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α-admissibility

Question: What is a sensible measurement?

Definition:

For α ∈ (−1, 1), C ∈ X ∗ is α-admissible for T if

∞∑
n=0

(1 + n)α|CT nx |2 ≤ M2‖x‖2
X , x ∈ X .

(yn)n∈N = (CT nx)n∈N,

α-admissibility ∼ measurement depends continuously on
initial value
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Necessary condition for α-admissibility

Suppose that C is α-admissible for T .

For x ∈ X , ω ∈ D,

|C (I − ωT )−1x | =

∣∣∣∣∣
∞∑

n=0

ωnCT nx

∣∣∣∣∣
≤

∞∑
n=0

|ω|n|CT nx |

≤

( ∞∑
n=0

(1 + n)−α|ω|2n

) 1
2
( ∞∑

n=0

(1 + n)α|CT nx |2
) 1

2

≤ M‖x‖X
(1− |ω|2)

1−α
2

.

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Discrete System
Admissibility
Discrete Weiss Conjecture

Necessary condition for α-admissibility

Suppose that C is α-admissible for T .

For x ∈ X , ω ∈ D,

|C (I − ωT )−1x | =

∣∣∣∣∣
∞∑

n=0

ωnCT nx

∣∣∣∣∣

≤
∞∑

n=0

|ω|n|CT nx |

≤

( ∞∑
n=0

(1 + n)−α|ω|2n

) 1
2
( ∞∑

n=0

(1 + n)α|CT nx |2
) 1

2

≤ M‖x‖X
(1− |ω|2)

1−α
2

.

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Discrete System
Admissibility
Discrete Weiss Conjecture

Necessary condition for α-admissibility

Suppose that C is α-admissible for T .

For x ∈ X , ω ∈ D,

|C (I − ωT )−1x | =

∣∣∣∣∣
∞∑

n=0

ωnCT nx

∣∣∣∣∣
≤

∞∑
n=0

|ω|n|CT nx |

≤

( ∞∑
n=0

(1 + n)−α|ω|2n

) 1
2
( ∞∑

n=0

(1 + n)α|CT nx |2
) 1

2

≤ M‖x‖X
(1− |ω|2)

1−α
2

.

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Discrete System
Admissibility
Discrete Weiss Conjecture

Necessary condition for α-admissibility

Suppose that C is α-admissible for T .

For x ∈ X , ω ∈ D,

|C (I − ωT )−1x | =

∣∣∣∣∣
∞∑

n=0

ωnCT nx

∣∣∣∣∣
≤

∞∑
n=0

|ω|n|CT nx |

≤

( ∞∑
n=0

(1 + n)−α|ω|2n

) 1
2
( ∞∑

n=0

(1 + n)α|CT nx |2
) 1

2

≤ M‖x‖X
(1− |ω|2)

1−α
2

.

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Discrete System
Admissibility
Discrete Weiss Conjecture

Necessary condition for α-admissibility

Suppose that C is α-admissible for T .

For x ∈ X , ω ∈ D,

|C (I − ωT )−1x | =

∣∣∣∣∣
∞∑

n=0

ωnCT nx

∣∣∣∣∣
≤

∞∑
n=0

|ω|n|CT nx |

≤

( ∞∑
n=0

(1 + n)−α|ω|2n

) 1
2
( ∞∑

n=0

(1 + n)α|CT nx |2
) 1

2

≤ M‖x‖X
(1− |ω|2)

1−α
2

.

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Discrete System
Admissibility
Discrete Weiss Conjecture

Discrete Weighted Weiss Conjecture

Hence: If C is α-admissible for T then

(RC)α : ‖C (I−ωT )−1‖X∗ ≤ k

(1− |ω|2)
1−α

2

, ω ∈ D.

Discrete Weighted Weiss Conjecture

For any T ∈ L(X ) s.t. σ(T ) ⊆ D and C ∈ X ∗:

C is α-admissible for T ⇐⇒ (RC)α holds.

Exists a (more famous!) conjecture in continuous time.

