Asymptotic behavior of nonautonomous Cauchy problems

Roland Schnaubelt, Karlsruhe

First Meeting on Asymptotics of Operator Semigroups Oxford, 4. September 2009

1) Given: Linear operators A(t), $t \in \mathbb{R}$, on a Banach space X with domains D(A(t)), $f : \mathbb{R} \to X$ and $u_0 \in X$. (Mostly f = 0.) Solve

$$u'(t) = A(t)u(t) + f(t), \quad t \ge 0, \qquad u(0) = u_0.$$
 (1)

1) Given: Linear operators A(t), $t \in \mathbb{R}$, on a Banach space X with domains D(A(t)), $f : \mathbb{R} \to X$ and $u_0 \in X$. (Mostly f = 0.) Solve

$$u'(t) = A(t)u(t) + f(t), \quad t \ge 0, \qquad u(0) = u_0.$$
 (1)

2) Consider a nonlinear problem with a special solution v_* :

$$v'(t) = F(v(t)), \quad t \ge 0, \qquad v(0) = v_0.$$
 (2)

Linearization of (2) at v_* leads to pb (1) with $A(t) := F'(v_*(t))$. Exponential splittings of (1) should persist in (2) near v_* (cf. principle of linearized stab, local stable/center/unstable manifolds).

1) Given: Linear operators A(t), $t \in \mathbb{R}$, on a Banach space X with domains D(A(t)), $f : \mathbb{R} \to X$ and $u_0 \in X$. (Mostly f = 0.) Solve

 $u'(t) = A(t)u(t) + f(t), \quad t \ge 0, \qquad u(0) = u_0.$ (1)

3) Consider a quasilinear problem, where $x \mapsto A(v)x$ is linear:

 $v'(t) = A(v(t))v(t), \quad t \ge 0, \qquad v(0) = v_0.$ (3)

Fix v, and look for solution $u = \Phi(v)$ of linear problem

 $u'(t) = A(v(t))u(t), \quad t \ge 0, \qquad u(0) = v_0.$ (4)

Fixed point $\hat{v} = \Phi(\hat{v})$ then solves (3). [Kato; Sobolevskii, Amann, Acquistapace/Terreni, Yagi]

 1. Introduction
 2.1

 2. Wellposedness
 2.2

 3. Exponential dichotomy (ED)
 2.3

 4. Sufficient conditions for ED

2.1 Basic concepts 2.2 General case: Kato's theo 2.3 Parabolic case

Definition

 $U(t,s) \in \mathcal{B}(X)$ form an evolution family $U(\cdot, \cdot)$ if

•
$$U(s,s) = I$$
, $U(t,r)U(r,s) = U(t,s)$, and

• $(t,s) \mapsto U(t,s)$ is strongly continuous

for $t \geq r \geq s$ in \mathbb{R} .

 1. Introduction
 2.1 Basic

 2. Wellposedness
 2.2 Gener

 3. Exponential dichotomy (ED)
 2.3 Parate

 4. Sufficient conditions for ED
 2.3 Parate

2.1 Basic concepts 2.2 General case: Kato's theory 2.3 Parabolic case

Definition

 $U(t,s)\in \mathcal{B}(X)$ form an evolution family $U(\cdot,\cdot)$ if

- U(s,s) = I, U(t,r)U(r,s) = U(t,s), and
- $(t,s) \mapsto U(t,s)$ is strongly continuous

for $t \ge r \ge s$ in \mathbb{R} . The Cauchy problem (CP)

$$u'(t) = A(t)u(t), \quad t \ge s, \qquad u(s) = u_0,$$
 (5)

is well posed if \exists an evol. fam. $U(\cdot, \cdot)$ and dense subspaces Y_t of X s.t. $U(t, s)Y_s \subset Y_t \subset D(A(t))$ and $u = U(\cdot, s)u_0 \in C^1([s, \infty), X)$ solves (5), for all $u_0 \in Y_s$ and $t \ge s$. Then $A(\cdot)$ generates $U(\cdot, \cdot)$.

Remark. There are wellposed CP, where each A(t) is a generator and $Y_t \neq D(A(t))$ for each t. 1. Introduction

2. Wellposedness

3. Exponential dichotomy (ED)

4. Sufficient conditions for ED

2.1 Basic concepts 2.2 General case: Kato's theo 2.3 Parabolic case

Some obstacles to nice theorems

1) $U(t,s) = q(t)q(s)^{-1}I$ for nondifferentiable $0 < q \in C(\mathbb{R})$ is an evolution family without generators.

2) There are wellposed CP where each A(t) is not closable or where $\bigcap_t D(A(t)) = \{0\}$.

