_A = \frac{d}{dt} + A(t)$  on  $L^2(\mathbb{R}; \mathcal{H})$  is related to the **Krein's spectral shift function (** $\xi$ -**function)** of the operators  $A_- = \lim_{t \to -\infty} A(t)$  and  $A_+ = \lim_{t \to +\infty} A(t)$  on the Hilbert space  $\mathcal{H}$ :

$$\operatorname{Ind} D_{\mathcal{A}} = \xi_{\mathcal{H}}(0; A_+, A_-)$$

The spectral shift function  $\xi_{\mathcal{H}}(\lambda; A_+, A_-)$ ,  $\lambda \in \mathbb{R}$ , is (assumptions!)  $\xi_{\mathcal{H}}(\lambda; A_+, A_-) = \text{(the number of eigenvalues of } A(t) \text{ that cross } \lambda \text{ rightward) minus (the number of eigenvalues of } A(t) \text{ that cross } \lambda \text{ leftward)}$ 

## **Corollary**

Fredholm index of  $D_A$ = Spectral flow

### **Second Main Theorem**

Assume that  $A(t) = A_- + B(t)$  where B(t) is an appropriate relatively trace class perturbation,  $B(t)(A_- - z)^{-1} \in \mathcal{B}_1(\mathcal{H})$  Given  $D_A = \frac{d}{dt} + A(t)$ , we introduce on  $L^2(\mathbb{R}; \mathcal{H})$  the operators

$$H_1 = D_A^* D_A = -rac{d^2}{dt^2} + A(t)^2 - A'(t)$$

$$H_2 = D_A D_A^* = -\frac{d^2}{dt^2} + A(t)^2 + A'(t)$$

#### Theorem.

Under appropriate (relatively trace class perturbation) assumptions, the following **Pushnitski formula** holds:

$$\xi_{L^2(\mathbb{R};\mathcal{H})}(\lambda;H_2,H_1) = rac{1}{\pi} \int_{-\lambda^{1/2}}^{\lambda^{1/2}} rac{\xi_{\mathcal{H}}(s;A_+,A_-)\,ds}{(\lambda-s^2)^{1/2}}, ext{ a.e. } \lambda \in \mathbb{R}$$

## The index via Pushnitski's formula

Since  $A_{-}$  and  $A_{+}$  are invertible:

- $\xi(\lambda; A_+, A_-)$  is constant for a. e.  $\lambda$  near 0
- $H_1$  and  $H_2$  have no essential spectrum near zero
- therefore,  $\xi(\lambda; H_2, H_1)$  is constant for  $\lambda$  near 0 Then by Pushnitski's formula,  $\xi(\lambda; A_+, A_-) = \xi(\lambda; H_2, H_1)$  for  $\lambda$  near 0 But  $H_1 = D_A^* D_A$  and  $H_2 = D_A D_A^*$  imply:
- Ind  $D_A = \dim \ker D_A \dim \ker D_A^* = \dim \ker H_1 \dim \ker H_2$ On the other hand, properties of the  $\xi$ -function imply:
- $\xi(\lambda; H_2, H_1) = \dim \ker H_1 \dim \ker H_2$  for  $\lambda$  near 0 Putting all this together,
- Ind  $D_A = \xi(0; H_2, H_1) = \xi(0; A_+, A_-)$

#### First Main Theorem:

Assume that  $A(t) = A_- + B(t)$  where B(t) is an appropriate relatively trace class perturbation,  $B(t)(A_- - z)^{-1} \in \mathcal{B}_1(\mathcal{H})$  Recall notations

 $H_1 = D_A^* D_A = -\frac{d^2}{dt^2} + A(t)^2 - A'(t), H_2 = D_A D_A^* = -\frac{d^2}{dt^2} + A(t)^2 + A'(t)$ Introduce the "smoothed out" signum functions

$$g_z(x) = \frac{x}{\sqrt{x^2 - z}}, \quad z \in \mathbb{C} \setminus [0, \infty), \quad g(x) = \frac{x}{\sqrt{x^2 + 1}}, \quad x \in \mathbb{R}$$