Similar results to those presented in this talk (work by Haak, Le
Merdy, Partington, Jabob, Weiss and more!)
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When is the Weiss conjecture true/false?

TRUE in the following:

(i) [Harper ‘06] If α = 0 and T a contraction (‖T‖L(X ) ≤ 1).

(ii) [W ‘08] If α ∈ (0, 1) and T is a normal contraction.

FALSE in the cases [W ‘09]:

(i) If α ∈ (−1, 0) conjecture fails for a normal contraction T .

(ii) If α ∈ (0, 1) fails for the unilateral shift on H2(D).
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Dirichlet Spaces; Carleson measures

Defintion:

For β > −1, weighted Dirichlet space Dβ(D) contains analytic
f : D→ C such that

‖f ‖2
Dβ(D) := |f (0)|2 +

∫
D
|f ′(z)|2(1− |z |2)βdA(z) <∞.

D1(D) = H2(D) – Hardy space.

For β > 1, Dβ(D) = Aβ−2(D) – Bergman spaces.

Definition:

A measure µ satisfying Dβ(D) ↪→ L2(D, µ) is called a Dβ(D)-Carleson
measure.
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Lemma

Suppose that T is normal and C ∈ X ∗. Then there exists a measure µ
on D such that:

(i) C is α-admissible for T iff µ is a D1+α(D)-Carleson measure.

(ii) Resolvent condition (RC)α holds iff

µ(S(I )) ≤ c |I |1+α, any arc I ⊂ T.
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Suppose that T is normal and C ∈ X ∗. Then there exists a measure µ
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Carleson measures vs Geometric Characterisation

Theorem (Carleson, Luecking)

Let α ∈ [0, 1). A positive measure µ on D is D1+α(D)-Carleson iff

(SC) µ(S(I )) ≤ c |I |1+α, any arc I ⊂ T.

Hence, Weighted Weiss Conjecture true for α ∈ [0, 1).

Theorem (Arcozzi, Rochberg, Sawyer ‘02)

Let α ∈ (−1, 0). Exists measure µ on D satisfying (SC) which is not
D1+α(D)-Carleson measure.

Hence, Weighted Weiss Conjecture false for α ∈ (−1, 0).
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α = 0 and T is any contraction.
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For α ∈ (0, 1), is α-admissibility equivalent to (RC)α
for any contraction T ?
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The Unilateral Shift on H2(D)

Definition:

(i) Hardy space H2(D): f =
∑∞

n=0 fnzn ∈ H2(D) iff

‖f ‖2
H2(D) :=

∞∑
n=0

|fn|2 <∞.

(ii) The Unilateral Shift S : H2(D)→ H2(D) is given by

(Sf )(z) := zf (z), f ∈ H2(D), z ∈ D.

Shift S is simple non-normal contraction operator.

If Weighted Weiss conjecture true for S , very likely true for all
contraction operators.
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Definitions
Results
Proof

The Unilateral Shift on H2(D)

Theorem (W ‘09)

Let α ∈ (0, 1). Suppose that C ∈ H2(D)∗ is given by Cf := 〈f , c〉H2 , for
some c ∈ H2(D). Then

(i) (RC)α holds iff

dµ(z) := |(I1c)(z)|2(1− |z |2)dA(z) (1)

is a D1+α(D)-Carleson measure.

(ii) C is α-admissible for S iff

dµ(z) := |(I1c)(z)|2(1− |z |2)1−αdA(z) (2)

is a D1(D)-Carleson measure.

(iii) Exists c ∈ H2(D) satisfying (1) but not (2).
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Results
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Proof of (i): (RC)α characterisation

For C ∈ H2(D)∗ and ω ∈ D,

‖C (I − ω̄S)−1‖H2(D)∗ =

∥∥∥∥zc(z)− ωc(ω)

z − ω

∥∥∥∥
H2(D)

∼
∫

D

|(I1c)(z)|2(1− |z |2)

|1− ω̄z |2
dA(z),

Hence, (RC)α holds iff∫
D

|(I1c)(z)|2(1− |z |2)

|1− ω̄z |2
dA(z) ≤ k

(1− |ω|2)1−α .

