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Abstract

Over the past 30 years the study of free boundary problems has stimulated much

work. However, there exists a widely occurring, but little studied subclass of free

boundary problems in which the free boundary has dimension two fewer than that of

the underlying space rather than the more commonly studied case of one less. These

problems are called codimension-two free boundary problems.

In Chapter 1 the typical geometries required for such problems, the main mathemat-

ical techniques and the methodology used are discussed. Then, in Chapter 2, the

techniques required to solve them are demonstrated using the particular example of

the water entry problem. Further results for the water entry problem are then de-

rived including an analysis of the relatively poorly understood water exit problem.

In Chapter 3 a review is given of some classical contact and crack problems in solid

mechanics. The inclusion of a cohesive zone in a dynamic type-III crack problem is

considered. The Muskhelishvili potential method is presented and used to solve both

a contact and crack problem. This enables the solution of a type-I crack problem

relating to an ink delivery system to be found. In Chapter 4 a problem posed by car

windscreen forming is addressed. A local solution near a corner is analysed to explain

when and how point forces occur at the corners of the frame on which the simply

supported windscreen rests. Then the full problem is solved numerically for different

types of boundary condition. Chapters 5 and 6 deal with several sintering problems

in viscous flow highlighting the value of the methodology introduced in Chapter 1.

It will be shown how the Muskhelishvili potential method also carries over to Stokes

flow problems. The difficulties of matching to an inner as opposed to an outer region

are investigated. Lastly two interface problems between immiscible liquids are con-

sidered which show how the solution procedure is adapted when the field equation

in the thin region is non-trivial. In the final chapter results are summarised, open

problems listed and conclusions drawn.
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Chapter 1

Introduction

The mathematical theory of free boundary problems has been extensively researched

over the last thirty years. An indication of this can be seen from the vast array of

material now available on the subject in the form of books [12, 17, 23, 67], proceed-

ings [8, 10, 18, 31, 64, 68, 101] and bibliographies [13, 91]. Free boundary problems

are defined as a set of differential equations which must be solved in a domain of

dimension n whose boundary, of dimension (n−1), is unknown a priori. An example

is the classical Stefan problem [12] of determining the position of the free boundary

between melting ice and water. The boundaries between the regions of ice and water

are known as free boundaries as they are free to lie anywhere in the domain and are

only determined as part of the solution. As stated above the free boundary has one

dimension fewer than that of the underlying domain and so the boundary could be

termed the ‘codimension-one free boundary’. The inherent nonlinearity of these prob-

lems has prompted theoretical investigations into questions of existence, uniqueness,

regularity of the boundary, numerical algorithms, stability and asymptotic behaviour.

The techniques that have been used to try to answer these and other questions

include numerical analysis, asymptotic expansions and weak solutions. Asymptotic

expansions involve the exploitation of small parameters which occur in the model

under certain circumstances, whilst weak solutions, although rarely available, satisfy

an integrated formulation of the problem and are not required to be as smooth as

solutions to the original differential equations. When they exist, weak solutions can

sometimes be closely related to the equally rare variational formulations of certain

special free boundary problems and hence great unification can be achieved both

analytically and numerically. At the opposite extreme, when very irregular or unstable

free boundary morphology can occur in practice, none of these techniques is usually

available even to demonstrate existence of the solution and much theoretical work

remains to be done.
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Despite all this mathematical activity, there remains a widely-occurring, but little-

studied, subclass of free boundary problems in which the free boundary has dimension

(n− 2). Two early attempts at unification were made by Howison [35] and Ockendon

[67] and more recently by Morgan [58] and together they have produced a review

[36] in order to stimulate further discussion. The number of case studies of this

type that have appeared in the literature is now very large. We have termed these

problems codimension-two free boundary problems, since the free boundary has two

fewer dimensions than that of the underlying space in which the field equations are

to be solved. In a two-dimensional problem the codimension-two free boundary is a

collection of ‘free points’, and in three dimensions it is a collection of ‘free curves’.

We remark that the term codimension-two free boundary problem is also applied

to models of a free curve in R3 as is the case for fluid and superconducting vortex

dynamics. However, in these cases the global attribute of the free boundary problem

may be lost since to lowest order the dynamics of the free curve are often purely

governed by a local problem. This thesis deals with a subset of codimension-two free

boundary problems which are not of the vortex dynamics type but occur when the

codimension-one free boundary is uniformly close to a known boundary. This will

enable us to exploit a naturally occurring small parameter and often these problems

will be susceptible to formulation as Riemann problems from which a solution can be

systematically obtained.

