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A sneak preview The Fredholm index and the spectral flow

Prehistory

UNC - Chapel Hill Winter 2006 Maslov index

Chris Jones / Deng: Morse theory for PDEs

Chris Jones and Richard Rimanyi

Tomilov Torun 2006, 2007 — A. Pushnitski

J. Robbin and D. Salamon, The spectral flow and the Maslov index,
Bull. London Math. Soc. 27, 1-33 (1995)

“Atiyah, Patodi and Singer studied operators of the form Dy = % + A(t)"
Here and below (Dau)(t) = u'(t) + A(t)u(t), u € L*(R; H), t € R
The Fredholm index of D4, Ind Dy = dimker Dy — dim ker D7,

is equal to the spectral flow of {A(t)};1>°

A(t) are unbounded selfadjoint operators on a Hilbert space H with
compact resolvent (thus discrete spectrum) and constant domains
Axr = limi_, 1o A(t) exist and are invertible

A, and A_ are invertible throughout the talk
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A sneak preview The Fredholm index and the spectral flow

What is the spectral flow?

Spectral flow= (the number of eigenvalues of A(t) that cross 0 rightward)
minus (the number of eigenvalues of A(t) that cross 0 leftward)
as t runs from —oo to 400

o o o o | . . o o
0
g(A_)
—

o o o e O e . . o
0

o(A4)
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A sneak preview What's new?

Before and after

We prove: Fredholm index = spectral shift function at 0 = spectral flow
This allows one to handle more general families of operators than before

Before:
Say 9an)
After
[ ] @ @ @ | ® ° ° I
Oess 0 Oess
g(A_)
[ @ @ ® | ® L ® ]
Oess 0 Oess
o(A4)
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Literature

Literature guide

We generalize recent results regarding Dy = % + A(t) on L?(R;H) in
A. Pushnitski, The spectral flow, the Fredholm index, and the spectral
shift function, in Spectral Theory of Differential Operators: M. Sh.
Birman 80th Anniversary Collection, 2008, pp. 141-155.

Pushnitski studied the case of trace class perturbations A(t) — A_

We study the case of relatively trace class perturbations A(t) — A_

E. g., when A_ = —92 and A(t) = —02 + V(t,x) in H = L?(R),

the Schrodinger operator with sufficiently fast decaying potential

Earlier related papers:

C. Callias, Axial anomalies and index theorems on open spaces, Commun.
Math. Phys. 62, 213-234 (1978)

(famous Callias' formula for H = R gives the index of the Dirac operator
for odd dimensions)
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Literature

Literature guide continued

D. Bolle, F. Gesztesy, H. Grosse, W. Schweiger, and B. Simon,
Witten index, axial anomaly, and Krein's spectral shift function in
supersymmetric quantum mechanics, J. Math. Phys. 28, 1512-1525
(1987) (the scalar case when A(t) is a function)

The literature on the spectral flow is endless (M. Atiyah, V. Patodi,

|. Singer; B. Boos-Bavbnek, K. Furutani, P. Kirk, M. Lesch, N. Nicolaescu,
J. Phillips)

There are noncommutative versions of the theory (N. Azamov,

M.-T. Benameur, A. Carey, P. Dodds, A. Rennie, F. Sukocheyv,

K. P. Wojciechowski)

A standing assumption: the resolvents of A, and A_ are compact

(or the operators (A2 + 1)~1/2 and (A2 + 1)~/2 are compact)

We can handle: AL — A_ is of trace class relatively to A_

(e.g., this implies that the difference of the resolvents of A, and A_ or the
difference A, (A2 4+ 1)7Y/2 — A_(A2 + 1)~1/2 is of trace class)
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The main results The index and the &-function

Third Main Theorem:

Assume that A(t) = A_ + B(t) where B(t) is an appropriate
relatively trace class perturbation, B(t)(A_ — z)~! € B1(H)

Theorem.

