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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

1) Given: Linear operators A(t), t ∈ R, on a Banach space X with
domains D(A(t)), f : R → X and u0 ∈ X . (Mostly f = 0.) Solve

u′(t) = A(t)u(t) + f (t), t ≥ 0, u(0) = u0. (1)
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1) Given: Linear operators A(t), t ∈ R, on a Banach space X with
domains D(A(t)), f : R → X and u0 ∈ X . (Mostly f = 0.) Solve

u′(t) = A(t)u(t) + f (t), t ≥ 0, u(0) = u0. (1)

2) Consider a nonlinear problem with a special solution v∗:

v ′(t) = F (v(t)), t ≥ 0, v(0) = v0. (2)

Linearization of (2) at v∗ leads to pb (1) with A(t) := F ′(v∗(t)).
Exponential splittings of (1) should persist in (2) near v∗ (cf.
principle of linearized stab, local stable/center/unstable manifolds).
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1) Given: Linear operators A(t), t ∈ R, on a Banach space X with
domains D(A(t)), f : R → X and u0 ∈ X . (Mostly f = 0.) Solve

u′(t) = A(t)u(t) + f (t), t ≥ 0, u(0) = u0. (1)

3) Consider a quasilinear problem, where x 7→ A(v)x is linear:

v ′(t) = A(v(t))v(t), t ≥ 0, v(0) = v0. (3)

Fix v , and look for solution u = Φ(v) of linear problem

u′(t) = A(v(t))u(t), t ≥ 0, u(0) = v0. (4)

Fixed point v̂ = Φ(v̂) then solves (3). [Kato; Sobolevskii, Amann,
Acquistapace/Terreni, Yagi]
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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

2.1 Basic concepts
2.2 General case: Kato’s theory
2.3 Parabolic case

Definition
U(t, s) ∈ B(X ) form an evolution family U(·, ·) if

I U(s, s) = I , U(t, r)U(r , s) = U(t, s), and

I (t, s) 7→ U(t, s) is strongly continuous

for t ≥ r ≥ s in R.

The Cauchy problem (CP)

u′(t) = A(t)u(t), t ≥ s, u(s) = u0, (5)

is well posed if ∃ an evol. fam. U(·, ·) and dense subspaces Yt of X
s.t. U(t, s)Ys ⊂ Yt ⊂ D(A(t)) and u = U(·, s)u0 ∈ C 1([s,∞),X )
solves (5), for all u0 ∈ Ys and t ≥ s. Then A(·) generates U(·, ·).

Remark. There are wellposed CP, where each A(t) is a generator
and Yt 6= D(A(t)) for each t.
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3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

2.1 Basic concepts
2.2 General case: Kato’s theory
2.3 Parabolic case

Some obstacles to nice theorems
1) U(t, s) = q(t)q(s)−1I for nondifferentiable 0 < q ∈ C (R) is an
evolution family without generators.

2) There are wellposed CP where each A(t) is not closable or
where

⋂
t D(A(t)) = {0}.
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2.1 Basic concepts
2.2 General case: Kato’s theory
2.3 Parabolic case

A(t), t ∈ R, are stable if ∃ M > 0, ω ∈ R with s(A(t)) < ω and

‖R(λ, A(tn)) · · ·R(λ, A(t1))‖ ≤ M(λ− ω)−n

for all λ > ω, t1 ≤ · · · ≤ tn and n ∈ N.

Theorem [Kato ’70]
Let A(·) be stable and Y ⊂X be dense s.t. eτA(t)Y ⊂Y ⊂D(A(t))
for all t ∈ R, τ ≥ 0 and A(·) ∈ Cb(R,B(Y ,X )).

a) Let Y be reflexive and A|Y (·) be stable in Y . Then ∃ evolution
family U(·, ·) with U(t, s)Y ⊂ Y for all t ≥ s and
∂tU(t, s)y = A(t)U(t, s)y for all y ∈Y and a.e. t ∈ [s,∞).

b) Under a technical assumpt., A(·) generates U(·, ·) with Yt := Y .

Idea: U(t, s)x = lim
n→∞

n∏
k=1

e
t−s
n

A(sk )x ; sk = s +
k(t − s)

n
.
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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
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2.1 Basic concepts
2.2 General case: Kato’s theory
2.3 Parabolic case

Remarks 1) There are variants of Kato’s thm. Simplest case:
If D(A(t)) = Y for all t, Y is dense, A(·) is stable in X and
A(·) ∈ C 1

b (R,B(Y ,X )), then CP is wellposed.