2. Wellposedness 3. Exponential dichotomy (ED) 4. Sufficient conditions for ED 2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

A(t), $t \in \mathbb{R}$, are stable if $\exists M > 0, \omega \in \mathbb{R}$ with $s(A(t)) < \omega$ and

 $\|R(\lambda, A(t_n)) \cdots R(\lambda, A(t_1))\| \le M(\lambda - \omega)^{-n}$

for all $\lambda > \omega$, $t_1 \leq \cdots \leq t_n$ and $n \in \mathbb{N}$.

2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

A(t), $t \in \mathbb{R}$, are stable if $\exists M > 0, \omega \in \mathbb{R}$ with $s(A(t)) < \omega$ and

 $\|R(\lambda, A(t_n)) \cdots R(\lambda, A(t_1))\| \le M(\lambda - \omega)^{-n}$

for all $\lambda > \omega$, $t_1 \leq \cdots \leq t_n$ and $n \in \mathbb{N}$.

Theorem [Kato '70]

Let $A(\cdot)$ be stable and $Y \subset X$ be dense s.t. $e^{\tau A(t)} Y \subset Y \subset D(A(t))$ for all $t \in \mathbb{R}$, $\tau \ge 0$ and $A(\cdot) \in C_b(\mathbb{R}, \mathcal{B}(Y, X))$.

- a) Let Y be reflexive and $A_{|Y}(\cdot)$ be stable in Y. Then \exists evolution family $U(\cdot, \cdot)$ with $U(t, s)Y \subset Y$ for all $t \geq s$ and $\partial_t U(t, s)y = A(t)U(t, s)y$ for all $y \in Y$ and a.e. $t \in [s, \infty)$.
- b) Under a technical assumpt., $A(\cdot)$ generates $U(\cdot, \cdot)$ with $Y_t := Y$.

2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

A(t), $t \in \mathbb{R}$, are stable if $\exists M > 0, \omega \in \mathbb{R}$ with $s(A(t)) < \omega$ and

 $\|R(\lambda, A(t_n)) \cdots R(\lambda, A(t_1))\| \le M(\lambda - \omega)^{-n}$

for all $\lambda > \omega$, $t_1 \leq \cdots \leq t_n$ and $n \in \mathbb{N}$.

Theorem [Kato '70]

Let $A(\cdot)$ be stable and $Y \subset X$ be dense s.t. $e^{\tau A(t)} Y \subset Y \subset D(A(t))$ for all $t \in \mathbb{R}$, $\tau \ge 0$ and $A(\cdot) \in C_b(\mathbb{R}, \mathcal{B}(Y, X))$.

a) Let Y be reflexive and $A_{|Y}(\cdot)$ be stable in Y. Then \exists evolution family $U(\cdot, \cdot)$ with $U(t, s)Y \subset Y$ for all $t \geq s$ and $\partial_t U(t, s)y = A(t)U(t, s)y$ for all $y \in Y$ and a.e. $t \in [s, \infty)$.

b) Under a technical assumpt., $A(\cdot)$ generates $U(\cdot, \cdot)$ with $Y_t := Y$.

Idea:
$$U(t,s)x = \lim_{n \to \infty} \prod_{k=1}^n e^{\frac{t-s}{n}A(s_k)}x; \qquad s_k = s + \frac{k(t-s)}{n}.$$

2. Wellposedness 3. Exponential dichotomy (ED) 4. Sufficient conditions for ED 2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

Remarks 1) There are variants of Kato's thm. Simplest case: If D(A(t)) = Y for all t, Y is dense, $A(\cdot)$ is stable in X and $A(\cdot) \in C_b^1(\mathbb{R}, \mathcal{B}(Y, X))$, then CP is wellposed.

2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

Remarks 1) There are variants of Kato's thm. Simplest case: If D(A(t)) = Y for all t, Y is dense, $A(\cdot)$ is stable in X and $A(\cdot) \in C_b^1(\mathbb{R}, \mathcal{B}(Y, X))$, then CP is wellposed.

2) Example in [Colombini et.al. '79]: Blow up in equation $u_{tt}(t,x) = a(t)u_{xx}(t,x)$ with $x \in \mathbb{R}$ for some $a \in \bigcap_{\alpha < 1} C^{\alpha}(\mathbb{R})$.

2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

Remarks 1) There are variants of Kato's thm. Simplest case: If D(A(t)) = Y for all t, Y is dense, $A(\cdot)$ is stable in X and $A(\cdot) \in C_b^1(\mathbb{R}, \mathcal{B}(Y, X))$, then CP is wellposed.

2) Example in [Colombini et.al. '79]: Blow up in equation $u_{tt}(t,x) = a(t)u_{xx}(t,x)$ with $x \in \mathbb{R}$ for some $a \in \bigcap_{\alpha < 1} C^{\alpha}(\mathbb{R})$.