Under appropriate (relatively trace class perturbation) assumptions, the
Fredholm index of the operator Dy = % + A(t) on L?(R;H) is related to
the Krein’s spectral shift function (¢-function) of the operators

A_ =limi—_ A(t) and Ay = lim;_ 1 A(t) on the Hilbert space H:

Ind Da = &4(0; Ay, A)

The spectral shift function £1(X; A, A_), A € R, is (assumptions!)
Er(X; Ay, A_) = (the number of eigenvalues of A(t) that cross A
rightward) minus (the number of eigenvalues of A(t) that cross A leftward)

Corollary
Fredholm index of Da= Spectral flow
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The main results The Pushnitski formula

Second Main Theorem

Assume that A(t) = A_ + B(t) where B(t) is an appropriate
relatively trace class perturbation, B(t)(A_ — z)~! € B1(H)
Given Da = & + A(t), we introduce on L?(R;H) the operators

d2

Hy = DiDa = -5t A(t)? — A'(t)
d2

Hy = DaD} = st A(t)? + A'(t)

Theorem.

Under appropriate (relatively trace class perturbation) assumptions, the
following Pushnitski formula holds:

1 [ AL A d
/ Su(si Ay, A-) S,a.e.)\ER

SN o, Hh) = = e (A —s2)L/2

s
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The main results The Pushnitski formula

The index via Pushnitski’s formula

Since A_ and Ay are invertible:

e (M Ap,A_)is constant for a. e. A near 0

e H; and H> have no essential spectrum near zero

e therefore, £(\; Hp, Hyp) is constant for A\ near O

Then by Pushnitski's formula, £(\; Ay, A_) = &(\; Ha, Hp) for A near O
But H; = D Da and Hy = DADA imply:

o IndDy —dlm ker Dg — dim ker D} = dim ker H; — dim ker H
On the other hand, properties of the &-function imply:

o &(\ Ho, Hy) =dimker Hy — dimker Hy for X\ near 0

Putting all this together,

o IndDy=¢&(0;Hy, Hy) =€£(0; AL, A)
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The main results Difference of the Morse projections

First Main Theorem:

Assume that A(t) = A_ + B(t) where B(t) is an appropriate
relatively trace class perturbation, B(t)(A_ — z)™! € B1(H)

Recall notations : )
Hi = DiDa = —25 + A(t)? — A(t),Ho = DaDj = — 25 + A(t)> + A(t)
Introduce the “smoothed out” signum functions

X X
L(x) = , ze€C\|0,00), X) = , xeR
g0 = = zeC\[0.%0). &()= o

Theorem.

Under appropriate (relatively trace class perturbation) assumptions,
o g, (AL)— g (A_)is of trace class in H,

o (Hy —z)™* — (H; — z)7 ! is of trace class in L?(R;H), and

o triora)((H2 — z) "t —(Hi—2z)7") = % tri(gz(A+) — 82(A-))

Yuri Latushkin (MO-Columbia) The index, spectral flow and &-function 11 /31



The main results Difference of the Morse projections

Consequences of the First Main Theorem

8(x) = x(2 +1) 712

Uess(A:I:)

Define the Morse spectral projections Eo, = Ex, (0) and E4_ = Ex_(0)
corresponding to the negative spectrum of Ay and A_, and 51+ =rg Ea,
Corollary Under appropriate (relatively trace class perturbation)
assumptions E4q, — E5 s of trace class in 'H and therefore
5(0; A+,A_) == tr(EA_ — EA+) = Ind(EA_, EA+)
= dim(5_ N SL) —dim(St N Sy)
(=dim S, — dim S_ provided dim 51 < o0)
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The main results Difference of the Morse projections

The Riesz metric and the spectral flow

The graph metric [|(Ax + i)™ — (A= + i)}z induces a weaker
topology than the Riesz metric ||g(Ay) — g(A-)| B(#) defined by

g(x) = x(x?> 4+ 1)71/2 (M. Lesch 2005). Under our assumptions the path
{A(t)}22 _ . is (absolutely) continuous in the Riesz metric.

The spectral flow of the continuous path {A(t)}2_ . of selfadjoint
Fredholm operators (J. Phillips 1996): Choose a subdivision

—00 =t < t1 <--- < thp—1 < tp = +00 such that there exist £; > 0 with
t+e; ¢ o(A(t)) and [—¢j, ;] N oess(A(t)) = 0 for ti_1 < t < tj,
j=1,...,n, and let

SPF/OW(A) — ijl (rank EA(tj_1)([07 5])) — rank EA(tj)([07 8])))

Corollary

Under appropriate (relatively trace class perturbation) assumptions
SpF/OW(A) — |I’]d(EA_7 EA+) — tr(EA_ — EA+) — 6(0, A_|_,A_)
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Examples Schrodinger operator