#### Theorem.

Under appropriate (relatively trace class perturbation) assumptions,

- $g_z(A_+) g_z(A_-)$  is of trace class in  $\mathcal{H}$ ,
- $\bullet$   $(H_2-z)^{-1}-(H_1-z)^{-1}$  is of trace class in  $L^2(\mathbb{R};\mathcal{H})$ , and
- $\operatorname{tr}_{L^2(\mathbb{R};\mathcal{H})}((H_2-z)^{-1}-(H_1-z)^{-1})=\frac{1}{2z}\operatorname{tr}_{\mathcal{H}}(g_z(A_+)-g_z(A_-))$

## Consequences of the First Main Theorem



Define the Morse spectral projections  $E_{A_+}=E_{A_+}(0)$  and  $E_{A_-}=E_{A_-}(0)$  corresponding to the *negative* spectrum of  $A_+$  and  $A_-$ , and  $S_\pm=\operatorname{rg} E_{A_\pm}$  **Corollary** Under appropriate (relatively trace class perturbation) assumptions  $E_{A_+}-E_{A_-}$  is of trace class in  $\mathcal H$  and therefore  $\xi(0;A_+,A_-)=\operatorname{tr}(E_{A_-}-E_{A_+})=\operatorname{Ind}(E_{A_-},E_{A_+})$   $:=\dim(S_-\cap S_+^\perp)-\dim(S_-^\perp\cap S_+)$   $(=\dim S_+-\dim S_-$  provided  $\dim S_\pm<\infty$ )



## The Riesz metric and the spectral flow

The graph metric  $\|(A_+ + i)^{-1} - (A_- + i)^{-1}\|_{\mathcal{B}(\mathcal{H})}$  induces a weaker topology than the Riesz metric  $\|g(A_+) - g(A_-)\|_{\mathcal{B}(\mathcal{H})}$  defined by  $g(x) = x(x^2 + 1)^{-1/2}$  (M. Lesch 2005). Under our assumptions the path  $\{A(t)\}_{t=-\infty}^{\infty}$  is (absolutely) continuous in the Riesz metric.

The spectral flow of the continuous path  $\{A(t)\}_{t=-\infty}^{\infty}$  of selfadjoint Fredholm operators (J. Phillips 1996): Choose a subdivision  $-\infty = t_0 < t_1 < \cdots < t_{n-1} < t_n = +\infty$  such that there exist  $\varepsilon_j > 0$  with  $\pm \varepsilon_j \notin \sigma(A(t))$  and  $[-\varepsilon_j, \varepsilon_j] \cap \sigma_{\operatorname{ess}}(A(t)) = \emptyset$  for  $t_{j-1} \leqslant t \leqslant t_j$ ,  $j=1,\ldots,n$ , and let

$$SpFlow(A) = \sum_{j=1}^{n} \left( \operatorname{rank} E_{A(t_{j-1})}([0, \varepsilon_j)) - \operatorname{rank} E_{A(t_j)}([0, \varepsilon_j)) \right)$$

#### **Corollary**

Under appropriate (relatively trace class perturbation) assumptions  $SpFlow(A) = Ind(E_{A_-}, E_{A_+}) = tr(E_{A_-} - E_{A_+}) = \xi(0; A_+, A_-)$ 

## A semibounded example

$$A(t)=-\partial_x^2+V(t,x)$$
,  $t\in\mathbb{R}$ ,  $x\in\mathbb{R}$  – Schrödinger operators on  $L^2(\mathbb{R})$ 

Assume that 
$$V_-(\cdot)\in L^\infty(\mathbb{R}),\ V_-(\cdot)-V_-(\infty)\in L^1(\mathbb{R})$$

Assume that 
$$V_+(\cdot)\in L^\infty(\mathbb{R}),\ V_+(\cdot)-V_+(\infty)\in L^1(\mathbb{R})$$

Denote  $A_{-} = -\partial_{x}^{2} + V_{-}(x)$  and assume that  $A_{-}$  is invertible



