Symbolic Dynamics and Dendrites

Andy Barwell (joint work with Brian Raines)

Heilbronn Institute of Mathematical Research University of Bristol

Galway 2012, Oxford

B b

Quadratic Maps, Julia Sets and Dendrites

B b

3 N

Quadratic Maps, Julia Sets and Dendrites

• For a quadratic map $f_c : \mathbb{C} \to \mathbb{C}$, $f_c(z) = z^2 + c$, the Julia set \mathcal{J}_c is the boundary between the basin of attraction to infinity, U_c , and its compliment in \mathbb{C} ;

Quadratic Maps, Julia Sets and Dendrites

- For a quadratic map f_c : C → C, f_c(z) = z² + c, the Julia set J_c is the boundary between the basin of attraction to infinity, U_c, and its compliment in C;
- \mathcal{J}_c invariant under f_c . Structurally, \mathcal{J}_c is closed, perfect and has empty interior;

B b d B b

Quadratic Maps, Julia Sets and Dendrites

- For a quadratic map f_c : C → C, f_c(z) = z² + c, the Julia set J_c is the boundary between the basin of attraction to infinity, U_c, and its compliment in C;
- \mathcal{J}_c invariant under f_c . Structurally, \mathcal{J}_c is closed, perfect and has empty interior;
- The point 0 is called the critical point of f_c it is the unique point at which f_c is not locally one-to-one;

4 B 6 4 B 6

Quadratic Maps, Julia Sets and Dendrites

- For a quadratic map f_c : C → C, f_c(z) = z² + c, the Julia set J_c is the boundary between the basin of attraction to infinity, U_c, and its compliment in C;
- \mathcal{J}_c invariant under f_c . Structurally, \mathcal{J}_c is closed, perfect and has empty interior;
- The point 0 is called the critical point of f_c it is the unique point at which f_c is not locally one-to-one;
- If 0 is pre-periodic but not periodic then J_c is a dendrite a locally connected, uniquely arcwise connected continuum.

Quadratic Maps, Julia Sets and Dendrites

- For a quadratic map f_c : C → C, f_c(z) = z² + c, the Julia set J_c is the boundary between the basin of attraction to infinity, U_c, and its compliment in C;
- \mathcal{J}_c invariant under f_c . Structurally, \mathcal{J}_c is closed, perfect and has empty interior;
- The point 0 is called the critical point of f_c it is the unique point at which f_c is not locally one-to-one;
- If 0 is pre-periodic but not periodic then J_c is a dendrite a locally connected, uniquely arcwise connected continuum.

Right is the Julia set for f_i :

$$(f_i^2(0) = f_i^4(0) = -1 + i).$$

Symbolic Dynamics - an Introduction

э

Symbolic Dynamics - an Introduction

 Suppose that f is a map on a compact metric space (X, d), and that X = P₀ ∪ P₁ ∪ ... ∪ P_n is a partition of X such that f is one-to-one on each P_i.

Symbolic Dynamics - an Introduction

- Suppose that f is a map on a compact metric space (X, d), and that X = P₀ ∪ P₁ ∪ ... ∪ P_n is a partition of X such that f is one-to-one on each P_i.
- Consider the space Λ = {0, 1, ..., n}^ω, endowed with the *Cantor* topology *T* (the Tychonoff product of the discrete topology on {0,..., n}), and the left-shift σ : Λ → Λ

$$\sigma(x_0x_1x_2\ldots)=x_1x_2\ldots$$

Symbolic Dynamics - an Introduction

- Suppose that f is a map on a compact metric space (X, d), and that X = P₀ ∪ P₁ ∪ ... ∪ P_n is a partition of X such that f is one-to-one on each P_i.
- Consider the space Λ = {0, 1, ..., n}^ω, endowed with the *Cantor* topology *T* (the Tychonoff product of the discrete topology on {0,..., n}), and the left-shift σ : Λ → Λ

$$\sigma(x_0x_1x_2\ldots)=x_1x_2\ldots$$

• Then we can define the *itinerary* map $It: X \to \Lambda$:

$$It(x) = x_0 x_1 x_2 \dots,$$
$$x_i = i \iff f^i(x) \in P_i$$

Symbolic Dynamics - an Introduction

 Suppose that f is a map on a compact metric space (X, d), and that X = P₀ ∪ P₁ ∪ ... ∪ P_n is a partition of X such that f is one-to-one on each P_i.