2) Example in [Colombini et.al. ’79]: Blow up in equation
utt(t, x) = a(t)uxx(t, x) with x ∈ R for some a ∈

⋂
α<1 Cα(R).

3) Let A(·) generate U(·, ·) and t 7→ R(λ, A(t)) be str.cont.
a) If A(t) is a gen., ‖eτA(t)‖ ≤ eωτ for all t ∈ R and τ ≥ 0, then
‖U(t, s)‖ ≤ eω(t−s) for all t ≥ s. [Nickel ’99], [S. ’99]

b) If A(·) is stable in a Banach lattice X and eτA(t) ≥ 0, then
U(t, s) ≥ 0 for all t ≥ s. [S. ’99]

U(t, s)x = lim
n→∞

n∏
k=1

e
t−s
n

A(sk )x
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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

2.1 Basic concepts
2.2 General case: Kato’s theory
2.3 Parabolic case

A(t) satisfy the Acquistapace-Terreni condition (AT) if ∃ ω ∈ R,
φ ∈ (π/2, π), K , L > 0, µ, ν > 0 such that µ + ν > 1 and

‖R(λ, A(t))‖ ≤ K

1 + |λ− ω|
,

‖λνA(t)R(λ, A(t)) [R(ω, A(t))− R(ω, A(s))]‖ ≤ L |t − s|µ

for all t, s ∈ R and λ 6= ω with |arg (λ− ω)| ≤ φ. For simplicity,
let D(A(t)) be dense for all t.

Theorem [AT ’87-’88] Let (AT) hold. Then A(·) generates an evol.
fam. U(·, ·) with ‖A(t)U(t, s)‖ ≤ c (t − s)−1ed(t−s) for all t > s.

See also Amann, Yagi; Kato-Tanabe.
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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

3.1 Basic concepts
3.2 Characterization
3.3 Inhomogenous problems

Definition
An evol.fam. U(·, ·) has an exponential dichotomy (ED) on an
interval J if ∃ projections P(t), t ∈ J, and N, δ > 0 such that

I U(t, s)P(s) = P(t)U(t, s),

I U(t, s) : Q(s)X → Q(t)X has inverse UQ(s, t)

I ‖U(t, s)P(s)‖, ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s)

for all t ≥ s in J. Here Q(t) = I − P(t). If P(t) = I , then U(·, ·)
is exponentially stable. (Mostly J = R.)

Remark: If U(t + τ, s + τ) = U(t, s) for some τ > 0 and all t ≥ s
(i.e., A(t) = A(t + τ)), then U(·, ·) has ED iff σ(U(τ, 0)) ∩ T = ∅.
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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

3.1 Basic concepts
3.2 Characterization
3.3 Inhomogenous problems

More obstacles to nice theorems
1) There is a wellposed CP on X = L1(µ) with ‖eτA(t)‖ = 2 and
eτA(t) ≥ 0 for all τ > 0, t ∈ R, such that σ(U(t, s)) = {0} for all
t > s and σ(A(t)) = ∅ for all t ∈ R, except for some tn →∞
with A(tn) = 0, but t 7→ ‖U(t, s)‖ grows more than exponentially.
[Nickel/S. ’96], [S. ’99]

2) Let Ak(t) = D(−t)AkD(t) with

D(t) =

(
cos t sin t
− sin t cos t

)
, A1 =

(
−1 −5
0 −1

)
, A2 =

(
1 0
0 −1

)
.

Then Ak(t) is smooth and periodic in t ∈ R, σ(A1(t)) = {−1},
σ(A2(t)) = {−1, 1}, and |R(λ, Ak(t))|2 = |R(λ, Ak(0))|2, but
|U1(t, s)| grows exp. and U2(·, ·) has no ED. (A2(t) is even sym.)
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1. Introduction
2. Wellposedness

3. Exponential dichotomy (ED)
4. Sufficient conditions for ED

3.1 Basic concepts
3.2 Characterization
3.3 Inhomogenous problems

Let U(·, ·) be an evol.fam. and exponentially bounded, i.e.,
‖U(t, s)‖ ≤ Meω(t−s) for all t ≥ s and some M ≥ 1, ω ∈ R.
On E = C0(R,X ) or E = Lp(R,X ) with 1 ≤ p < ∞, define the
evolution semigroup by

(T (t)f )(s) = U(s, s − t)f (s − t), s ∈ R, f ∈ E , t ≥ 0.