1.1 Typical geometry required for a codimension-

two problem

A codimension-two free boundary problem is usually (although not always — see

Chapter 4) obtained as a particular limit of its corresponding codimension-one prob-

lem. To illustrate this point consider a codimension-one problem with a two dimen-

sional geometry as in Figure 1.1. The curve Γ(x, y, t) = 0 is a prescribed boundary,

that is its position is known. The position of the codimension-one free boundary

h(x, y, t) = 0 which separates the two regions is unknown a priori and so must be

solved for as part of the problem. In regions I and II, sets of partial differential

equations are given which satisfy given boundary conditions on h and Γ, one more

boundary condition being required on h than Γ in order to determine its position.

For a codimension-two problem to arise, the free boundary must be uniformly close

to the known boundary and the extent of the contact region II along the known

boundary must be large compared to its width (their ratio is known as the aspect

2



Free

Point

Free

Point

REGION I

REGION II

h(x, y, t) = 0

Γ(x, y, t) = 0

Figure 1.1: Typical geometry leading to a two-dimensional codimension-two problem.

ratio). The points at which the free boundary meets the fixed boundary are known

as the free points. The majority of the problems considered in this thesis will only

have two free points but, in general, there may be any number of them (of course the

intersection of the free boundary with the prescribed boundary will be a curve in the

three dimensional case).

If these conditions are met, the limit is taken as the aspect ratio tends to infinity.

Then, any equations which formerly held in region I, which was of unknown extent,

now hold in the known region ‘above’ Γ(x, y, t) = 0 and the only unknown parts

of the geometry are the free points. The region of the fixed boundary between the

free points is known as the ‘non-contact’ region because there is no contact between

the fixed boundary and region I. Likewise, the region of the fixed boundary outside

this region is known as the ‘contact’ region. This terminology is taken from that

used in contact or obstacle problems in mechanics (such a problem is considered in

Chapter 3).

1.2 Where codimension-two problems occur

A wide range of problems exhibit the characteristic type of geometry discussed above

making them amenable to a codimension-two analysis. We list below just a few:

• Contact problems and crack problems in linear elasticity;

• Entry of a uniformly nearly flat body into a fluid (water entry) [47, 58, 102];

• Flow over a shallow step [70];

• Patch cavitation on a bluff head form [9, 36];

• Steady electropainting of a workpiece [58];
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• Percolation in a sand bank [1];

• Viscous sintering of two cylinders under the action of surface tension [33, 36, 58].

Of the examples listed it is crack problems in solid mechanics that could be considered

to be the progenitors of all codimension-two problems. We shall consider contact and

crack problems in solid mechanics in more detail in Chapter 3. To expand upon

the list, to give more of an idea of the type of problem that can be considered in a

codimension-two framework, we shall now briefly describe two of those problems, the

water entry problem and the viscous sintering problem.

1.2.1 Water entry

Jet

turn over
point

Body

Fluid

V

Air

Figure 1.2: The water entry problem.

The water entry problem is the study of the normal impact of a nearly flat rigid

convex body on an idealised fluid surface as shown in Figure 1.2. In terms of the

discussion above region I is the fluid and region II is the air. The boundary of the

body is known and the free boundary is the fluid surface. Since the body is nearly

flat the free surface lies close to the body and to the undisturbed fluid level. Thus

the problem has the required geometry described in Section 1.1 and both the free

surface and fixed boundary can be linearised onto the prescribed undisturbed fluid

level. One complication of this problem is the jets which are shown to form up the

sides of the body. However, it has been shown [37] that these jets are thin and thus

to leading order in the codimension-two problem they can be neglected such that to

leading order the free surface does not turn over but rises to meet the body. The free

points are where the free surface meets the body. The solution to this problem breaks

down into three regions. There is the outer codimension-two region, this then drives

inner regions around the turnover points, which in turn drive the thin jet regions.

This problem will be reviewed in more detail in Chapter 2.

4



1.2.2 Viscous sintering

Codimension-two region

Full problem

Fluid

Air
Air

Fluid

line of
symmetry

Figure 1.3: The Stokes flow viscous sintering problem.

Two identical cylinders of viscous fluid, which initially touch along a common

generator, will coalesce purely under the action of surface tension to eventually form

one large cylinder. This process is known as sintering and will be discussed in more

detail in Chapter 5. For small times after the initial contact and in the region near to

the contact the fluid flow problem can be formulated as a codimension-two problem.