A semibounded example

A(t) = —02 4+ V(t,x), t €R, x € R — Schraédinger operators on L?(RR)
Assume that V_(-) € L°(R), V_(-) — V_(0) € L}(R)
Assume that V() € L°(R), V. (-) — V() € L}(R)

Denote A_ = —92 + V_(x) and assume that A_ is invertible
V_(00)
° ° ° ° | ° ° ° —
0
O'(A_) Uess(A—)
Denote A, = —92 + V(x) and assume that A, is invertible
V. (%) = V_(0)
° ® ° | ® ® —
0
7(A) es(A0)
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Examples Schrodinger operator

A semibounded example continued

A(t) = —02 4+ V(t,x), t €R, x € R — Schrddinger operators on L?(R),

_ = =02+ V_(x) with V_(-) € L®(R), V_(-) — V_(0) € L}(R)
Ay = —62 + Vi (x) with V(1) € L=(R), V4 () — Vi (o0) € L}(R)
Finally, assume that V/(t, -) — V_(-) € £}(L?(R)) for all t € R, and also
V() — V_(-) € 1(L*(R)) where /1(L?(R)) is the Birman-Solomyak class

Then the perturbation B(t) = V/(t, -) — V_(-) is of relatively trace class
To complete the set of assumptions, we need: 9;V/(t,-) € ¢*(L?>(R)) and

Jell0:V(t, )(=0% + 1) M|, (12(r)) dt < o0

The Birman-Solomyak class:

LY(R; (14 |x|)?) € A(L2(R)) € LYR)N L2(R), § > 1/2
/H([2(R)) = {v €12 (R): Yoz (fo IV(X)[Pd)V/2 < oo}

v € f1(L?(R)) if and only if v(—9% — z)~1 is of trace class

v € L2(R) if and only if v(—92 — z)~! is of Hilbert-Schmidt class
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Examples Schrodinger operator

Two Schrodingers

_ a2
A(t) = [ (9X0+ o 820—041 + V(t,x), a >0, V(t,x) is a 2 x 2 matrix

V(t,) = V() € C(L3(R)), Vi () — Vi(o0) € LH(R)

- [-02 +a 0
A:|: — [ 0 a2 B Oé] + Vj:(X)

Then B(t) = V(t,x) — VL(x) is a relative trace class perturbation

Oess 0 Oess

o(Ax)
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Examples Dirac operator

Dirac
_ i ./ 2
Dy = L Ox Fourier 1 € is similar to 1+¢ 0
(9X —1 If —1 0 1+ 52

(Do) = (—o00, =1] U [L, 00)
Dirac operator is

Ty s[5 260 %)

In particular, if g(x) =0, p(x) = V(x) + m then D is one-dimensional
stationary Dirac’s operator of quantum relativity theory.
If V(d00) = 0 then 0ess(D) = (—00, —m] U [m, 00)

—m m
I ° ° ° | ° ° ]

Oess 0 Oess

o(D)
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The Krein Spectral Shift Function

A 5-min course on the ¢-function

Given two selfadjoint operators H, Hy we may assume that the
perturbation V = H — Hj satisfies:

e trace class assumption: V = H — Hj is of trace class

e relative trace class: V(Hg — z)™! is of trace class

e resolvent comparable: (H — z)™! — (Hg — z)™! is of trace class

The Krein spectral shift function &€ = £(\; H, Hp) is a function on R that

satisfies the trace formula

tr(F(H) — F(Ho)) = / FONE(N: H, Ho) dA

R

say, for f € CL_with f'(\) = [, e”'*o(dt) and a finite measure ¢

ocC
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The Krein Spectral Shift Function

A 5-min course on the ¢-function continued
Examples

e H HyeR (Newton Leibnitz trace formula)
f(H) — f(Ho) = fH f'(A\) dX implies
E(N\ H, Hy) = characteristic function of the segment [Hy, H]
e H, Hy are symmetric matrices (I. M. Lifshitz trace formula)

tr(F(H) — F(Ho)) = tr ( /R F(NdEL()) — /R F(N)dER,(V))

_ / F(N(En(N) — Eng(N)) = / FNdtr(En(A) — Eny (V)
R R
_ /R N tr(En(\) — Er (V))d implies

E(N\ H, Ho) = tr (Epp(A) — En(N)) =
# e. v. of H(t) = tH + (1 — t)Hp that cross A rightward
minus # e. v. of H(t) = tH + (1 — t)Hp that cross A leftward
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The Krein Spectral Shift Function