References

Consider the space Λ = {0, 1, ..., n}^ω, endowed with the *Cantor* topology *T* (the Tychonoff product of the discrete topology on {0,..., n}), and the left-shift σ : Λ → Λ

$$\sigma(x_0x_1x_2\ldots)=x_1x_2\ldots$$

• Then we can define the *itinerary* map $It : X \to \Lambda$:

$$ext{It}(x) = x_0 x_1 x_2 \dots, \ x_i = i \ \Leftrightarrow \ f^i(x) \in P_i.$$

 If each P_i is **open** then It is continuous. Moreover if It is one-to-one then it is a homeomorphism onto its image and f is conjugate to σ[†]_{It(X)}.

Symbolic Dynamics - an Introduction

- Suppose that f is a map on a compact metric space (X, d), and that X = P₀ ∪ P₁ ∪ ... ∪ P_n is a partition of X such that f is one-to-one on each P_i.
- Consider the space Λ = {0, 1, ..., n}^ω, endowed with the *Cantor* topology *T* (the Tychonoff product of the discrete topology on {0,..., n}), and the left-shift σ : Λ → Λ

$$\sigma(x_0x_1x_2\ldots)=x_1x_2\ldots$$

• Then we can define the *itinerary* map $It: X \to \Lambda$:

$$ext{It}(x) = x_0 x_1 x_2 \dots, \ x_i = i \ \Leftrightarrow \ f^i(x) \in P_i.$$

 If each P_i is **open** then It is continuous. Moreover if It is one-to-one then it is a homeomorphism onto its image and f is conjugate to σ↾_{It(X)}. In these cases, we can use the conjugacy to deduce topological properties of (X, f) from those of (Λ, σ).

Symbolic Dynamics - an Introduction

- Suppose that f is a map on a compact metric space (X, d), and that X = P₀ ∪ P₁ ∪ ... ∪ P_n is a partition of X such that f is one-to-one on each P_i.
- Consider the space Λ = {0, 1, ..., n}^ω, endowed with the *Cantor* topology *T* (the Tychonoff product of the discrete topology on {0,..., n}), and the left-shift σ : Λ → Λ

$$\sigma(x_0x_1x_2\ldots)=x_1x_2\ldots$$

• Then we can define the *itinerary* map $It: X \to \Lambda$:

$$\mathtt{It}(x) = x_0 x_1 x_2 \dots, \ x_i = i \ \Leftrightarrow \ f^i(x) \in P_i.$$

- If each P_i is **open** then It is continuous. Moreover if It is one-to-one then it is a homeomorphism onto its image and f is conjugate to σ↾_{It(X)}. In these cases, we can use the conjugacy to deduce topological properties of (X, f) from those of (Λ, σ).
- If X is connected, P_j will be closed for some 0 ≤ j ≤ n, in which case It will be discontinuous at points whose orbits visit P_j.

Symbolic Dynamics and Dendrites

э

Symbolic Dynamics and Dendrites

• $\mathcal{J}_c \setminus \{0\}$ has 2 components P_0 and P_1 , so $P_0 \cup P_1 \cup P_* = \{0\}$ is a partition of \mathcal{J}_c , and we can define the symbolic dynamics on $\Lambda^* = \{0, 1, *\}^{\omega}$.

(*) *) *) *)

-

Symbolic Dynamics and Dendrites

• $\mathcal{J}_c \setminus \{0\}$ has 2 components P_0 and P_1 , so $P_0 \cup P_1 \cup P_* = \{0\}$ is a partition of \mathcal{J}_c , and we can define the symbolic dynamics on $\Lambda^* = \{0, 1, *\}^{\omega}$.

References

• Since \mathcal{J}_c is connected we have a closed element in our partition, $\{0\}$, and It has (infinitely many) discontinuities w.r.t. the Cantor topology.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Symbolic Dynamics and Dendrites

• $\mathcal{J}_c \setminus \{0\}$ has 2 components P_0 and P_1 , so $P_0 \cup P_1 \cup P_* = \{0\}$ is a partition of \mathcal{J}_c , and we can define the symbolic dynamics on $\Lambda^* = \{0, 1, *\}^{\omega}$.