3) Let $A(\cdot)$ generate $U(\cdot, \cdot)$ and $t \mapsto R(\lambda, A(t))$ be str.cont. a) If A(t) is a gen., $||e^{\tau A(t)}|| \le e^{\omega \tau}$ for all $t \in \mathbb{R}$ and $\tau \ge 0$, then $||U(t,s)|| \le e^{\omega(t-s)}$ for all $t \ge s$. [Nickel '99], [S. '99]

$$U(t,s)x = \lim_{n\to\infty}\prod_{k=1}^n e^{\frac{t-s}{n}A(s_k)}x$$

2.1 Basic concepts2.2 General case: Kato's theory2.3 Parabolic case

Remarks 1) There are variants of Kato's thm. Simplest case: If D(A(t)) = Y for all t, Y is dense, $A(\cdot)$ is stable in X and $A(\cdot) \in C_b^1(\mathbb{R}, \mathcal{B}(Y, X))$, then CP is wellposed.

2) Example in [Colombini et.al. '79]: Blow up in equation $u_{tt}(t,x) = a(t)u_{xx}(t,x)$ with $x \in \mathbb{R}$ for some $a \in \bigcap_{\alpha < 1} C^{\alpha}(\mathbb{R})$.

- 3) Let $A(\cdot)$ generate $U(\cdot, \cdot)$ and $t \mapsto R(\lambda, A(t))$ be str.cont.
- a) If A(t) is a gen., $||e^{\tau A(t)}|| \le e^{\omega \tau}$ for all $t \in \mathbb{R}$ and $\tau \ge 0$, then $||U(t,s)|| \le e^{\omega(t-s)}$ for all $t \ge s$. [Nickel '99], [S. '99]
- b) If $A(\cdot)$ is stable in a Banach lattice X and $e^{\tau A(t)} \ge 0$, then $U(t,s) \ge 0$ for all $t \ge s$. [S. '99]

$$U(t,s)x = \lim_{n \to \infty} \prod_{k=1}^{n} e^{\frac{t-s}{n}A(s_k)}x$$

 1. Introduction

 2. Wellposedness

 3. Exponential dichotomy (ED)

 4. Sufficient conditions for ED

A(t) satisfy the Acquistapace-Terreni condition (AT) if $\exists \ \omega \in \mathbb{R}$, $\phi \in (\pi/2, \pi)$, K, L > 0, $\mu, \nu > 0$ such that $\mu + \nu > 1$ and

$$\begin{split} \|R(\lambda,A(t))\| &\leq \frac{K}{1+|\lambda-\omega|}, \\ \|\lambda^{\nu}A(t)R(\lambda,A(t))[R(\omega,A(t))-R(\omega,A(s))]\| &\leq L |t-s|^{\mu} \end{split}$$

for all $t, s \in \mathbb{R}$ and $\lambda \neq \omega$ with $|arg(\lambda - \omega)| \leq \phi$. For simplicity, let D(A(t)) be dense for all t.

 1. Introduction

 2. Wellposedness

 3. Exponential dichotomy (ED)

 4. Sufficient conditions for ED

A(t) satisfy the Acquistapace-Terreni condition (AT) if $\exists \ \omega \in \mathbb{R}$, $\phi \in (\pi/2, \pi)$, K, L > 0, $\mu, \nu > 0$ such that $\mu + \nu > 1$ and

$$egin{aligned} &\|R(\lambda,A(t))\| \leq rac{\mathcal{K}}{1+|\lambda-\omega|}, \ &\|\lambda^
u A(t)R(\lambda,A(t))\left[R(\omega,A(t))-R(\omega,A(s))
ight]\| \leq L\,|t-s|^\mu \end{aligned}$$

for all $t, s \in \mathbb{R}$ and $\lambda \neq \omega$ with $|arg(\lambda - \omega)| \leq \phi$. For simplicity, let D(A(t)) be dense for all t.

Theorem [AT '87-'88] Let (AT) hold. Then $A(\cdot)$ generates an evol. fam. $U(\cdot, \cdot)$ with $||A(t)U(t, s)|| \le c (t - s)^{-1}e^{d(t-s)}$ for all t > s. See also Amann, Yagi; Kato-Tanabe.

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

Definition

An evol.fam. $U(\cdot, \cdot)$ has an exponential dichotomy (ED) on an interval J if \exists projections P(t), $t \in J$, and $N, \delta > 0$ such that

$$\blacktriangleright U(t,s)P(s) = P(t)U(t,s),$$

▶
$$U(t,s): Q(s)X \rightarrow Q(t)X$$
 has inverse $U_Q(s,t)$

• $\|U(t,s)P(s)\|, \|U_Q(s,t)Q(t)\| \le Ne^{-\delta(t-s)}$

for all $t \ge s$ in J. Here Q(t) = I - P(t). If P(t) = I, then $U(\cdot, \cdot)$ is exponentially stable. (Mostly $J = \mathbb{R}$.)