A 5-min course on the ¢-function continued

Generally £(\; H, Ho) = tr (Eno(A) — En())) is not correct
Enx,(A) — Ex(X) is NOT of trace class even for one-dimensional H — Hy

The perturbation determinant

A(z) =det (H—z)(Ho—z)™ ') =det (I + V(Hy — 2)71)
For example, if Hyp = —92, H = —92 + V/(x) then

A(z) = Jost function = Evans function

General Krein's formula for the trace class H — Hp:

1
E(N\H,Hp) = — lim argA(A+ic) ae AeR

T e—0*t

Then [|E(N)|dA < ||V||B, and [&(A)dA =trV
If rank Epy,(a — €, b+ €) < oo then
E(b—0) —&(a+0) =rank Ey,(a, b) — rank Ey(a, b)

Yuri Latushkin (MO-Columbia) The index, spectral flow and &-function 20 / 31



Intermezzo

Index = Spectral Flow via Dichotomy Theorem

Completely different approach to Dy = d/dt + A(t)

Palmer’'s Theorem — infinite dimensional versions are due to Sandstede,
Scheel, Rabier, Lunardi, Schnaubelt, Pogan, Lin, Tomilov, Latushkin
Suppose y' = A(t)y is a well-posed equation. In our case Ay are

selfadjoint bounded from below, assume Dom A_ = Dom A, and
A_, t<0 .

A(t) = B(t) + . Assume that B(t) is compact for each
Ay, t>0

t € R, and B(-) is continuous, ||B(t)||p — 0 as |t| — o

Dichotomy Theorem

The operator Dy = d/dt + A(t) is Fredholm if and only if the operators

AL are invertible and the pair of subspaces (S_, Si) is Fredholm; the
index formula holds: Ind Dy = dim(5- N S) —dim(SE N S,).

S+ = rg Ea,(0), the Morse projection for the negative spectrum of AL
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Setting and assumptions

Assumptions

Main assumptions:
e A_ —selfadjoint on Dom A_ C 'H, complex separable Hilbert

e B(t),t € R - closed symmetric, Dom B(t) 2 Dom A_

e B'(t), t € R - closed symmetric, Dom B’(t) © Dom A_, such that
B(t)(|JA_| + )71, t € R, is weakly differentiable and
G(B(A-|+ 1) g )y = (B'(t)(|A-| + 1) 'g h)y, g, h e H

o B'()A_|+ 17t e YR; Bi(H)), in particular,

/R [B/()(IA] + 1) |, 50t < ¢
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Setting and assumptions

Consequences

Let A(t) = A_ 4+ B(t), Dom A(t) = DomA_, H; ;== (DomA_, || - ||a_)
Norms of A(t) : H1 — H are bounded uniformly for t € R

There exists Ay = A(+o00) = A_ + B(4+o0), Dom A, = DomA_,
B(+o0)(|A-| + 1)t = [1Z B(t)(|A-| + 1)t ot

supser [ B(t)(JA-| — 2) g, (3) = o(1), z = —o0

Lemma.

The operator Dy = d/dt + A(t), Dom Dy = Dom(d/dt) N Dom A_, is
closed; its graph norm is equivalent to the norm in W2(R; H) N L?(R; Hy)
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Major steps in the proofs

The proof of the trace formula

triama (H2 — 2)7F = (H1 — 2)71) = 52 try(g(Ay) — g(A-))

Hi= =% + At = B/(t), Ho = — % + A(t) + B'(t), g(x) = 2=

Approximation: P, = Ea_(—n, n), An(t) = P,A(t)Pn, Ba(t) = P,B(t)P,

Pushnitski’s Theorem

trL2(R;H)((H2,n — Z)_l — (H1,n — Z)_l) = é tri(g(Asn) — 8(A- 1))

Left Hand Side Proposition

|((H2=2)7" = (F1=2)7) = ((H2n = 2) 7" = (HLn = 2) )|, 2qmirey) = O

Right Hand Side Proposition
H(g(AQ _ g(A_)) — (g(A+,n) — g(A_v"))HBl(H) — 0 as n— o
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Major steps in the proofs

Main issues with the propositions: the LHS

The trace of (Hy — z)™! — (Hy — z)™!: a major step is, as z — —o0,

RSB RY(2) s,y = ©1) [ IE @A+ 1) s
R

Here Ro(z) = (Ho —2)™Y, Ho= D% Do = —2, + A2

~ dt?
Then the resolvent identity for R; = (H; — z)~! does the job:

Ri(z) — Ra(z) = Ru(2)(Va — V1)Ra(z) = MRY?(2)B'Ry/?(2)N
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Major steps in the proofs

Main issues with the propositions: the RHS

The trace of g(A;+) — g(A_): a major step is to see that
g(Ay) —g(A_) € B1(H) since g(+00) =1 and g(—oc) = —1 for

X

g(x) = Nk
Need new technique: double operator integrals to show

Main Lemma

g(AL) —g(A_) = T(K) where T : Bi(H) — B1(H) is a bounded
operator and K = closure (|Ay|+ )7Y2(AL — A_)(JA_| + 1)1/? s a
trace class operator in 'H
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Double operator integrals

A 5 min course on double operator integrals

Daletskij and S. G. Krein (1960'), Birman and Solomyak (1960-70'),
Peller, dePagter, Suckochev (1990-05), and many others

Our main goal: Given selfadjoint operators A_ and A, and a Borel
function f, we represent f(AL) — f(A_) as a double Stieltjes integral with
respect to the spectral measures dEa, (A) and dEa_ (p). If Ay are

matrices then A, =3 " N\iEa, (Aj) and A_ = 4 pkEa_ (k) imply:
F(AL) = FIA) = D0ja Dkma (FOA) = F (k) Ea (A) Ea_ (1)
= 371 Sy S B () — 1) Ea (1)
_ Z S f(>\) f ()
xEm-)(z Ay Eay () = Sy mie Ea (i) ) Ea_ ()

F(A)—F
1 D k=1 ( 3 M(Mk)E N (Ay — AZ)Ea (1)
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Double operator integrals

A 5 min course on DOIs continued

Birman-Solomyak formula:

f(an) - f(a) = [ [ FE=T0ag, ()(as - A )dEn ()

More general: for a bounded Borel function ¢(A, ;1) we would like to define
a bounded transformator Ty : B1(H) — B1(H) so that

_ /R /R SO\ ) dEa, (\KdEa_ (1), K € By(H).

T3(K) = Jg (M) dEa, (N) - K- [g B(1)dEa_ (1) for ¢(A, p) = a(N)B(1)

To(K) = Jy (AL )KBs(A_) (5)ds for ¢(A 1) = [y ts(A)s(12) (5)ds
where as, 35 are bounded Borel functions, [i ||as||ool|Fs]|cc(s) ds < o0.
The (Wiener) class of such ¢'s is denoted by 2
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Proof of the main lemma

Back to our business

Recall that (Ay — A_)(A% 4 1)~Y/2 € B1(H) by assumptions

Interpolation lemma
K € Bi(H), K = (A2 +1)"V4(A; — A_)(A2 +1)1/4 Dom K = Dom A_

Consider the function

Double operator integral lemma

¢(A, ) € Ao and thus Ty : Bi(H) — Bi(H) is bounded. Also,
g(A+) — g(A-) = Ty(K) and thus g(A+) — g(A-) € B1(H)
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Proof of the main lemma

Proof of the lemma

Formally: Ty(K) = [5 Je @A, p)dEa, (A\)KdEA_ (1) =
Ji o EREUEL, (\)(A+ — A_)dEa_ (1) = g(A+) — g(A-)
To see that ¢ € Ay we split: ¢(\, ) = (1 + )\2)1/4g(>‘;:i(“)(1 + pu2)l/4

= P(\, p) + (1“2)‘1”/(3(’{‘#2)1/2 + (1+A§)?§?(’fii2)1/2 where

(A ) = LA = ¢ Iog(l + Az)l/2 — log(1 + ?)1/2),
CO— ) 1= (P02 = Oom/2) 7L L [ gishg=isug(s) ds

Since EE Ll( ), ¥ € AUy due to

WA 1) = 25 Jp(1+ N2)5/2(L+ p2)55/2((s) ds
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Proof of the main lemma

Trace class, Hilbert-Schmidt, Fredholm determinants

K € By(H), Hilbert-Schmidt: K is compact and

oo

2
> (MK K)Y2) < oo
j=1
K € B1(H), of trace class: K is compact and

S AR K < o
j=1

If K is Hilbert-Schmidt then
deto[/ — K] =det[(/ — K)e"] = ][] (1-A)e
Aeo(K)

If K is of trace class then

dety[/ — K] = "M det(/ — K) = ") JT (1-))
Aeo(K)
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