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Jc invariant under fc . Structurally, Jc is closed, perfect and has
empty interior;

The point 0 is called the critical point of fc - it is the unique point
at which fc is not locally one-to-one;

If 0 is pre-periodic but not periodic then Jc is a dendrite - a locally
connected, uniquely arcwise connected continuum.
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For a quadratic map fc : C → C, fc(z) = z2 + c , the Julia set Jc is
the boundary between the basin of attraction to infinity, Uc , and its
compliment in C;

Jc invariant under fc . Structurally, Jc is closed, perfect and has
empty interior;

The point 0 is called the critical point of fc - it is the unique point
at which fc is not locally one-to-one;

If 0 is pre-periodic but not periodic then Jc is a dendrite - a locally
connected, uniquely arcwise connected continuum.

Right is the Julia set for fi :

(

f 2i (0) = f 4i (0) = −1 + i
)

.
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Suppose that f is a map on a compact metric space (X , d), and
that X = P0 ∪ P1 ∪ . . . ∪ Pn is a partition of X such that f is
one-to-one on each Pi .
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Then we can define the itinerary map It : X → Λ:

It(x) = x0x1x2 . . . ,

xi = i ⇔ f i (x) ∈ Pi .

If each Pi is open then It is continuous. Moreover if It is
one-to-one then it is a homeomorphism onto its image and f is
conjugate to σ↾It(X ). In these cases, we can use the conjugacy to
deduce topological properties of (X , f ) from those of (Λ, σ).

If X is connected, Pj will be closed for some 0 ≤ j ≤ n, in which
case It will be discontinuous at points whose orbits visit Pj .

A. Barwell and B. Raines Symbolic Dynamics and Dendrites



References

Symbolic Dynamics and Dendrites

A. Barwell and B. Raines Symbolic Dynamics and Dendrites



References

Symbolic Dynamics and Dendrites

Jc \ {0} has 2 components P0 and P1, so P0 ∪ P1 ∪ P∗ = {0} is a
partition of Jc , and we can define the symbolic dynamics on
Λ∗ = {0, 1, ∗}ω.
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topology T ∗, w.r.t. which Λ∗ is connected but not metrizable (it is
not even T1).

However It : Jc → Λ∗ is continuous and one-to-one, so
It(Jc) ⊂ Λ∗ is homeomorphic to Jc , and fc↾Jc

is conjugate to
σ↾It(Jc )

(Baldwin [2007]).

Indeed It(Jc) is a compact metric space, with a natural arc-length
metric d .
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We can use a similar description for the dendrites It(Jc) under the
topology T ∗; the obstruction is that {∗} is not open in T ∗.
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Using this method, we can prove the following:

Theorem 3 (Barwell, Raines, 2012)

For a quadratic map fc with a dendritic Julia set Jc , the conjugate map
σ↾It(Jc )

has shadowing.
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Using this method, we can prove the following:

Theorem 3 (Barwell, Raines, 2012)

For a quadratic map fc with a dendritic Julia set Jc , the conjugate map
σ↾It(Jc )

has shadowing.

Then since shadowing is a topological property, we get:

Corollary (Barwell, Raines, 2012)

For a quadratic map fc with a dendritic Julia set Jc , fc↾Jc
has shadowing.

Quadratic maps on the interval (such as the logistic map) give a
natural example for when these results do not hold.
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