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

Definition

An evol.fam. $U(\cdot, \cdot)$ has an exponential dichotomy (ED) on an interval J if \exists projections P(t), $t \in J$, and $N, \delta > 0$ such that

$$\blacktriangleright U(t,s)P(s) = P(t)U(t,s),$$

▶
$$U(t,s): Q(s)X \rightarrow Q(t)X$$
 has inverse $U_Q(s,t)$

• $\|U(t,s)P(s)\|, \|U_Q(s,t)Q(t)\| \le Ne^{-\delta(t-s)}$

for all $t \ge s$ in J. Here Q(t) = I - P(t). If P(t) = I, then $U(\cdot, \cdot)$ is exponentially stable. (Mostly $J = \mathbb{R}$.)

Remark: If $U(t + \tau, s + \tau) = U(t, s)$ for some $\tau > 0$ and all $t \ge s$ (i.e., $A(t) = A(t + \tau)$), then $U(\cdot, \cdot)$ has ED iff $\sigma(U(\tau, 0)) \cap \mathbb{T} = \emptyset$.

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

More obstacles to nice theorems

1) There is a wellposed CP on $X = L^1(\mu)$ with $||e^{\tau A(t)}|| = 2$ and $e^{\tau A(t)} \ge 0$ for all $\tau > 0$, $t \in \mathbb{R}$, such that $\sigma(U(t,s)) = \{0\}$ for all t > s and $\sigma(A(t)) = \emptyset$ for all $t \in \mathbb{R}$, except for some $t_n \to \infty$ with $A(t_n) = 0$, but $t \mapsto ||U(t,s)||$ grows more than exponentially. [Nickel/S. '96], [S. '99]

 Introduction 3.1 Basic concepts 2. Wellposedness 3. Exponential dichotomy (ED) Sufficient conditions for ED

More obstacles to nice theorems

1) There is a wellposed CP on $X = L^{1}(\mu)$ with $||e^{\tau A(t)}|| = 2$ and $e^{\tau A(t)} \geq 0$ for all $\tau > 0$, $t \in \mathbb{R}$, such that $\sigma(U(t,s)) = \{0\}$ for all t > s and $\sigma(A(t)) = \emptyset$ for all $t \in \mathbb{R}$, except for some $t_n \to \infty$ with $A(t_n) = 0$, but $t \mapsto ||U(t,s)||$ grows more than exponentially. [Nickel/S. '96], [S. '99]

2) Let
$$A_k(t) = D(-t)A_kD(t)$$
 with

$$D(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}, \quad A_1 = \begin{pmatrix} -1 & -5 \\ 0 & -1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then $A_k(t)$ is smooth and periodic in $t \in \mathbb{R}$, $\sigma(A_1(t)) = \{-1\}$, $\sigma(A_2(t)) = \{-1, 1\}, \text{ and } |R(\lambda, A_k(t))|_2 = |R(\lambda, A_k(0))|_2, \text{ but } \}$ $|U_1(t,s)|$ grows exp. and $U_2(\cdot,\cdot)$ has no ED. $(A_2(t)$ is even sym.)

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

Let $U(\cdot, \cdot)$ be an evol.fam. and exponentially bounded, i.e., $||U(t,s)|| \le Me^{\omega(t-s)}$ for all $t \ge s$ and some $M \ge 1$, $\omega \in \mathbb{R}$. On $E = C_0(\mathbb{R}, X)$ or $E = L^p(\mathbb{R}, X)$ with $1 \le p < \infty$, define the evolution semigroup by

 $(T(t)f)(s) = U(s,s-t)f(s-t), \qquad s \in \mathbb{R}, f \in E, t \ge 0.$

Then $T(\cdot)$ is a C_0 -semigroup, with generator G. If $A(\cdot)$ gener. $U(\cdot, \cdot)$, we have $G = \overline{G_0}$, where $G_0u = -u' + A(\cdot)u$ and $D(G_0) = \{u \in E : u(t) \in D(A(t)) \forall t, u' \in E, A(\cdot)u \in E\}.$

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

Let $U(\cdot, \cdot)$ be an evol.fam. and exponentially bounded, i.e., $\|U(t,s)\| \le Me^{\omega(t-s)}$ for all $t \ge s$ and some $M \ge 1$, $\omega \in \mathbb{R}$. On $E = C_0(\mathbb{R}, X)$ or $E = L^p(\mathbb{R}, X)$ with $1 \le p < \infty$, define the evolution semigroup by