Then T (·) is a C0-semigroup, with generator G .
If A(·) gener. U(·, ·), we have G = G0, where G0u = −u′ + A(·)u
and D(G0) = {u ∈ E : u(t) ∈ D(A(t)) ∀ t, u′ ∈ E ,A(·)u ∈ E}.

Theorem [Latushkin/Montgomery-Smith ’95, Levitan/Zhikov ’82]
U(·, ·) has ED iff I − T (t) is invertible for some t > 0
iff G is invertible iff for all f ∈ E there is exactly one u ∈ E with

u(t) = U(t, s)u(s) +

∫ t

s
U(t, τ)f (τ)dτ, ∀ t ≥ s.

Remarks. 1) P(·) (from ED) is the dich. proj. for T (·), it it exists.

2) G is Fredholm iff U(·, ·) has ED on (−∞, a] and [b,∞) for
some b ≥ a and Q(b)U(b, a)| : Q(a)X → Q(b)X is Fredholm.
[Latushkin/Pogan/S. ’07], [Latushkin/Tomilov ’05]

3) Let U(·, ·) be bounded. Then U(t, s)x → 0 as t →∞ for all
x ∈ X and s ∈ R iff G has dense range for E = L1(R,X ).
[Batty/Chill/Tomilov ’02]
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Theorem [Maniar/S. ’03]
Let A(·) satisfy (AT) and generate U(·, ·) having an ED with proj.
P(·). Let R(ω, A(·)) and f ∈ Cα(R,X ) be almost periodic. Then

u(t) =

∫ t

−∞
U(t, s)P(s)f (s) ds −

∫ ∞

t
UQ(t, s)Q(s)f (s) ds, t ∈ R,

is the (unique) almost periodic solution of u′(t) = A(t)u(t) + f (t),
t ∈ R.
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Theorem [Robustness]
Let U(·, ·) and V (·, ·) be exp. bdd. evol.fam., let U(·, ·) have ED.
Then ∃ q > 0 such that: If ‖U(s, s − 1)− V (s, s − 1)‖ ≤ q for all
s ∈ R, then V (·, ·) has ED and proj. of U and V have same ranks.

Cor. Let U(·, ·) be exp. bdd. evol.fam., let B(t) ∈ B(X ) be unif.
bdd. and str. cont. Then ∃! exp. bdd. evol.fam. V (·, ·) such that

V (t, s)x = U(t, s)x +

∫ t

s
U(t, τ)B(τ)V (τ, s)x dτ

for all t ≥ s and x ∈ X . If U(·, ·) has ED and ‖B(·)‖∞ is small
enough, then V (·, ·) has ED and proj. of U and V have same rank.

Remark: Even if U(t, s) = e(t−s)A, the CP for A + B(·) does not
need to be well-posed [Phillips ’53].
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Remark
There is a robustness result for symmetric hyperbolic systems on
Rn with coefficients of the form a(t, x) = a0(x) + aε(t, x), where
aε is small and the autonomous system corresp. to a0 has an ED.
[Shirikan-Volevich ’02].

Corollary (Parabolic case) [Batty/Chill ’02, S. ’02 +’04]
Let A(·) and B(·) satisfy (AT), generating U(·, ·) and V (·, ·). Let
U(·, ·) have ED. Then ∃ q > 0 such that:
If ‖R(ω, A(s))− R(ω, B(s)))‖ ≤ q for all s ∈ R, then V (·, ·) has
ED, and projections of U(·, ·) and V (·, ·) have same ranks.

Proof. Idea:

V (t, s)−U(t, s)=

∫ t

s
V (t, τ)(ω − B(τ))[R(ω, A(τ))− R(ω, B(τ))]

· (ω − A(τ))U(τ, s) dτ
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Theorem [Batty-Chill ’02, S. ’01+’04]
Let A(·) satisfy (AT) and generate U(·, ·) and let
R(ω, A(t)) → R(ω, A) in B(X ) as t →∞, where A is sectorial and
σ(A) ∩ iR = ∅. Then ∃ b ∈ R such that U(·, ·) has ED on [b,∞),
projections of U(·, ·) and etA have same ranks, and P(s) → PA

strongly as s →∞.