iff dµ(z) := |(I1c)(z)|2(1− |z |2)dA(z) is a D1+α(D)-Carleson
measure. �
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Sufficient Conditions

Definitions
Results
Proof

Proof of (ii): α-admissibility characterisation

For α ∈ (0, 1), C ∈ H2(D)∗ and f =
∑

fnzn ∈ H2(D),

∞∑
n=0

(1 + n)α|CSnf |2 =
∞∑

n=0

(1 + n)α|〈Snf , c〉H2 |2

=
∞∑

n=0

∣∣∣∣∣
∞∑

m=0

(1 + n)
α
2 c̄n+mfm

∣∣∣∣∣
2

=
∥∥Γαc

(
(f̄n)∞n=0

)∥∥2

`2 .

Hankel Operator Γαc : `2 → `2 represented by matrix

Γαc ∼


c0 c1 c2 · · ·

2
α
2 c1 2

α
2 c2 2

α
2 c3 · · ·

3
α
2 c2 3

α
2 c3 3

α
2 c4 · · ·

...
...

...

 .

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Definitions
Results
Proof

Proof of (ii): α-admissibility characterisation

For α ∈ (0, 1), C ∈ H2(D)∗ and f =
∑

fnzn ∈ H2(D),

∞∑
n=0

(1 + n)α|CSnf |2 =
∞∑

n=0

(1 + n)α|〈Snf , c〉H2 |2

=
∞∑

n=0

∣∣∣∣∣
∞∑

m=0

(1 + n)
α
2 c̄n+mfm

∣∣∣∣∣
2

=
∥∥Γαc

(
(f̄n)∞n=0

)∥∥2

`2 .

Hankel Operator Γαc : `2 → `2 represented by matrix

Γαc ∼


c0 c1 c2 · · ·

2
α
2 c1 2

α
2 c2 2

α
2 c3 · · ·

3
α
2 c2 3

α
2 c3 3

α
2 c4 · · ·

...
...

...

 .

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Definitions
Results
Proof

Proof of (ii): α-admissibility characterisation

For α ∈ (0, 1), C ∈ H2(D)∗ and f =
∑

fnzn ∈ H2(D),

∞∑
n=0

(1 + n)α|CSnf |2 =
∞∑

n=0

(1 + n)α|〈Snf , c〉H2 |2

=
∞∑

n=0

∣∣∣∣∣
∞∑

m=0

(1 + n)
α
2 c̄n+mfm

∣∣∣∣∣
2

=
∥∥Γαc

(
(f̄n)∞n=0

)∥∥2

`2 .

Hankel Operator Γαc : `2 → `2 represented by matrix

Γαc ∼


c0 c1 c2 · · ·

2
α
2 c1 2

α
2 c2 2

α
2 c3 · · ·

3
α
2 c2 3

α
2 c3 3

α
2 c4 · · ·

...
...

...

 .

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators

Unilateral Shift
Sufficient Conditions

Definitions
Results
Proof

Proof of (ii): α-admissibility characterisation

For α ∈ (0, 1), C ∈ H2(D)∗ and f =
∑

fnzn ∈ H2(D),

∞∑
n=0

(1 + n)α|CSnf |2 =
∞∑

n=0

(1 + n)α|〈Snf , c〉H2 |2

=
∞∑

n=0

∣∣∣∣∣
∞∑

m=0

(1 + n)
α
2 c̄n+mfm

∣∣∣∣∣
2

=
∥∥Γαc

(
(f̄n)∞n=0

)∥∥2

`2 .

Hankel Operator Γαc : `2 → `2 represented by matrix

Γαc ∼


c0 c1 c2 · · ·

2
α
2 c1 2

α
2 c2 2

α
2 c3 · · ·

3
α
2 c2 3

α
2 c3 3

α
2 c4 · · ·

...
...

...

 .

Andrew Wynn The discrete weighted Weiss conjecture



Introduction
Normal Operators
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Sufficient Conditions

Definitions
Results
Proof

Proof of (ii): α-admissibility characterisation

Hence, α-admissibile ⇐⇒ Γαc : `2 → `2 bounded.