Denote  $A_+ = -\partial_x^2 + V_+(x)$  and assume that  $A_+$  is invertible

$$V_{+}(\infty) = V_{-}(\infty)$$
 $0$ 
 $\sigma(A_{+})$ 
 $\sigma_{\mathrm{ess}}(A_{+})$ 

# A semibounded example continued

$$A(t) = -\partial_x^2 + V(t,x), \ t \in \mathbb{R}, \ x \in \mathbb{R}$$
 – Schrödinger operators on  $L^2(\mathbb{R}), A_- = -\partial_x^2 + V_-(x)$  with  $V_-(\cdot) \in L^\infty(\mathbb{R}), \ V_-(\cdot) - V_-(\infty) \in L^1(\mathbb{R})$   $A_+ = -\partial_x^2 + V_+(x)$  with  $V_+(\cdot) \in L^\infty(\mathbb{R}), \ V_+(\cdot) - V_+(\infty) \in L^1(\mathbb{R})$ 

Finally, assume that  $V(t,\cdot)-V_-(\cdot)\in\ell^1(L^2(\mathbb{R}))$  for all  $t\in\mathbb{R}$ , and also  $V_+(\cdot)-V_-(\cdot)\in\ell^1(L^2(\mathbb{R}))$  where  $\ell^1(L^2(\mathbb{R}))$  is the Birman-Solomyak class

Then the perturbation  $B(t)=V(t,\,\cdot)-V_-(\cdot)$  is of relatively trace class To complete the set of assumptions, we need:  $\partial_t V(t,\cdot)\in\ell^1(L^2(\mathbb{R}))$  and  $\int_{\mathbb{R}}\|\partial_t V(t,\cdot)(-\partial_x^2+1)^{-1}\|_{\mathcal{B}_1(L^2(\mathbb{R}))}\,dt<\infty$ 

The Birman-Solomyak class:

$$L^{1}(\mathbb{R}; (1+|x|)^{\delta}) \subsetneq \ell^{1}(L^{2}(\mathbb{R})) \subsetneq L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R}), \, \delta \geqslant 1/2$$

$$\ell^{1}(L^{2}(\mathbb{R})) = \left\{ v \in L^{2}_{loc}(\mathbb{R}) : \sum_{n \in \mathbb{Z}} \left( \int_{Q_{n}} |v(x)|^{2} \, dx \right)^{1/2} < \infty \right\}$$

$$v \in \ell^{1}(L^{2}(\mathbb{R})) \text{ if and only if } v(-\partial_{x}^{2} - z)^{-1} \text{ is of trace class}$$

$$v \in L^{2}(\mathbb{R}) \text{ if and only if } v(-\partial_{x}^{2} - z)^{-1} \text{ is of Hilbert-Schmidt class}$$

## Two Schrödingers

$$A(t) = \begin{bmatrix} -\partial_x^2 + \alpha & 0 \\ 0 & \partial^2 - \alpha \end{bmatrix} + V(t, x), \ \alpha > 0, V(t, x) \text{ is a } 2 \times 2 \text{ matrix}$$

$$V(t, \cdot) - V_{\pm}(\cdot) \in \ell^1(L^2(\mathbb{R})), V_{\pm}(\cdot) - V_{\pm}(\infty) \in L^1(\mathbb{R})$$

$$A_{\pm} = \begin{bmatrix} -\partial_x^2 + \alpha & 0 \\ 0 & \partial^2 - \alpha \end{bmatrix} + V_{\pm}(x)$$

Then  $B(t) = V(t,x) - V_{\pm}(x)$  is a relative trace class perturbation



#### **Dirac**

$$D_0 = \begin{bmatrix} 1 & -\partial_x \\ \partial_x & -1 \end{bmatrix}$$
 Fourier  $\begin{bmatrix} 1 & -i\xi \\ i\xi & -1 \end{bmatrix}$  is similar to  $\begin{bmatrix} -\sqrt{1+\xi^2} & 0 \\ 0 & \sqrt{1+\xi^2} \end{bmatrix}$ 

$$\sigma(D_0)=(-\infty,-1]\cup[1,\infty)$$

Dirac operator is

$$D = \begin{bmatrix} 0 & \partial_x \\ -\partial_x & 0 \end{bmatrix} + \begin{bmatrix} p(x) & q(x) \\ q(x) & -p(x) \end{bmatrix}, A(t) = \begin{bmatrix} 0 & \partial_x \\ -\partial_x & 0 \end{bmatrix} + \begin{bmatrix} p(t,x) & q(t,x) \\ q(t,x) & -p(t,x) \end{bmatrix}$$

In particular, if q(x) = 0, p(x) = V(x) + m then D is one-dimensional stationary Dirac's operator of quantum relativity theory.