 $(T(t)f)(s) = U(s, s-t)f(s-t), \qquad s \in \mathbb{R}, f \in E, t \ge 0.$

Then $T(\cdot)$ is a C_0 -semigroup, with generator G. If $A(\cdot)$ gener. $U(\cdot, \cdot)$, we have $G = \overline{G_0}$, where $G_0u = -u' + A(\cdot)u$ and $D(G_0) = \{u \in E : u(t) \in D(A(t)) \forall t, u' \in E, A(\cdot)u \in E\}$. It holds: $\sigma(T(t)) = \mathbb{T} \cdot \sigma(T(t))$ for all t > 0, $\sigma(G) = \sigma(G) + i\mathbb{R}$. Theorem [Latushkin/Montgomery-Smith '95, Levitan/Zhikov '82] $U(\cdot, \cdot)$ has ED iff I - T(t) is invertible for some t > 0iff G is invertible iff for all $f \in E$ there is exactly one $u \in E$ with

$$u(t) = U(t,s)u(s) + \int_s^t U(t, au)f(au)d au, \qquad orall t \ge s.$$

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

Theorem [Latushkin/Montgomery-Smith '95, Levitan/Zhikov '82] $U(\cdot, \cdot)$ has ED iff I - T(t) is invertible for some t > 0 iff G is invertible iff for all $f \in E$ there is exactly one $u \in E$ with

$$u(t) = U(t,s)u(s) + \int_s^t U(t, au)f(au)d au, \qquad orall t \ge s.$$

Remarks. 1) $P(\cdot)$ (from ED) is the dich. proj. for $T(\cdot)$, it it exists. 2) *G* is Fredholm iff $U(\cdot, \cdot)$ has ED on $(-\infty, a]$ and $[b, \infty)$ for some $b \ge a$ and $Q(b)U(b, a)_{|} : Q(a)X \to Q(b)X$ is Fredholm. [Latushkin/Pogan/S. '07], [Latushkin/Tomilov '05] 3) Let $U(\cdot, \cdot)$ be bounded. Then $U(t, s)x \to 0$ as $t \to \infty$ for all $x \in X$ and $s \in \mathbb{R}$ iff *G* has dense range for $E = L^1(\mathbb{R}, X)$. [Batty/Chill/Tomilov '02]

3.1 Basic concepts3.2 Characterization3.3 Inhomogenous problems

Theorem [Maniar/S. '03]

Let $A(\cdot)$ satisfy (AT) and generate $U(\cdot, \cdot)$ having an ED with proj. $P(\cdot)$. Let $R(\omega, A(\cdot))$ and $f \in C^{\alpha}(\mathbb{R}, X)$ be almost periodic. Then

$$u(t) = \int_{-\infty}^{t} U(t,s)P(s)f(s) ds - \int_{t}^{\infty} U_Q(t,s)Q(s)f(s) ds, \quad t \in \mathbb{R},$$

is the (unique) almost periodic solution of u'(t) = A(t)u(t) + f(t), $t \in \mathbb{R}$.

1. Introduction

- 2. Wellposedness
- 3. Exponential dichotomy (ED)
- 4. Sufficient conditions for ED
- 4.1 Robustness
- 4.2 Asymptotically autonomous problems
- 4.3 Slowly oscillating problems
- 4.4 Rapidly oscillating problems
- 4.5 Ornstein-Uhlenbeck

References

- On evolution semigroups: Chicone/Latushkin, AMS '99.
- ► General surveys: [Nagel/Nickel '02], [S. '02].
- ED for ODE: Coppel, Springer '78.
- ► ED for A(t) = A + B(t) with A sectorial and $B(t) \in \mathcal{B}(D((\omega A)^{\alpha}), X)$, $\alpha < 1$: Henry, Springer '81.
- Survey in parabolic case: [S. '04], with proofs for asymptotic behavior. Many comments on related work.

Theorem [Robustness]

Let $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ be exp. bdd. evol.fam., let $U(\cdot, \cdot)$ have ED. Then $\exists q > 0$ such that: If $||U(s, s - 1) - V(s, s - 1)|| \le q$ for all $s \in \mathbb{R}$, then $V(\cdot, \cdot)$ has ED and proj. of U and V have same ranks.

Theorem [Robustness]

Let $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ be exp. bdd. evol.fam., let $U(\cdot, \cdot)$ have ED. Then $\exists q > 0$ such that: If $||U(s, s - 1) - V(s, s - 1)|| \le q$ for all $s \in \mathbb{R}$, then $V(\cdot, \cdot)$ has ED and proj. of U and V have same ranks. Proof. $||T_U(1) - T_V(1)|| = \sup_s ||U(s, s - 1) - V(s, s - 1)||$.