References

- Since \mathcal{J}_c is connected we have a closed element in our partition, $\{0\}$, and It has (infinitely many) discontinuities w.r.t. the Cantor topology.
- The topology {{0}, {1}, {0, 1}, {0, 1, *}} on Λ* induces a product topology *T**, w.r.t. which Λ* is connected but not metrizable (it is not even *T*₁).

A B M A B M

Symbolic Dynamics and Dendrites

- $\mathcal{J}_c \setminus \{0\}$ has 2 components P_0 and P_1 , so $P_0 \cup P_1 \cup P_* = \{0\}$ is a partition of \mathcal{J}_c , and we can define the symbolic dynamics on $\Lambda^* = \{0, 1, *\}^{\omega}$.
- Since \mathcal{J}_c is connected we have a closed element in our partition, $\{0\}$, and It has (infinitely many) discontinuities w.r.t. the Cantor topology.
- The topology {{0}, {1}, {0, 1}, {0, 1, *}} on Λ* induces a product topology *T**, w.r.t. which Λ* is connected but not metrizable (it is not even *T*₁).
- However It : $\mathcal{J}_c \to \Lambda^*$ is **continuous** and one-to-one, so $It(\mathcal{J}_c) \subset \Lambda^*$ is homeomorphic to \mathcal{J}_c , and $f_c \upharpoonright_{\mathcal{J}_c}$ is conjugate to $\sigma \upharpoonright_{It(\mathcal{J}_c)}$ (Baldwin [2007]).

通 と く ヨ と く ヨ と … ヨ

Symbolic Dynamics and Dendrites

- $\mathcal{J}_c \setminus \{0\}$ has 2 components P_0 and P_1 , so $P_0 \cup P_1 \cup P_* = \{0\}$ is a partition of \mathcal{J}_c , and we can define the symbolic dynamics on $\Lambda^* = \{0, 1, *\}^{\omega}$.
- Since \mathcal{J}_c is connected we have a closed element in our partition, $\{0\}$, and It has (infinitely many) discontinuities w.r.t. the Cantor topology.
- The topology {{0}, {1}, {0, 1}, {0, 1, *}} on Λ* induces a product topology *T**, w.r.t. which Λ* is connected but not metrizable (it is not even *T*₁).
- However It : $\mathcal{J}_c \to \Lambda^*$ is **continuous** and one-to-one, so $\operatorname{It}(\mathcal{J}_c) \subset \Lambda^*$ is homeomorphic to \mathcal{J}_c , and $f_c \upharpoonright_{\mathcal{J}_c}$ is conjugate to $\sigma \upharpoonright_{\operatorname{It}(\mathcal{J}_c)}$ (Baldwin [2007]).
- Indeed It(J_c) is a compact metric space, with a natural arc-length metric d.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Pseudo-Orbits and Shadowing in Dendrites

프 에 에 프 에 드 프

Pseudo-Orbits and Shadowing in Dendrites

For δ > 0 and a map f on a compact metric space (X, d), a
 δ-pseudo-orbit is a sequence ⟨x₀, x₁,...⟩ such that d(f(x_i), x_{i+1}) < δ for each i ≥ 0;

B N A B N

Pseudo-Orbits and Shadowing in Dendrites

- For $\delta > 0$ and a map f on a compact metric space (X, d), a δ -pseudo-orbit is a sequence $\langle x_0, x_1, \ldots \rangle$ such that $d(f(x_i), x_{i+1}) < \delta$ for each $i \ge 0$;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.

Pseudo-Orbits and Shadowing in Dendrites

- For δ > 0 and a map f on a compact metric space (X, d), a
 δ-pseudo-orbit is a sequence ⟨x₀, x₁,...⟩ such that d(f(x_i), x_{i+1}) < δ for each i ≥ 0;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology T):

Pseudo-Orbits and Shadowing in Dendrites

- For $\delta > 0$ and a map f on a compact metric space (X, d), a δ -pseudo-orbit is a sequence $\langle x_0, x_1, \ldots \rangle$ such that $d(f(x_i), x_{i+1}) < \delta$ for each $i \ge 0$;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology \mathcal{T}):

*x*₀

Pseudo-Orbits and Shadowing in Dendrites

- For $\delta > 0$ and a map f on a compact metric space (X, d), a δ -pseudo-orbit is a sequence $\langle x_0, x_1, \ldots \rangle$ such that $d(f(x_i), x_{i+1}) < \delta$ for each $i \ge 0$;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology T):