If 
$$V(\pm \infty) = 0$$
 then  $\sigma_{\mathsf{ess}}(D) = (-\infty, -m] \cup [m, \infty)$ 



# A 5-min course on the $\xi$ -function

Given two **selfadjoint** operators  $H, H_0$  we may assume that the perturbation  $V = H - H_0$  satisfies:

- trace class assumption:  $V = H H_0$  is of trace class
- relative trace class:  $V(H_0 z)^{-1}$  is of trace class
- resolvent comparable:  $(H-z)^{-1}-(H_0-z)^{-1}$  is of trace class The Krein spectral shift function  $\xi=\xi(\lambda;H,H_0)$  is a function on  $\mathbb R$  that satisfies the trace formula

$$\operatorname{tr}(f(H)-f(H_0))=\int_{\mathbb{R}}f'(\lambda)\xi(\lambda;H,H_0)\,d\lambda$$

say, for  $f\in \mathcal{C}^1_{\mathsf{loc}}$  with  $f'(\lambda)=\int_{\mathbb{R}}e^{-i\lambda t}\sigma(dt)$  and a finite measure  $\sigma$ 

# A 5-min course on the $\xi$ -function continued Examples

•  $H, H_0 \in \mathbb{R}$  (Newton-Leibnitz trace formula)  $f(H) - f(H_0) = \int_{H_0}^H f'(\lambda) d\lambda$  implies  $\xi(\lambda; H, H_0) = \text{characteristic function of the segment } [H_0, H]$ 

•  $H, H_0$  are symmetric matrices (I. M. Lifshitz trace formula)

$$\begin{split} \operatorname{tr}(f(H) - f(H_0)) &= \operatorname{tr}\left(\int_{\mathbb{R}} f(\lambda) dE_H(\lambda) - \int_{\mathbb{R}} f(\lambda) dE_{H_0}(\lambda)\right) \\ &= \operatorname{tr}\int_{\mathbb{R}} f(\lambda) d(E_H(\lambda) - E_{H_0}(\lambda)) = \int_{\mathbb{R}} f(\lambda) d\operatorname{tr}(E_H(\lambda) - E_{H_0}(\lambda)) \\ &= -\int_{\mathbb{R}} f'(\lambda) \operatorname{tr}(E_H(\lambda) - E_{H_0}(\lambda)) d\lambda \text{ implies} \end{split}$$

$$\xi(\lambda; H, H_0) = \operatorname{tr}(E_{H_0}(\lambda) - E_H(\lambda)) =$$
  
# e. v. of  $H(t) = tH + (1-t)H_0$  that cross  $\lambda$  rightward  
minus # e. v. of  $H(t) = tH + (1-t)H_0$  that cross  $\lambda$  leftward

 $\mathcal{O}$ QQ

# A 5-min course on the $\xi$ -function continued

Generally  $\xi(\lambda; H, H_0) = \operatorname{tr}(E_{H_0}(\lambda) - E_H(\lambda))$  is not correct  $E_{H_0}(\lambda) - E_H(\lambda)$  is NOT of trace class even for one-dimensional  $H - H_0$ 

The perturbation determinant

$$\Delta(z) = \det ((H-z)(H_0-z)^{-1}) = \det (I+V(H_0-z)^{-1})$$

For example, if  $H_0 = -\partial_x^2$ ,  $H = -\partial_x^2 + V(x)$  then

 $\Delta(z) = \text{Jost function} = \text{Evans function}$ 

General Krein's formula for the trace class  $H - H_0$ :

$$\xi(\lambda; H, H_0) = rac{1}{\pi} \lim_{arepsilon o 0^+} rg \Delta(\lambda + iarepsilon) \quad ext{a.e. } \lambda \in \mathbb{R}$$