Region I for this problem is the fluid and region II is the air. The known boundary

is the line of symmetry and the free boundary is the fluid boundary. For these small

times and near to the contact region the free boundary is close to the line of symmetry.

Hence in this region the problem exhibits the necessary geometry as described in

Section 1.1. The free points are the points at which the fluid boundary meets the

line of symmetry. This problem also exhibits three regions. However this problem is

driven by the inner regions around the free points since the free boundary curvature

is large. These inner regions then drive the codimension-two region indicated and

then this drives an outermost region.
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There are essentially two different ways in which codimension-two problems can arise.

The first is as a local space and time analysis of a larger problem (such as in sintering).

These problems often occur as the contact region grows, having initially zero extent.

The codimension-two problem then gives a valuable insight into the nature of the

solution at what is a crucial stage in the evolution. The second possibility is if the

free boundary is close to the fixed boundary for all times. Such examples include the

water entry problem (although the water entry problem can also occur as a local in

time and space problem as will be discussed in Chapter 2).

1.3 One-phase and two-phase problems

In general the field equation will take a different form in regions I and II. If neither

of the field equations in these regions is trivial, the problem is known as two-phase.

In this case the field equation in region II has to be solved and substituted into the

boundary conditions on the free boundary. The largeness of the aspect ratio can

be exploited to simplify the field equation in this region enabling an approximate

solution to be obtained. If the equations are trivial in region II (for example, it may

be a vacuum), but not so in region I, the problem is known as one-phase.

Lastly, if the equations in region I are trivial, a different type of problem is realised

which will not be considered in this thesis. The linearisation procedure in this case

effectively causes region II to vanish. Since this was the only region with a non-

trivial field equation there are now no equations remaining to solve. For this reason

the problem is typically rescaled in such a way as to produce a partial differential

equation for h the free surface shape. An example of this is the spread of a viscous

drop on a solid surface where the free boundary thickness is described by a partial

differential equation (for example, see [6]).

Generally, a codimension-one problem is nonlinear and cannot be solved analytically.

Thus a major motivation for considering a codimension-two formulation of such a

problem (even if only for a short time) is to obtain an approximate solution to an

otherwise intractable problem. The codimension-two formulation has the key benefit

that it is ‘only’ a mixed boundary value problem (admittedly over a domain where the

position of the free points, at which the boundary conditions switch, are unknown)

rather than a free boundary problem. Mixed boundary value problems are often

quite well understood with well-developed techniques available for their solution, an

example for Laplace’s equation being the theory of Riemann problems. Another
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benefit to accrue from a codimension-two analysis for small times is the generation of

accurate initial conditions for a full numerical solution which would otherwise have

suffered from having to contend with ill-defined initial singularities.

1.4 Outline of the general methodology

The linearisation procedure described in Section 1.1 is only part of the whole solution

procedure. As described above the codimension-two solution usually only represents

the solution on some particular length scale and the whole problem can be broken

down into several different regions. If the problem can be broken up in this way then

we can follow the flow of information through the problem. Thus as described above

for the sintering problem it is the innermost regions that drive the codimension-two

region which in turn drives an outer region. The different regions of the solution

must ‘match’ together, that is, for this flow of information, we solve the problem in

the inner region and the solution when expanded in codimension-two region variables

gives the matching condition (driving mechanism) for the codimension-two region. In

turn expanding the codimension-two solution in outer variables gives the matching

condition (driving mechanism) for the outer problem. A crucial step in solving these

problems is to, therefore, identify how the information is flowing through the prob-

lem. According to the particular sequence of regions through which the information

flows the solution procedure should be modified. However, as with any problem in

asymptotics to say that the information is purely flowing in one direction would be

misleading. In order to solve the problem in any one region assumptions are generally

made which can only be verified at the matching stage. The assumptions we make

are often made by applying Van Dyke’s maxim of taking the minimum allowable sin-

gularity at the free points. An example of this is when we solve the codimension-two

water entry problem. The solution in the codimension-two region relies upon making

certain assumptions about its behaviour near the free points. This assumption is only

verified once the inner problem is solved and the two problems are found to match

showing that the assumed behaviour was indeed correct.