Roland Schnaubelt, Karlsruhe Asymptotic behavior of nonautonomous Cauchy problems

 1. Introduction

 2. Wellposedness

 3. Exponential dichotomy (ED)

 4. Sufficient conditions for ED

Theorem [Robustness]

Let $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ be exp. bdd. evol.fam., let $U(\cdot, \cdot)$ have ED. Then $\exists q > 0$ such that: If $||U(s, s - 1) - V(s, s - 1)|| \le q$ for all $s \in \mathbb{R}$, then $V(\cdot, \cdot)$ has ED and proj. of U and V have same ranks. Proof. $||T_U(1) - T_V(1)|| = \sup_s ||U(s, s - 1) - V(s, s - 1)||$. Cor. Let $U(\cdot, \cdot)$ be exp. bdd. evol.fam., let $B(t) \in \mathcal{B}(X)$ be unif. bdd. and str. cont. Then $\exists!$ exp. bdd. evol.fam. $V(\cdot, \cdot)$ such that

$$V(t,s)$$
 $x = U(t,s)$ $x + \int_{s}^{t} U(t,\tau)B(\tau)V(\tau,s)$ $x d\tau$

for all $t \ge s$ and $x \in X$. If $U(\cdot, \cdot)$ has ED and $||B(\cdot)||_{\infty}$ is small enough, then $V(\cdot, \cdot)$ has ED and proj. of U and V have same rank.

Theorem [Robustness]

Let $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ be exp. bdd. evol.fam., let $U(\cdot, \cdot)$ have ED. Then $\exists q > 0$ such that: If $||U(s, s - 1) - V(s, s - 1)|| \le q$ for all $s \in \mathbb{R}$, then $V(\cdot, \cdot)$ has ED and proj. of U and V have same ranks.

Cor. Let $U(\cdot, \cdot)$ be exp. bdd. evol.fam., let $B(t) \in \mathcal{B}(X)$ be unif. bdd. and str. cont. Then $\exists !$ exp. bdd. evol.fam. $V(\cdot, \cdot)$ such that

$$V(t,s)x = U(t,s)x + \int_s^t U(t,\tau)B(\tau)V(\tau,s)x\,d\tau$$

for all $t \ge s$ and $x \in X$. If $U(\cdot, \cdot)$ has ED and $||B(\cdot)||_{\infty}$ is small enough, then $V(\cdot, \cdot)$ has ED and proj. of U and V have same rank. Remark: Even if $U(t, s) = e^{(t-s)A}$, the CP for $A + B(\cdot)$ does not need to be well-posed [Phillips '53].

4.1 Robustness

- 4.2 Asymptotically autonomous problems
- 4.3 Slowly oscillating problems
- 4.4 Rapidly oscillating problems
- 4.5 Ornstein-Uhlenbeck

Remark

There is a robustness result for symmetric hyperbolic systems on \mathbb{R}^n with coefficients of the form $a(t, x) = a_0(x) + a_{\varepsilon}(t, x)$, where a_{ε} is small and the autonomous system corresp. to a_0 has an ED. [Shirikan-Volevich '02].

1. Introduction 2. Wellposedness 3. Exponential dichotomy (ED) 4. Sufficient conditions for ED

Remark

There is a robustness result for symmetric hyperbolic systems on \mathbb{R}^n with coefficients of the form $a(t, x) = a_0(x) + a_{\varepsilon}(t, x)$, where a_{ε} is small and the autonomous system corresp. to a_0 has an ED. [Shirikan-Volevich '02].

Corollary (Parabolic case) [Batty/Chill '02, S. '02 +'04] Let $A(\cdot)$ and $B(\cdot)$ satisfy (AT), generating $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$. Let $U(\cdot, \cdot)$ have ED. Then $\exists q > 0$ such that: If $||R(\omega, A(s)) - R(\omega, B(s)))|| \le q$ for all $s \in \mathbb{R}$, then $V(\cdot, \cdot)$ has ED, and projections of $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ have same ranks.

1. Introduction 2. Wellposedness 3. Exponential dichotomy (ED) 4. Sufficient conditions for ED

Remark

There is a robustness result for symmetric hyperbolic systems on \mathbb{R}^n with coefficients of the form $a(t,x) = a_0(x) + a_{\varepsilon}(t,x)$, where a_{ε} is small and the autonomous system corresp. to a_0 has an ED. [Shirikan-Volevich '02].

Corollary (Parabolic case) [Batty/Chill '02, S. '02 +'04] Let $A(\cdot)$ and $B(\cdot)$ satisfy (AT), generating $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$. Let $U(\cdot, \cdot)$ have ED. Then $\exists q > 0$ such that: If $||R(\omega, A(s)) - R(\omega, B(s)))|| \le q$ for all $s \in \mathbb{R}$, then $V(\cdot, \cdot)$ has ED, and projections of $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ have same ranks.