Then 
$$\int |\xi(\lambda)| d\lambda \le ||V||_{\mathcal{B}_1}$$
 and  $\int \xi(\lambda) d\lambda = \operatorname{tr} V$   
If  $\operatorname{rank} E_{H_0}(a - \epsilon, b + \epsilon) < \infty$  then  $\xi(b - 0) - \xi(a + 0) = \operatorname{rank} E_{H_0}(a, b) - \operatorname{rank} E_H(a, b)$ 

# Index = Spectral Flow via Dichotomy Theorem

Completely different approach to  $D_A = d/dt + A(t)$ 

Palmer's Theorem – infinite dimensional versions are due to Sandstede, Scheel, Rabier, Lunardi, Schnaubelt, Pogan, Lin, Tomilov, Latushkin Suppose y' = A(t)y is a well-posed equation. In our case  $A_{\pm}$  are selfadjoint bounded from below, assume  $Dom A_{-} = Dom A_{+}$  and

$$A(t)=B(t)+egin{cases} A_-,&t\leqslant 0\ A_+,&t>0 \end{cases}$$
 Assume that  $B(t)$  is compact for each  $t\in\mathbb{R}$ , and  $B(\cdot)$  is continuous,  $\|B(t)\|_{\mathcal{B}}\to 0$  as  $|t|\to\infty$ 

## **Dichotomy Theorem**

The operator  $D_A = d/dt + A(t)$  is Fredholm **if and only if** the operators  $A_{\pm}$  are invertible and the pair of subspaces  $(S_-, S_+^{\perp})$  is Fredholm; the index formula holds: Ind  $D_A = \dim(S_- \cap S_+^{\perp}) - \dim(S_-^{\perp} \cap S_+)$ .

 $S_{\pm}=\operatorname{rg}\,E_{A_{+}}(0)$ , the Morse projection for the negative spectrum of  $A_{\pm}$ 

## **Assumptions**

#### Main assumptions:

- $A_-$  selfadjoint on Dom  $A_- \subseteq \mathcal{H}$ , complex separable Hilbert
- $B(t), t \in \mathbb{R}$  closed symmetric, Dom  $B(t) \supseteq \mathsf{Dom}\, A_-$
- $B'(t), t \in \mathbb{R}$  closed symmetric,  $Dom B'(t) \supseteq Dom A_-$ , such that  $B(t)(|A_-|+I)^{-1}, t \in \mathbb{R}$ , is weakly differentiable and  $\frac{d}{dt}(B(t)(|A_-|+I)^{-1}g,h)_{\mathcal{H}} = (B'(t)(|A_-|+I)^{-1}g,h)_{\mathcal{H}}, g,h \in \mathcal{H}$
- $B'(\cdot)(|A_-|+I)^{-1} \in L^1(\mathbb{R}; \mathcal{B}_1(\mathcal{H}))$ , in particular,

$$\int_{\mathbb{R}} \left\| B'(t)(|A_-|+I)^{-1} \right\|_{\mathcal{B}_1(\mathcal{H})} dt < \infty$$

## Consequences

Let 
$$A(t) = A_{-} + B(t)$$
, Dom  $A(t) = \text{Dom } A_{-}$ ,  $\mathcal{H}_{1} := (\text{Dom } A_{-}, \| \cdot \|_{A_{-}})$   
Norms of  $A(t) : \mathcal{H}_{1} \to \mathcal{H}$  are bounded uniformly for  $t \in \mathbb{R}$   
There exists  $A_{+} = A(+\infty) = A_{-} + B(+\infty)$ , Dom  $A_{+} = \text{Dom } A_{-}$ ,  $B(+\infty)(|A_{-}| + I)^{-1} = \int_{-\infty}^{+\infty} B'(t)(|A_{-}| + I)^{-1} dt$   
 $\sup_{t \in \mathbb{R}} \|B(t)(|A_{-}| - z)^{-1}\|_{\mathcal{B}_{1}(\mathcal{H})} = o(1), z \to -\infty$ 