The general procedure has been applied in a wide variety of physical situations,

some of which are reviewed in [35, 36, 58]. The procedure can be broken down into

three clear steps:

1. Identify the expected different regions of the solution and how the information

will flow between them.
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2. Solve the model in each region in turn following the flow of information using

the solution to each previous region to drive the next one by means of the

matching condition.

3. Perform any necessary matching between the regions to confirm the regions all

match up and any assumptions that were made were correct.

1.5 Mathematical techniques

Three of the main techniques we will use in this thesis are matched asymptotic ex-

pansions, Riemann problems and variational formulations.

1.5.1 Matched asymptotic expansions

As discussed above the codimension-two solution is often only valid over some partic-

ular region of the full codimension-one problem, the codimension-one problem being

broken down into two or more regions where the different regions of the solution must

‘match’ together. A key tool we will call upon is the Van Dyke Matching Principle

[99]. Van Dyke’s matching principle can be written concisely as

mti(nto) = nto(mti) .

This notation is to be interpreted as follows:

mti(nto): Take the n-term outer expansion, write it in inner variables,
and expand it to m-terms.

nto(mti): Take the m-term inner expansion, write it in outer variables,
and expand it to n-terms.

Having calculated these two expressions they are written in common variables (either

outer or inner). The above rule then states that the two expressions must be equal if

they are to match. For a given m =M and n = N all possible matches must hold, for

all combinations of m = 1 . . .M and n = 1 . . . N , if we are to say the two expansions

match up to these orders.

1.5.1.1 A note on log matching

Let us consider inner and outer expansions of the following function

f(x) = 1 +
log x

log ǫ
.
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Assume that x = O(1) is the outer expansion and x = ǫX , X = O(1) is the inner

expansion, then the outer and inner expansions are simply

fout ∼ 1 +
log x

log ǫ

fin ∼ 2 +
logX

log ǫ
.

If we now apply the basic Van Dyke matching principle then we have

1ti(1to) = 1

1to(1ti) = 2

which clearly shows the principle failing to work. But if we treat log ǫ as O(1) for

the purposes of matching then all terms in both expansions above comprise the one

term expansions and when we apply the matching principle everything now works as

it must since they are simply expansions of one function on different scales.

Although in the limit ǫ → 0, ǫn ≪ ǫn log 1/ǫ, which by the basic Van Dyke

matching principle would say that they match at different orders, the above suggests

that we should in fact consider them at the same time. In essence it suggests one

should interpret the log ǫ as being O(1) for the purposes of applying the matching

principle. This modification of the principle is discussed in more detail by Fraenkel

[21].

1.5.2 The Riemann problem

We will use Riemann problems time and time again in this thesis as a means of for-

mulating the codimension-two problem and hence finding the solution. In its general

form a Riemann problem is to find an analytic function Φ(z), where z = x+ iy, which

satisfies the condition

Φ+(t)−G(t)Φ−(t) = g(t)

on L, a closed smooth curve where t is a variable denoting the position on L. The

curve L divides the complex plane, on one side Φ takes the limiting value Φ+ and

on the other Φ−. The function G(t) is called the coefficient of the Riemann problem

and g(t) is called the free term. In the simplest form G(t) and g(t) satisfy Hölder

conditions. The theory of the Riemann problem is discussed in detail in Appendix B

in which the solution for the above problem is derived along with more complicated

cases such as when G or g have discontinuities or when the curve L is open.
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1.5.3 Variational formulations

As mentioned earlier, variational formulations are rare, but when they exist they can

be extremely useful both analytically and numerically. Analytically they can often

be used to prove uniqueness and existence of a solution. Numerically they can be

used for a finite element solution. A simple example would be the one-dimensional

obstacle problem shown in Figure 1.4.

y = f(x)

constant pressure p

free points

string

x = 0 x = 1

Figure 1.4: The one-dimensional obstacle problem.

This is the problem of determining the shape of an elastic string under constant

pressure p > 0 when it is stretched over a rigid body y = f(x). On the non-contact

region the displacement is governed by the equation for an elastic string under con-

stant load, whilst on the contact region the displacement coincides with the body

shape. At the free points the contact is smooth (if it were not it would lead to an

infinite force on a point). At the end points the string is fixed. Lastly, we have two

inequalities which state that the string lies above the rigid body and the downward

force per unit length on the string is not greater than p. In summary this gives the

model

uxx = p on the non-contact region

u = f on the contact region

u = f at the free points

ux = fx at the free points

u ≥ f for x ∈ [0, 1]

uxx ≤ p for x ∈ [0, 1]

u = 0 at x = 0, 1 .