Proof. Set Ab(t) = A(t) for t ≥ b and Ab(t) = A(b) for t ≤ b and
a suff. large b. Use cor. to robustness thm. for A and Ab(·).
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Example Consider a bdd. C 2-domain Ω ⊂ Rn with outer normal ν,

A(t, x ,D) =

(
div a(t, x)∇+ a0(t, x) b(t, x)

c(t, x) div d(t, x)∇+ d0(t, x)

)
,

B(t, x ,D) =

(
a(t, x)ν(x) · ∇ 0

0 d(t, x)ν(x) · ∇

)
,

0<δ≤a, d ∈ C
1/2
b (R,C 1(Ω, R)), a0, b, c , d0 ∈ C

1/2
b (R,C (Ω, R))

tending to constants as t →∞ in C (Ω). Then A(t)u =A(t, ·,D)u
with D(A(t))={u∈W 2

p (Ω)2 :B(t, ·,D)u=0 on ∂Ω}, satisfy (AT)
on Lp(Ω)2, 1<p<∞, and R(ω, A(t)) → R(ω, A(∞)) in op. norm.

Let µn be EV of Neumann Laplacian and

Mn =

(
a(∞)µn + a0(∞) b(∞)

c(∞) d(∞)µn + d0(∞)

)
.

Then σ(A(∞)) ∩ iR 6= ∅ iff either det Mn = 0 for some n ∈ N0, or
tr Mn = 0 and det Mn > 0 for some n ∈ N0.
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Theorem [S. ’00 ,’04]
Let A(·) satisfy (AT) such that ‖R(λ, A(t))‖ ≤ c for all t ∈ R and
|Re λ| ≤ r and some r , c > 0. If the Hölder constant L ≥ 0 in
(AT) is small enough, then the evolution family U(·, ·) generated
by A(·) has ED with proj. having the same ranks as those of eτA(0).

Proof. Using eτA(s), construct left and right inverse of G with
small error.

Cor. Let assumptions of thm hold except for smallness of L. Then,
for suff. small ε > 0, A(εt) generate an evol.fam. with ED.
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Theorem [Henry ’81]
Let A be sectorial and B(·) ∈ Cα

b (R,B(D((ω − A)θ),X ) for some
α > 0 and θ ∈ [0, 1). Assume that

∃ B0 = lim
T→∞

1

T

∫ t+T

t
B(s) ds

uniformly in t and that σ(A + B0) ∩ iR = ∅. Then, for suff. large
γ > 0, the evolution family generated by A + B(γt) has ED.

Remark. Similar results for parab. pde on Rn by [Levenshtam ’93],
see also Sobolevskii.
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Let A(t)u(x) = tr(q(t)D2u(x)) + b(t)x · ∇u(x) with
b, q ∈ Cb(R,Mn,n(R)) with q(t) = q(t)T ≥ δI > 0. There are
operators U(t, s) solving u′(t) = A(t)u(t) in Cb(Rn).
Assume that b(·) generates an exponentially stable evol.fam. on
Rn. Then ∃ exist probability measures µt , t ∈ R, on Rn such that∫

Rn

U(t, s)ϕ dµt =

∫
Rn

ϕ dµs , ∀ ϕ ∈ Cb(Rn), t ≥ s.

Extend U(t, s) to contractive U(t, s) : L2(µs) → L2(µt) and define
‘evol.sgr.’ T (·) on L2(R1+n, ν) with ν(I ×M) =

∫
I µs(M) ds. Let

G be its generator.
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Theorem [Geissert/Lunardi ’08,’09]
Let Q(t)ϕ =

∫
ϕ dµt . Then Q(t)U(t, s) = U(t, s)Q(s) is the

identity and U(t, s) : N(Q(t)) → N(Q(s)) decays exponentially.

Proof. Use T (·) and, for ‘regular’ u ∈ D(G ),∫
R1+n

uGu dν = −
∫

R1+n

(q∇u) · ∇u dν.

Remarks. Periodic case in [Da Prato/Lunardi ’07].
For more general coeff., see [Kunze/Lorenzi/Lunardi] for existence
of µt and [Lorenzi/Lunardi/Zamboni] for asymptotic behavior in
periodic case.
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