Proof. Idea:

$$V(t,s) - U(t,s) = \int_{s}^{t} V(t,\tau)(\omega - B(\tau))[R(\omega, A(\tau)) - R(\omega, B(\tau))]$$
$$\cdot (\omega - A(\tau))U(\tau, s) d\tau$$

1. Introduction

- 2. Wellposedness
- 3. Exponential dichotomy (ED)
- 4. Sufficient conditions for ED
- 4.1 Robustness
- 4.2 Asymptotically autonomous problems
- 4.3 Slowly oscillating problems
- 4.4 Rapidly oscillating problems
- 4.5 Ornstein-Uhlenbeck

Theorem [Batty-Chill '02, S. '01+'04]

Let $A(\cdot)$ satisfy (AT) and generate $U(\cdot, \cdot)$ and let $R(\omega, A(t)) \to R(\omega, A)$ in $\mathcal{B}(X)$ as $t \to \infty$, where A is sectorial and $\sigma(A) \cap i\mathbb{R} = \emptyset$. Then $\exists \ b \in \mathbb{R}$ such that $U(\cdot, \cdot)$ has ED on $[b, \infty)$, projections of $U(\cdot, \cdot)$ and e^{tA} have same ranks, and $P(s) \to P_A$ strongly as $s \to \infty$.

Proof. Set $A_b(t) = A(t)$ for $t \ge b$ and $A_b(t) = A(b)$ for $t \le b$ and a suff. large b. Use cor. to robustness thm. for A and $A_b(\cdot)$.

4.5 Ornstein-Uhlenbeck

Example Consider a bdd. C^2 -domain $\Omega \subset \mathbb{R}^n$ with outer normal ν ,

$$\begin{aligned} \mathcal{A}(t,x,D) &= \begin{pmatrix} \operatorname{div} a(t,x)\nabla + a_0(t,x) & b(t,x) \\ c(t,x) & \operatorname{div} d(t,x)\nabla + d_0(t,x) \end{pmatrix}, \\ \mathcal{B}(t,x,D) &= \begin{pmatrix} a(t,x)\nu(x)\cdot\nabla & 0 \\ 0 & d(t,x)\nu(x)\cdot\nabla \end{pmatrix}, \end{aligned}$$

 $0 < \delta \leq a, d \in C_b^{1/2}(\mathbb{R}, C^1(\overline{\Omega}, \mathbb{R})), a_0, b, c, d_0 \in C_b^{1/2}(\mathbb{R}, C(\overline{\Omega}, \mathbb{R}))$ tending to constants as $t \to \infty$ in $C(\overline{\Omega})$. Then $A(t)u = \mathcal{A}(t, \cdot, D)u$ with $D(A(t)) = \{u \in W_p^2(\Omega)^2 : \mathcal{B}(t, \cdot, D)u = 0 \text{ on } \partial\Omega\}$, satisfy (AT) on $L^p(\Omega)^2, 1 , and <math>R(\omega, A(t)) \to R(\omega, A(\infty))$ in op. norm.

4.5 Ornstein-Uhlenbeck

Example Consider a bdd. C^2 -domain $\Omega \subset \mathbb{R}^n$ with outer normal ν ,

$$\begin{aligned} \mathcal{A}(t,x,D) &= \begin{pmatrix} \operatorname{div} a(t,x) \nabla + a_0(t,x) & b(t,x) \\ c(t,x) & \operatorname{div} d(t,x) \nabla + d_0(t,x) \end{pmatrix}, \\ \mathcal{B}(t,x,D) &= \begin{pmatrix} a(t,x) \nu(x) \cdot \nabla & 0 \\ 0 & d(t,x) \nu(x) \cdot \nabla \end{pmatrix}, \end{aligned}$$

 $0 < \delta \leq a, d \in C_b^{1/2}(\mathbb{R}, C^1(\overline{\Omega}, \mathbb{R})), a_0, b, c, d_0 \in C_b^{1/2}(\mathbb{R}, C(\overline{\Omega}, \mathbb{R}))$ tending to constants as $t \to \infty$ in $C(\overline{\Omega})$. Then $A(t)u = \mathcal{A}(t, \cdot, D)u$ with $D(A(t)) = \{u \in W_p^2(\Omega)^2 : \mathcal{B}(t, \cdot, D)u = 0 \text{ on } \partial\Omega\}$, satisfy (AT) on $L^p(\Omega)^2, 1 , and <math>R(\omega, A(t)) \to R(\omega, A(\infty))$ in op. norm. Let μ_n be EV of Neumann Laplacian and

$$M_n = \begin{pmatrix} a(\infty)\mu_n + a_0(\infty) & b(\infty) \\ c(\infty) & d(\infty)\mu_n + d_0(\infty) \end{pmatrix}$$

Then $\sigma(A(\infty)) \cap i\mathbb{R} \neq \emptyset$ iff either det $M_n = 0$ for some $n \in \mathbb{N}_0$, or tr $M_n = 0$ and det $M_n > 0$ for some $n \in \mathbb{N}_0$.