10



As an intermediary step in formulating a variational inequality, from the above equa-

tions, we can write the complementarity problem

u ≥ f

−uxx + p ≥ 0

(u− f)(uxx − p) = 0

u(0) = u(1) = 0 .

We now define a Hilbert space (see Appendix A for more details on Sobolev and

Hilbert spaces)

V =
{

v ∈ H1[0, 1] : v(0) = v(1) = 0 , v ≥ f
}

.

We further define, for u, v ∈ V, a bilinear form

a(u, v) =

∫ 1

0

uxvxdx

and a linear mapping

l(u) = −
∫ 1

0

pudx .

Then for any v ∈ V

a(u, v − u) =

∫ 1

0

ux(v − u)xdx

= −
∫ 1

0

uxx(v − u)dx using integration by parts

≥ −
∫ 1

0

p(v − u)dx

≥ l(v − u)

which is the variational inequality for the problem. As stated above this could now

be used to prove the existence and uniqueness of a solution using the theorem of Ap-

pendix A or for a finite element numerical solution. See Elliott and Ockendon [17] for a

proof that the variational inequality implies the complementarity problem and in turn

the classical problem, provided we assume the solution to the variational inequality

has continuous first derivatives. Furthermore, using a projected SOR method to solve

the finite element problem, which can be generated from this variational inequality,

the procedure naturally determines the position of the free boundary without the

need to explicitly track it.
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1.6 Layout and aims

In Chapter 2 a theory is reviewed for the water entry of a uniformly nearly flat

rigid convex body. The body is nearly parallel to the free surface and the effects

of gravity, fluid viscosity, surface tension, air pressure and air entrapment are all

neglected. This has previously been formulated and analysed by many including

Wagner [100], Korobkin [47], Wilson [102] and Morgan [58] and is formulated here

as a clear example of how a codimension-two free boundary problem is derived and

to demonstrate the techniques and arguments that are required to address such a

problem. In Section 2.2 the variational formulation of the model as first proposed by

Korobkin [45] is discussed. A detailed analysis of the stability of the codimension-

two free boundary, to small perturbations along its length, is undertaken. The initial

value problem for small disturbances to the free surface and codimension-two free

boundary are then considered. The implications of the stability analysis and initial

value problem to one particular formulation of the exit problem, namely the time

reversal of the codimension-two entry problem, are discussed. Some simple extensions

to the model are considered in Section 2.4.

In Chapter 3 we consider three types of problems in solid mechanics. We discuss

some of the concepts and methods to be used in the chapter including dynamic

stress intensity factors, cohesive zones, slip, Airy stress functions and Muskhelishvili

potentials. The first problem is that of a dynamic type-III crack. We begin by solving

the basic problem in which the crack faces are assumed to be stress free and using a

dynamic stress intensity factor determine a formula for the crack propagation speed.

We then discuss the effect of using the model of Barenblatt [2, 3] and including a

cohesive zone near the tip of the crack. In the next section the problem of two-

dimensional contact of two identical elastic bodies is reviewed as an example of a

problem whose field equation is the biharmonic equation. The problem is solved using

both a superposition approach and the more elegant Muskhelishvili potential method.

The results of several different loading histories are considered. The first problem

solved is that of purely normal loading. The problem of a subsequent tangential

loading after the initial normal loading is then considered. The effect of friction

and the possibility of either no slip or some slip occurring on the contact region

are discussed. The problem of simultaneous variations of the normal and tangential

forces is considered in the form of incremental loadings giving rise to a sequence of

static problems. The third problem of the chapter is a static type-I crack problem

and shows how the Muskhelishvili potential method of the previous section is easily
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modified to handle such a problem. The solution to the elliptic crack problem is then

used to generate solutions to a problem in which we require the crack to close under

an increasing load.

Chapter 4 concerns a problem related to the manufacture of car windscreens. The

resulting codimension-two problem does not arise as a leading-order problem after

exploiting a small parameter, as do all the other problems we consider in this thesis,

but instead occurs naturally. The real industrial process involves placing a sheet of

plate glass on a frame and heating it from above causing it to sag under its own weight.

