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1. Betweenness via Road Systems. We
take the intuitive view that point c lies be-
tween points a and b exactly when every
“road” allowing travel from a to b (and vice
versa) must go through c.

This “roadblock’ vision of betweenness has
led to the following simple abstract defini-
tion:

e A road system is a pair (X, R), where X
IS @ honempty set and R is a family of
subsets of X, called roads, satisfying:

o Every singleton subset of X is a road.

o Every doubleton subset of X is con-
tained in at least one road.

o (Additivity Condition): The union of
two intersecting roads is a road.



If (X,R) is a road system and a,b € X, the
set of points ¢ between a and b is denoted
la,b] and is the set N{R € R : a,b € R}.

The interval membership relation c € [a, b]
defines a ternary relation on the underlying
set X.

A natural question is whether one may
characterize—using first-order terms involv-
ing an abstract ternary relation symbol—
exactly when a ternary relation B C X3
iIs the interval membership relation arising
from a road system on X.

This question has an affirmative answer.



1.1 Theorem (Road Representation): Let
B be a ternary relation on a honempty set
X. Then there is a road system R on X
with interval membership relation B iff B
satisfies the following five first-order condi-
tions:

R1 (Symmetry) B(a,c,b) — B(b,c,a).

R2 (Reflexivity) B(a,b,b).

R3 (Minimality) B(a,c,a) — ¢ = a.

R4 (Convexity) (B(a,c,b)AB(a,d,b)AB(c,e,d)) —
B(a,e,b).

R5 (Disjunctivity) B(a,z,b) — (B(a,z,c) V
B(c,z,b)).



2. Subcontinuum Road Systems. There
are many natural situations, especially in
the theory of trees and in topology, where
road systems come up; the one I want to
discuss today concerns roads that consist
of the subcontinua of a continuum (= con-
nected compact Hausdorff space).

In this setting ¢ € [a,b] means that there is
no subcontinuum of X \ {c} that also con-
tains {a,b}. (In particular, a point that lies
between two other points in a continuum is
a weak cut point of the continuum. More-
over, if X is aposyndetic—i.e., two points
may be separated by a subcontinuum that
contains one of them in its interior and
misses the other—then c is actually a cut
point.)



Intervals in continua are generally closed;
when they're also subcontinua, we call the
continuum interval connected.

For example, arcs are interval connected,
as are dendrites in general. The sin(1)-
continuum is another example. At the op-
posite extreme, in a simple closed curve
any interval [a, b] consists of the bracketing
points alone. Such intervals, when a # b,
are called gaps.

Recall that a continuum is hereditarily uni-
coherent if the intersection of any two of
its overlapping subcontinua is a subcontin-
uum.

2.1 Proposition: A continuum is interval
connected iff it is hereditarily unicoherent.



3. A Characterization Problem. The is-

sue we wish to focus on today concerns the

question of characterizing—in first-order be-
tweenness terms—the property of being in-

terval connected.

T his question is not yet answered, but here
are some plausible characterization sentences,
listed in order of nondecreasing logical strength.

(Gap-free Property):
VaVbla b — de(c € [a,b] AcZE a N cF#b)]

(Gap-filling Property):
Vavbla = b — dc(c € [a,b]Ac F aAb & |a,c])]

(Composite Property):
Vavbla #= b — dc(c € [a,b] ANa ¢ [c,b] ANb ¢
la, c])]



The gap-free property clearly follows from
interval connectedness; and, using a sSim-
ple “boundary bumping’ argument, we can
show that the gap-filling property does as
well. Not so the composite property.

3.1 Theorem: A continuum satisfies the
composite property iff each of its nonde-
generate intervals is a decomposable sub-
continuum.

And when we strengthen gap-freeness in a
completely different way, we get an even
stronger condition on intervals. To explain
this, first define a continuum (or any road
system) to be antisymmetric if [a,b] = [a, c]
implies b = ¢. This is clearly a first-order
property, it's present in aposyndetic con-
tinua, and we have:

3.2 Theorem: A continuum is antisymmet-
ric and satisfies the gap-free property iff
each of its nondegenerate intervals is a gen-
eralized arc.