1. Introduction

- 2. Wellposedness
- 3. Exponential dichotomy (ED)
- 4. Sufficient conditions for ED
- 4.1 Robustness
- 4.2 Asymptotically autonomous problems
- 4.3 Slowly oscillating problems
- 4.4 Rapidly oscillating problems
- 4.5 Ornstein-Uhlenbeck

Theorem [S. '00 ,'04]

Let $A(\cdot)$ satisfy (AT) such that $||R(\lambda, A(t))|| \le c$ for all $t \in \mathbb{R}$ and $|\operatorname{Re} \lambda| \le r$ and some r, c > 0. If the Hölder constant $L \ge 0$ in (AT) is small enough, then the evolution family $U(\cdot, \cdot)$ generated by $A(\cdot)$ has ED with proj. having the same ranks as those of $e^{\tau A(0)}$. Proof. Using $e^{\tau A(s)}$, construct left and right inverse of G with small error.

1. Introduction

- 2. Wellposedness
- 3. Exponential dichotomy (ED)
- 4. Sufficient conditions for ED
- 4.1 Robustness
- 4.2 Asymptotically autonomous problems
- 4.3 Slowly oscillating problems
- 4.4 Rapidly oscillating problems
- 4.5 Ornstein-Uhlenbeck

Theorem [S. '00 ,'04]

Let $A(\cdot)$ satisfy (AT) such that $||R(\lambda, A(t))|| \le c$ for all $t \in \mathbb{R}$ and $|\operatorname{Re} \lambda| \le r$ and some r, c > 0. If the Hölder constant $L \ge 0$ in (AT) is small enough, then the evolution family $U(\cdot, \cdot)$ generated by $A(\cdot)$ has ED with proj. having the same ranks as those of $e^{\tau A(0)}$. Proof. Using $e^{\tau A(s)}$, construct left and right inverse of G with small error.

Cor. Let assumptions of thm hold except for smallness of *L*. Then, for suff. small $\varepsilon > 0$, $A(\varepsilon t)$ generate an evol.fam. with ED.

Theorem [Henry '81]

Let A be sectorial and $B(\cdot) \in C_b^{\alpha}(\mathbb{R}, \mathcal{B}(D((\omega - A)^{\theta}), X))$ for some $\alpha > 0$ and $\theta \in [0, 1)$. Assume that

$$\exists \quad B_0 = \lim_{T \to \infty} \frac{1}{T} \int_t^{t+T} B(s) \, ds$$

uniformly in t and that $\sigma(A + B_0) \cap i\mathbb{R} = \emptyset$. Then, for suff. large $\gamma > 0$, the evolution family generated by $A + B(\gamma t)$ has ED.

Remark. Similar results for parab. pde on \mathbb{R}^n by [Levenshtam '93], see also Sobolevskii.

Let $A(t)u(x) = tr(q(t)D^2u(x)) + b(t)x \cdot \nabla u(x)$ with $b, q \in C_b(\mathbb{R}, M_{n,n}(\mathbb{R}))$ with $q(t) = q(t)^T \ge \delta I > 0$. There are operators U(t, s) solving u'(t) = A(t)u(t) in $C_b(\mathbb{R}^n)$. Assume that $b(\cdot)$ generates an exponentially stable evol.fam. on \mathbb{R}^n . Then \exists exist probability measures $\mu_t, t \in \mathbb{R}$, on \mathbb{R}^n such that

$$\int_{\mathbb{R}^n} U(t,s)\varphi \,d\mu_t = \int_{\mathbb{R}^n} \varphi \,d\mu_s \,, \qquad \forall \,\varphi \in C_b(\mathbb{R}^n), \, t \geq s.$$

Extend U(t, s) to contractive $U(t, s) : L^2(\mu_s) \to L^2(\mu_t)$ and define 'evol.sgr.' $T(\cdot)$ on $L^2(\mathbb{R}^{1+n}, \nu)$ with $\nu(I \times M) = \int_I \mu_s(M) ds$. Let G be its generator.

 1. Introduction 2. Wellposedness 3. Exponential dichotomy (ED) 4. Sufficient conditions for ED 4. Robustness 4. 2 Asymptotically autonomous probl 4.3 Slowly oscillating problems 4.4 Rapidly oscillating problems 4.5 Ornstein-Uhlenbeck

Theorem [Geissert/Lunardi '08,'09] Let $Q(t)\varphi = \int \varphi \, d\mu_t$. Then Q(t)U(t,s) = U(t,s)Q(s) is the identity and $U(t,s) : N(Q(t)) \rightarrow N(Q(s))$ decays exponentially. Proof. Use $T(\cdot)$ and, for 'regular' $u \in D(G)$,

$$\int_{\mathbb{R}^{1+n}} u G u \, d\nu = - \int_{\mathbb{R}^{1+n}} (q \nabla u) \cdot \nabla u \, d\nu.$$

Remarks. Periodic case in [Da Prato/Lunardi '07]. For more general coeff., see [Kunze/Lorenzi/Lunardi] for existence of μ_t and [Lorenzi/Lunardi/Zamboni] for asymptotic behavior in periodic case.