#### Lemma.

The operator  $D_A = d/dt + A(t)$ , Dom  $D_A = \text{Dom}(d/dt) \cap \text{Dom } \mathbb{A}_-$ , is closed; its graph norm is equivalent to the norm in  $W_1^2(\mathbb{R}; \mathcal{H}) \cap L^2(\mathbb{R}; \mathcal{H}_1)$ 

## The proof of the trace formula

$$\operatorname{tr}_{L^{2}(\mathbb{R};\mathcal{H})}((H_{2}-z)^{-1}-(H_{1}-z)^{-1})=\frac{1}{2z}\operatorname{tr}_{\mathcal{H}}(g(A_{+})-g(A_{-}))$$

$$H_{1}=-\frac{d^{2}}{dt^{2}}+A(t)^{2}-B'(t),\ H_{2}=-\frac{d^{2}}{dt^{2}}+A(t)^{2}+B'(t),\ g(x)=\frac{x}{\sqrt{x^{2}+1}}$$

Approximation:  $P_n = E_{A_-}(-n, n)$ ,  $A_n(t) = P_n A(t) P_n$ ,  $B_n(t) = P_n B(t) P_n$ 

#### Pushnitski's Theorem

$$\operatorname{tr}_{L^2(\mathbb{R};\mathcal{H})}((H_{2,n}-z)^{-1}-(H_{1,n}-z)^{-1})=rac{1}{2z}\operatorname{tr}_{\mathcal{H}}(g(A_{+,n})-g(A_{-,n}))$$

#### **Left Hand Side Proposition**

$$\left\| ((H_2 - z)^{-1} - (H_1 - z)^{-1}) - ((H_{2,n} - z)^{-1} - (H_{1,n} - z)^{-1}) \right\|_{\mathcal{B}_1(L^2(\mathbb{R};\mathcal{H}))} \to 0$$

## Right Hand Side Proposition

$$\|(g(A_+)-g(A_-))-(g(A_{+,n})-g(A_{-,n}))\|_{\mathcal{B}_1(\mathcal{H})} o 0 \text{ as } n o \infty$$



## Main issues with the propositions: the LHS

The trace of  $(H_2-z)^{-1}-(H_1-z)^{-1}$ : a major step is, as  $z\to -\infty$ ,

$$\left\|R_0^{1/2}(z)\mathbb{B}'R_0^{1/2}(z)\right\|_{\mathcal{B}_1(L^2(\mathbb{R};\mathcal{H}))} = o(1)\int\limits_{\mathbb{R}} \|B'(t)(|A_-|+I)^{-1}\|_{\mathcal{B}_1(\mathcal{H})}$$

Here 
$$R_0(z)=(H_0-z)^{-1}$$
,  $H_0=D_{A_-}^*D_{A_-}=-\frac{d^2}{dt^2}+\mathbb{A}_-^2$   
Then the resolvent identity for  $R_j=(H_j-z)^{-1}$  does the job:  $R_1(z)-R_2(z)=R_1(z)(V_2-V_1)R_2(z)=\mathbb{M}R_0^{1/2}(z)\mathbb{B}'R_0^{1/2}(z)\mathbb{N}$ 

# Main issues with the propositions: the RHS

The trace of  $g(A_+)-g(A_-)$ : a major step is to see that  $g(A_+)-g(A_-)\in \mathcal{B}_1(\mathcal{H})$  since  $g(+\infty)=1$  and  $g(-\infty)=-1$  for  $g(x)=\frac{x}{\sqrt{x^2+1}}$ .