By controlling the precise heating the shape of the final windscreen is controlled. In

the real problem the frame is not planar nor rectangular and the plate is sagging due

to gravity and both viscous and elastic effects. We formulate a simplified version of

the full problem in which we only consider a planar rectangular plate and the glass is

taken to be an elastic plate. We show how the thin plate problem can be formulated

as a variational inequality. In Section 4.2 the problem of a single simply-supported

corner is analysed in detail to show how the edge reaction depends on the corner angle

and in particular how a point force may occur at a right-angle corner. The analysis

also demonstrates the possibility of the corner of the glass plate lifting off the frame.

An analytical solution for a simply supported rectangle is reviewed in Section 4.3. A

numerical solution of the simplified problem for different types of boundary conditions

is presented. The simplified problem turned out to be one that had been considered

in part already in the literature [79] and as such much of the results derived here are

a review.

In Chapter 5 we move to problems in Stokes flow. The first two problems are

concerned with sintering. We are mainly interested in the problem of sintering under

the action of surface tension. Such a problem is hoped to give insight into the much

more complicated problems that really occur when making high quality glass. Some

details of the process used to make the high quality glass are discussed along with

a discussion of some of the research that has already been done. The solution is

complicated because unlike most of the other problems in this thesis the information

is flowing out of an inner region into the codimension-two region rather than from

an outer region. The matching for the problem is found to be complicated and

for that reason we build up to the problem by first considering the case of zero

surface tension where the flow is being driven in the outer region by sources. The

use of the Riemann problem formulation is invaluable in this problem. In Section 5.2

the problem of Stokes flow with non-zero surface tension is considered. This was

previously considered by Morgan [58]. In Section 5.2.7 we show how the necessary
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matching information from the inner region can in this case be obtained by solving a

far field problem. The analysis is then extended in the next section for more general

initially local free boundary shapes. The third problem of the chapter is a model for

the closure of a thin channel lying at an ice-till interface. We first solve the problem

for the case of a rigid impermeable bed and then consider the coupled problem when

the till is also modelled by the slow flow equations.

In Chapter 6 we consider some Hele–Shaw problems. The chapter begins with a

quick review of the problem of two point injection in a Hele–Shaw cell. This is followed

by the three discs problem. The problem involves a half-space of fluid moving at a

constant velocity in a Hele–Shaw cell and meeting three stationary touching discs of

fluid aligned along the direction of motion of the half space. This problem has been

solved exactly by Richardson [76] by means of a complex variable method. We will

present a codimension-two solution valid for small times after the initial impact. This

problem has three codimension-two regions and the solution shows how we apply our

procedure of following the flow of information when we have several codimension-two

regions which are related by outer problems. In Section 6.2 this problem is generalised

to the case of n discs. The following section deals with the Muskat problem [60]

which is concerned with the removal of one fluid from a porous medium by injecting

a second fluid to force the first out. This problem is also analogous to a two fluid

Hele–Shaw problem. The problem demonstrates the extra analysis needed when the

field equations in the thin region are non-trivial.

Finally conclusions are drawn in Chapter 7 and problems that remain open are

listed.

1.7 Statement of originality

Originality is claimed for the particular way in which the water entry problem is

solved in Section 2.1.1.1. The results of the stability analysis of Section 2.3.1 are also

original work. The initial value problem of Section 2.3.2 is all new material. The

numerical solution of Section 2.4.1 and the application of the non-constant velocity

results to a dropped body in Section 2.4.2, for the water entry problem, are new

results.

The majority of the material in Chapter 3 is review. The presentation of how

contact and crack problems are codimension-two problems, however, gives them a

new novel setting. The analysis of Section 3.3.1.4 is new material.
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Most of Chapter 4 is a review of a problem previously looked at in 1969 [79]. It

mainly serves to update the results and check their accuracy, as well as to add the

correction that point forces do not occur at the lift off points and to explain when

point forces may occur. However, the corner problem analysis of Section 4.2 is new

work.

The Stokes flow sintering problems of Chapter 5 are original work although as

discussed in Section 5.2 a previous analysis of the surface tension problem had been

carried out by Morgan [58] and the inner problem solution is by Hopper [34]. The

particular method used to solve the ice closure problem is new work.

The problem of sections 6.2 and an outline of it’s solution were originally derived

by Cummings [14]. However, the formulation as a succession of Riemann problems

and the generalisation of Section 6.2.7 is all new work. The solution of the two Muskat

problems of Section 6.3 is original work.
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Chapter 2

The water entry problem

The water entry problem is the study of the normal impact of a nearly flat rigid convex

body on an idealised fluid surface as shown below. Alternatively, the problem can

be thought of as the impact of a body which has zero gradient at the initial point of

contact, with the codimension-two model only being valid in a small region around the

impacting body and only for small times after the initial contact. This problem was

first considered by Wagner [100] in an attempt to determine the forces on a landing

seaplane. It has since been considered by many others including [11, 20, 37, 46, 58, 94].