4. The Crooked Torus. A continuum
IS hereditarily indecomposable if the inter-
section of any two of its overlapping sub-
continua is one or the other of them. The
celebrated pseudo-arc is an example of this
phenomenon.

The composite property is too strong to
characterize interval connectedness in gen-
eral because hereditarily indecomposable con-
tinua are hereditarily unicoherent; hence in-
tervals are indecomposable subcontinua.

But the ever so slightly weaker gap-filling
property is too weak.

Define a continuum X to be a crooked
torus if it may be decomposed as a union
K U M of two hereditarily indecomposable
subcontinua such that K N M has exactly
two components, each nondegenerate.
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4.1 Theorem: Every crooked torus satisfies
the gap-filling property, while failing to be
interval connected.

Some remarks: Let X = K U M, where
K, M are subcontinua such that KN M is a
union AU B of disjoint nondegenerate sub-
continua.

(1) If ae A and b € B, then [a,b] is clearly
not connected.

(2) If H is a subcontinuum of X that in-
tersects both K and M, and if C is a
component of H in K, then C inter-
sects M. ("Boundary bumping,” just
uses fact that X = KU M.)
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Now assume that both K and M are hered-
itarily indecomposable.

(3)

(4)

(5)

(6)

If H is a subcontinuum of X that inter-
sects both A and B, then AuUB C H.

Hence, if a € A and b € B, then [a,b] D
AU B. (In fact, they're equal.)

In general, we show X satisfies gap fill-
ing by proving that, no matter where
a,b lie in X, [a,b] is either connected,
or contains two nondegenerate disjoint
subcontinua, one containing a, the other
containing b.

A crooked torus also satisfies another
consequence of being interval connected,
namely the centroid property: for any
a,b,ce X, [a,b] N[a,c]N[b,c] #=0D.
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5. Proof Outline for 3.1.

(1) If [a,b] decomposes into K U M, both
proper subcontinua, then any ¢ € KNM wit-
nesses that the composite property holds.

(2) If the composite property holds and in-
tervals are connected, then the nondegen-
erate ones are easily seen to be decompos-
able.

(3) If A and B are disjoint nonempty closed
subsets of X, a Zorn’s lemma argument al-
lows you to find a € A and b € B such that
for any o/ € A, Vv € B, if [d,b] C [a,b],
then [d/,b'] = [a,b]. (a and b are minimally
close).
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(4) In the absence of interval connected-
ness, we have subcontinua K, M with KN
M = AUB, where A and B are closed,
nonempty, and disjoint. Let a € A and
b € B be minimally close (relative to A,
B). If ¢ € [a,b], then either c € A or ¢ € B.
In the first case [c,b] = [a,b]; in the second
[a,c] = [a,b]. Thus the composite property
fails for X.
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6. Summary.

Call a property ‘B of continua B-definable if
there is a first-order sentence ¢ in an alpha-
bet with equality and one ternary predicate
symbol, such that a continuum is in class
B iff the corresponding interval member-
ship relation satisfies ¢.

Examples of properties that are B-definable
include:

e Having every nondegenerate interval a
decomposable continuum.

e Having every nondegenerate interval a
generalized arc.

e Being hereditarily indecomposable.

e Being irreducible.
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Examples of properties that are not B-definable
include:

e Being of dimension n.

e Being chainable.

e Being homogeneous.

e Being self-similar.
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And in addition to our focus question of
whether being interval connected (= hered-
itarily unicoherent) is B-definable, here are
some properties for which B-definability is
unknown:

e Being indecomposable. [B-definable when
we restrict to metric continua.]

e Having every interval an indecompos-
able continuum.
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GO RAIBH MILE MAITH AGAIBH!

17