(Peller ‘03) Equivalent to Iα
2

c ∈ BMOA.

Theorem (Jevtic ‘02)

A function f ∈ H2(D) is in BMOA iff for one/all β > 0

dµ(z) := |(Iβf )(z)|2(1− |z |2)2β−1dA(z)

is a D1(D)-Carleson measure.

Applying with β := 1− α
2 and f := Iα

2
c gives:C α-admissible for

S iff
dµ(z) := |(I1c)(z)|2(1− |z |2)1−αdA(z)

is a D1(D)-Carleson measure. �
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Unilateral Shift
Sufficient Conditions

Definitions
Results
Proof

Proof of (iii): Finishing off

|(I1c)(z)|2(1− |z |2)dA(z) is a D1+α(D)-Carleson measure iff
I1c ∈ B2−α

2 (D).

i.e.

sup
z∈D
|(I1c)(z)|(1− |z |2)1−α

2 <∞

|(I1c)(z)|2(1− |z |2)1−αdA(z) is a D1(D)-Carleson measure iff
I1c ∈ F (2, 2− α, 1).

However (Zhao ‘96), F (2, 2− α, 1) ( B2−α
2 (D).

Therefore the discrete Weighted Weiss Conjecure fails for the shift
on H2(D) �.
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Unilateral Shift
Sufficient Conditions

Sharpness of the sufficient conditions
Application to Dirichlet spaces

Sufficient Conditions for α-admissibility

As have seen, ‖C (I − ωT )−1‖X∗ ≤ k

(1−|ω|2)
1−α

2

, ω ∈ D is not always

enough for α-admissibility.

What if we improve the bound slightly?

Idea first considered by (Zwart ‘05) in the continuous case.

Theorem (W ‘09)

Let α ∈ (−1, 1). Suppose that φ : [0, 1]→ R+ satisfies
∫ 1

0
φ(x)

x dx <∞
and that T is power bounded. Then if

(RC)φ,α ‖C (I − ωT )−1‖X∗ ≤ k · φ(1− |ω|)
(1− |ω|2)

1−α
2

, ω ∈ D.

it follows that C is α-admissible for T .
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What if the assumption
∫ 1

0
φ(x)

x dx <∞ is dropped?

Theorem (W ‘09)

(i) Let α ∈ (0, 1). If φ : [0, 1]→ R+ is sufficiently regular and∫ ∞
0

φ(x)

x
dx =∞.

Then there exists a Hilbert space X , C ∈ X ∗ and a contraction T
which satisfy (RC)φ,α but C not α-admissible for T .

(ii) Let α ∈ (−1, 0). If φ : [0, 1]→ R+ is sufficiently regular and

lim
x→∞

x · φ(2−x) =∞.

Then there exists a Hilbert space X , C ∈ X ∗ and a normal T
which satisfy (RC)φ,α but C not α-admissible for T .
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Sufficient Conditions

Sharpness of the sufficient conditions
Application to Dirichlet spaces

Recall that if α ∈ (−1, 0),

µ(S(I )) ≤ c |I |1+α

is not sufficient for µ to be a D1+α(D)-Carleson measure.

Why? Well D1+α(D)-Carleson measures are characterised by

µ
(⋃

S(Ii )
)
≤ cCapα

(⋃
Ii
)
, disjoint arcs {Ii}.

i 
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Application to Dirichlet spaces

Theorem (W ‘09)

Let α ∈ (−1, 0) and suppose that φ : [0, 1]→ R+ is sufficiently regular.
Then

(i) If
∫ 1

0
φ(x)

x dx <∞ and

(SC)φ,α µ(S(I )) ≤ c |I |1+αφ(|I |/2π), I ⊂ T,

then µ is a D1+α(D)-Carleson measure.

(ii) However, if limn→∞ x · φ(2−x) =∞ then there exists a measure µ
satisfying (SC)φ,α, which is not a D1+α(D)-Carleson measure.

Part (i) of the above Theorem follows from the sufficient condition
for α-admissibility

Provides much simpler sufficient conditions for D1+α(D)-Carleson
measures.
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