Need new technique: double operator integrals to show

#### **Main Lemma**

 $g(A_+)-g(A_-)=T(K)$  where  $T:\mathcal{B}_1(\mathcal{H})\to\mathcal{B}_1(\mathcal{H})$  is a bounded operator and K= closure  $(|A_+|+I)^{-1/2}(A_+-A_-)(|A_-|+I)^{-1/2}$  is a trace class operator in  $\mathcal{H}$ 

# A 5 min course on double operator integrals

Daletskij and S. G. Krein (1960'), Birman and Solomyak (1960-70'), Peller, dePagter, Suckochev (1990-05), and many others Our main goal: Given selfadjoint operators  $A_-$  and  $A_+$  and a Borel function f, we represent  $f(A_+) - f(A_-)$  as a double Stieltjes integral with respect to the spectral measures  $dE_{A_+}(\lambda)$  and  $dE_{A_-}(\mu)$ . If  $A_\pm$  are matrices then  $A_+ = \sum_{i=1}^n \lambda_i E_{A_+}(\lambda_i)$  and  $A_- = \sum_{k=1}^n \mu_k E_{A_-}(\mu_k)$  imply:

$$f(A_{+}) - f(A_{-}) = \sum_{j=1}^{n} \sum_{k=1}^{n} (f(\lambda_{j}) - f(\mu_{k})) E_{A_{+}}(\lambda_{j}) E_{A_{-}}(\mu_{k})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{f(\lambda_{j}) - f(\mu_{k})}{\lambda_{j} - \mu_{k}} E_{A_{+}}(\lambda_{j}) (\lambda_{j} - \mu_{k}) E_{A_{-}}(\mu_{k})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{f(\lambda_{j}) - f(\mu_{k})}{\lambda_{j} - \mu_{k}}$$

$$\times E_{A_{+}}(\lambda_{j}) \left( \sum_{j'=1}^{n} \lambda_{j'} E_{A_{+}}(\lambda_{j'}) - \sum_{k'=1}^{n} \mu_{k'} E_{A_{-}}(\mu_{k'}) \right) E_{A_{-}}(\mu_{k})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{f(\lambda_{j}) - f(\mu_{k})}{\lambda_{j} - \mu_{k}} E_{A_{+}}(\lambda_{j}) (A_{+} - A_{-}) E_{A_{-}}(\mu_{k})$$

## A 5 min course on DOIs continued

Birman-Solomyak formula:

$$f(A_{+}) - f(A_{-}) = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{f(\lambda) - f(\mu)}{\lambda - \mu} dE_{A_{+}}(\lambda) (A_{+} - A_{-}) dE_{A_{-}}(\mu)$$

More general: for a bounded Borel function  $\phi(\lambda, \mu)$  we would like to define a bounded transformator  $T_{\phi}: \mathcal{B}_1(\mathcal{H}) \to \mathcal{B}_1(\mathcal{H})$  so that

$$T_{\phi}(\mathsf{K}) = \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(\lambda,\mu) d\mathsf{E}_{\mathsf{A}_{+}}(\lambda) \mathsf{K} d\mathsf{E}_{\mathsf{A}_{-}}(\mu), \quad \mathsf{K} \in \mathcal{B}_{1}(\mathcal{H}).$$

$$T_{\phi}(K) = \int_{\mathbb{R}} \alpha(\lambda) dE_{A_{+}}(\lambda) \cdot K \cdot \int_{\mathbb{R}} \beta(\mu) dE_{A_{-}}(\mu) \text{ for } \phi(\lambda, \mu) = \alpha(\lambda)\beta(\mu)$$

$$T_{\phi}(K) = \int_{\mathbb{R}} \alpha_s(A_+) K \beta_s(A_-) \nu(s) ds$$
 for  $\phi(\lambda, \mu) = \int_{\mathbb{R}} \alpha_s(\lambda) \beta_s(\mu) \nu(s) ds$ , where  $\alpha_s, \beta_s$  are bounded Borel functions,  $\int_{\mathbb{R}} \|\alpha_s\|_{\infty} \|\beta_s\|_{\infty} \nu(s) ds < \infty$ . The (Wiener) class of such  $\phi$ 's is denoted by  $\mathfrak{A}_0$ 

#### Back to our business

Recall that  $(A_+ - A_-)(A_-^2 + I)^{-1/2} \in \mathcal{B}_1(\mathcal{H})$  by assumptions