The body is assumed to move with a constant velocity and the fluid is taken to be

inviscid and incompressible (since the Reynolds number Re ∼ 108 and the Mach

number in water Mw ∼ 10−2). For typical values of surface tension and large impact

velocities of the body the Froude number and Weber number for a ship are found to

be large (Fr2 ∼ 10, We ∼ 104) which suggests that neglecting the effects of gravity

and surface tension is realistic. Also the effects of air between the body and the

water will be neglected and the body is assumed to be moving through a vacuum.

Some of these effects are considered in [19, 27, 46, 102]. The angle that the body

makes with the fluid surface is known as the deadrise angle. In the case of large

Jet

turn over
point

Body

Fluid

V

Figure 2.1: The geometry of the water entry problem.
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impact velocities and small deadrise angles which we are considering the fluid surface

undergoes a violent motion and there exist small regions of the flow in which large

changes occur. The rapid motion of the surface and regions of large change are very

important in practice and also severely hamper a numerical analysis of the problem.

However both these circumstances favour an asymptotic approach.

2.1 The two dimensional water entry model

We take L to be the typical length scale over which we are interested. In dimensional

variables we define the body profile by y∗ = Lf∗(ǫx∗/L), where f∗(0) = 0 and ǫ is a

small number, and denote the velocity with which the body travels by V . Then the

position of the body at a time t∗ is

y∗ = Lf

(

ǫx∗

L

)

− V t∗ .

We nondimensionalise by defining

x∗ = Lx , y∗ = Ly , t∗ =
L

V
t

to obtain the nondimensional position of the body

y = f(ǫx)− t .

As shown in [37], for ǫ≪ 1, the codimension-one formulation of the model is as shown

in Figure 2.2.

Jet

−d(t)
ǫ

d(t)

ǫ
∇2φ = 0

|∇φ| → 0 as (x2 + y2) → ∞

φ = h = 0 at t = 0

ǫfxφx − φy = 1

y = f(ǫx)− t

ht + hxφx − φy = 0

Jet Inner region V

φt +
1
2
|∇φ|2 = 0

y = h(x, t)

Inner region

Figure 2.2: The codimension-one water entry problem.
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For simplicity we have taken the free surface to be initially flat. However, the theory

is easily applied to solid/liquid or liquid/solid impacts when one or both are not

initially flat provided the deadrise angle is small and the initial body shape and free

surface are convex or flat. The flow is initially at rest and thus initially irrotational, by

Kelvin’s theorem the flow is therefore always irrotational. Furthermore, as mentioned

earlier we assume the flow is incompressible and hence we have a velocity potential

φ(x, y, t) which satisfies Laplace’s equation. On the free surface y = h(x, t) we have

Bernoulli and kinematic conditions. The free surface ‘turns over’ and forms two jets

running along the body. Howison et al. [37] show that these turn-over points lie

within O(ǫ) of (±d(t)/ǫ, f(±d(t)) − t). Furthermore they show that the jets only

exert a second-order influence on the codimension-two model.

A natural approach now is to look for a perturbation solution by introducing certain

scalings.

2.1.1 The outer problem

Relative to an O(1) length scale for f the separation of the turn-over points is of

O(1/ǫ). We, therefore, take the length scale of the outer problem to be O(1/ǫ).

The velocity in the outer region will be O(1) and thus we introduce the scaled outer

variables x̂, ŷ and φ̂ defined by

x̂ = ǫx , ŷ = ǫy , φ̂ = ǫφ .

In outer coordinates the body position becomes

ŷ = ǫ(f(x̂)− t) .

and we write the free surface y = h(x, t) as

ŷ = ǫĥ(x̂, t) .

With these scalings the free points lie at x̂ = ±d(t) and the jet roots lie at (±d(t) +
O(ǫ2), ǫ(f(±d(t))− t) +O(ǫ2)). It is now reasonable to linearise the boundary condi-

tions onto the x axis and to ignore the jets (this assumption is shown to be valid by

Howison et al. [37]) so that

ĥ(d(t), t) = f(d(t))− t

to leading order.
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