*x*₁

Pseudo-Orbits and Shadowing in Dendrites

- For δ > 0 and a map f on a compact metric space (X, d), a
 δ-pseudo-orbit is a sequence ⟨x₀, x₁,...⟩ such that d(f(x_i), x_{i+1}) < δ for each i ≥ 0;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology \mathcal{T}):

Pseudo-Orbits and Shadowing in Dendrites

- For δ > 0 and a map f on a compact metric space (X, d), a
 δ-pseudo-orbit is a sequence ⟨x₀, x₁,...⟩ such that d(f(x_i), x_{i+1}) < δ for each i ≥ 0;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology *T*):

Pseudo-Orbits and Shadowing in Dendrites

- For δ > 0 and a map f on a compact metric space (X, d), a
 δ-pseudo-orbit is a sequence ⟨x₀, x₁,...⟩ such that d(f(x_i), x_{i+1}) < δ for each i ≥ 0;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology \mathcal{T}):

< 3 > < 3 >

Pseudo-Orbits and Shadowing in Dendrites

- For $\delta > 0$ and a map f on a compact metric space (X, d), a δ -pseudo-orbit is a sequence $\langle x_0, x_1, \ldots \rangle$ such that $d(f(x_i), x_{i+1}) < \delta$ for each $i \ge 0$;
- f is said to have shadowing if for every ε > 0 there is a δ > 0 such that whenever (x₀, x₁,...) is a δ-pseudo-orbit there is some z ∈ X such that d(fⁱ(z), x_i) < ε for i ≥ 0.
- Pseudo-orbits and shadowing have a natural description in symbolic dynamics (w.r.t. the Cantor Topology T):

• We can use a similar description for the dendrites $It(\mathcal{J}_c)$ under the topology \mathcal{T}^* ; the obstruction is that $\{*\}$ is not open in \mathcal{T}^* .

Pseudo-Orbits and Shadowing in Dendrites

• Using this method, we can prove the following:

Theorem 3 (Barwell, Raines, 2012)

For a quadratic map f_c with a dendritic Julia set \mathcal{J}_c , the conjugate map $\sigma|_{\texttt{It}(\mathcal{J}_c)}$ has shadowing.

4 B 6 4 B 6

Pseudo-Orbits and Shadowing in Dendrites

• Using this method, we can prove the following:

Theorem 3 (Barwell, Raines, 2012)

For a quadratic map f_c with a dendritic Julia set \mathcal{J}_c , the conjugate map $\sigma|_{\texttt{It}(\mathcal{J}_c)}$ has shadowing.

• Then since shadowing is a topological property, we get:

Corollary (Barwell, Raines, 2012)

For a quadratic map f_c with a dendritic Julia set \mathcal{J}_c , $f_c \upharpoonright_{\mathcal{J}_c}$ has shadowing.

• • = • • = •

Pseudo-Orbits and Shadowing in Dendrites

• Using this method, we can prove the following:

Theorem 3 (Barwell, Raines, 2012)

For a quadratic map f_c with a dendritic Julia set \mathcal{J}_c , the conjugate map $\sigma|_{\texttt{It}(\mathcal{J}_c)}$ has shadowing.

• Then since shadowing is a topological property, we get:

Corollary (Barwell, Raines, 2012)

For a quadratic map f_c with a dendritic Julia set \mathcal{J}_c , $f_c|_{\mathcal{J}_c}$ has shadowing.

• Quadratic maps on the interval (such as the logistic map) give a natural example for when these results do not hold.

- S. Baldwin. Continuous itinerary functions and dendrite maps. *Topology Appl.*, 154(16):2889–2938, 2007.
- S. Baldwin. Julia sets and periodic kneading sequences. J. Fixed Point Theory Appl., 7(1):201–222, 2010.
- A. D. Barwell and B. E. Raines. The ω -limt sets of quadratic julia sets. *arXiv:1205.0191*, 2012.
- N. Metropolis, M. L. Stein, and P. R. Stein. On finite limit sets for transformations on the unit interval. *J. Combinatorial Theory Ser. A*, 15:25–44, 1973.
- J. Milnor and W. Thurston. On iterated maps of the interval. In Dynamical systems (College Park, MD, 1986–87), volume 1342 of Lecture Notes in Math., pages 465–563. Springer, Berlin, 1988.

B b d B b