#### Interpolation lemma

$$\overline{K} \in \mathcal{B}_1(\mathcal{H})$$
,  $K = (A_+^2 + I)^{-1/4}(A_+ - A_-)(A_-^2 + I)^{-1/4}$ ,  $\mathsf{Dom}\, K = \mathsf{Dom}\, A_-$ 

Consider the function

$$\phi(\lambda,\mu) = (1+\lambda^2)^{1/4} \frac{g(\lambda) - g(\mu)}{\lambda - \mu} (1+\mu^2)^{1/4}, \quad g(x) = x(1+x^2)^{-1/2}$$

#### Double operator integral lemma

 $\phi(\lambda,\mu)\in\mathfrak{A}_0$  and thus  $T_\phi:\mathcal{B}_1(\mathcal{H}) o\mathcal{B}_1(\mathcal{H})$  is bounded. Also,  $g(A_+)-g(A_-)=T_\phi(\overline{K})$  and thus  $g(A_+)-g(A_-)\in\mathcal{B}_1(\mathcal{H})$ 

#### Proof of the lemma

Formally: 
$$T_{\phi}(K) = \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(\lambda, \mu) dE_{A_{+}}(\lambda) K dE_{A_{-}}(\mu) = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{g(\lambda) - g(\mu)}{\lambda - \mu} dE_{A_{+}}(\lambda) (A_{+} - A_{-}) dE_{A_{-}}(\mu) = g(A_{+}) - g(A_{-})$$
To see that  $\phi \in \mathfrak{A}_{0}$  we split:  $\phi(\lambda, \mu) = (1 + \lambda^{2})^{1/4} \frac{g(\lambda) - g(\mu)}{\lambda - \mu} (1 + \mu^{2})^{1/4} = \psi(\lambda, \mu) + \frac{\psi(\lambda, \mu)}{(1 + \lambda^{2})^{1/2} (1 + \mu^{2})^{1/2}} + \frac{\lambda \psi(\lambda, \mu) \mu}{(1 + \lambda^{2})^{1/2} (1 + \mu^{2})^{1/2}} \text{ where } \psi(\lambda, \mu) := \frac{(1 + \lambda^{2})^{1/4} (1 + \mu^{2})^{1/4}}{(1 + \lambda^{2})^{1/2} + (1 + \mu^{2})^{1/2}} = \zeta \Big( \log(1 + \lambda^{2})^{1/2} - \log(1 + \mu^{2})^{1/2} \Big),$ 

$$\zeta(\lambda - \mu) := \Big( e^{(\lambda - \mu)/2} + e^{-(\lambda - \mu)/2} \Big)^{-1} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{is\lambda} e^{-is\mu} \widehat{\zeta}(s) ds$$
Since  $\widehat{\zeta} \in L^{1}(\mathbb{R}), \ \psi \in \mathfrak{A}_{0} \ \text{due to}$ 

$$\psi(\lambda, \mu) = \frac{1}{2\pi} \int_{\mathbb{R}} (1 + \lambda^{2})^{is/2} (1 + \mu^{2})^{-is/2} \widehat{\zeta}(s) ds$$

## Trace class, Hilbert-Schmidt, Fredholm determinants

 $K \in \mathcal{B}_2(\mathcal{H})$ , Hilbert-Schmidt: K is compact and

$$\sum_{j=1}^{\infty} \left( \lambda_j [(K^*K)^{1/2}] \right)^2 < \infty$$

 $K \in \mathcal{B}_1(\mathcal{H})$ , of trace class: K is compact and

$$\sum_{j=1}^{\infty} \lambda_j [(K^*K)^{1/2}] < \infty$$

If K is Hilbert-Schmidt then

$$\det_2[I-K] = \det[(I-K)e^K] = \prod_{\lambda \in \sigma(K)} (1-\lambda)e^{\lambda}$$

If K is of trace class then

$$\det_2[I-K] = e^{\operatorname{tr}(K)} \det(I-K) = e^{\operatorname{tr}(K)} \prod_{\lambda \in \sigma(K)} (1-\lambda)$$