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Partial metric space was introduced by S. G. Matthews in 1994: (Partial

Metric Topology, i n: Proceedings of the 8th Summer Conference on Topol-

ogy and its Applications , vol . 728, Annals of The Newyork Academy of

Sciences , 1994, pp. 183–197. )

Definition 1. Let X be a nonempty set and let p : X×X →R+ be such

that the following are satisfied. For all x, y, z ∈ X

(PM1) x = y ⇐⇒ p(x, x) = p(y, y) = p(x, y)

(PM2) p(x, x) ≤ p(x, y)

(PM3) p(x, y) = p(y, x)

(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then the pair (X, p) is called a partial metric space and p is called a

partial metric on X.

Here p(x, x) need not be zero always. It is clear that, if p(x, y) = 0, then

from (PM1) and (PM2) x = y.

Definition 2 A metric space is a pair (X, d : X ×X → R) such that,

for all x, y, z ∈ X,

M0 : 0 ≤ d(x, y),

M1 : if x = y then d(x, y) = 0,

M2 : if d(x, y) = 0 then x = y,

M3 : d(x, y) = d(y, x), and

M4 : d(x, z) ≤ d(x, y) + d(y, z).

In pseudo- metric spaces d(x, x) = 0, but it is possible that d(x, y) = 0.
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Example 1 Let Sw be the set of all infinite real sequences and S∗ be

the set of all finite sequences. Let X=(xi) and Y=(yi). Let k be the largest

integer for which xi=yi for all i < k. Let d(x, y) = 2−k.

Then this defines a partial metric on Sw ∪ S∗.

For example, x = (1, 3, 5, 7) and y = (1, 3, 5) then d(x, x) = 2−5. and

d(x, y) = 2−4.

From the computational viewpoint one needs to know how to compute an

infinite sequence. Then {x0, x1, x2, ..., xn} is a partially computed version

of {xn} while the latter can be termed as totally computed.

Thus the truth of x = y when x = {xn} and y = {yn} can be asserted

only to the extent to which they can be computed.

Example 2. R− = (−∞, 0] and R+ = [0,∞). Consider the function

p : R− ×R− → R+ defined by p(x, y) = −min{x, y} for any x, y ∈ X . The

pair (R−, p) is a partial metric space. Here the self-distance for any point

x ∈ R− is its absolute value that is p(x, x) =| x |.

Example 3. Let p : R+ × R+ → R+ be defined by p(x, y) = max{x, y}
for any x, y ∈ R+ . Then (R+, p) is a partial metric space where the self-

distance for any point x ∈ R+ is its value itself.
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Example 4. The interval domain.

Let us consider the set I = {[a, b] : a ≤ b, a, b ∈ R} of closed intervals in

R and define

p : I×I− → R+ by setting p([a, b], [c, d]) = max{b, d}−min{a, c}. Then
(I, p) is a partial metric space.

For any a, b, c, d, e, f ∈ R ,

PM1. One verifies thatmax{b, d}−min{a, c} ≥ b−a, hence p([a, b], [c, d]) ≥
p([a, b], [a, b]),

PM2. suppose that p([a, b], [a, b]) = p([a, b], [c, d]) = p([c, d], [c, d]).

Then b − a = d − c = max{b, d} − min{a, c}. So [a, b] and [c, d] have

the same length. Suppose that max{b, d} = b , then min{a, c} = c thus

[a, b] ⊂ [c, d]. Since they have the same length , they must be equal, that is

[a, b] = [c, d].

PM3. It is clear that p([a, b], [c, d]) = ([a, b], [c, d]).

PM4. Consider p([a, b], [e, f ])+p([e, f ], [c, d])−p([e, f ], [e, f ]) = max{b, f}−
min{a, e} +max{f, d} −min{c, e} − f + e. One verifies that max{b, f} +
max{f, d}−f ≥ max{b, d} and −min{a, e}−min{e, c}−e ≥ −min{a, c},
hence we have that

p([a, b], [c, d]) ≤ p([a, b], [e, f ]) + p([e, f ], [c, d])− p([e, f ], [e, f ]).

The self- distance p([a, b], [a, b]) for any a, b ∈ R, a ≤ b is the length b−a

of the interval [a, b].

Here, [a, b] ⊑ [c, d] if , and only if, [c, d] ⊆ [a, b]. Indeed, p([a, b], [a, b]) =

p([a, b], [c, d]) implies b − a = max{b, d} −min{a, c}. Suppose that d > b

, then b − a = d − min{a, c} and min{a, c} − a = d − b > 0, hence

min{a, c} > a which is impossible, then d ≤ b. Similarly, one proves that

a ≤ c, otherwise b − a = max{b, d} − c implies b > max{b, d} which is
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impossible.

Consequently, [c, d] ⊆ [a, b] if and only if p([a, b], [a, b]) = p([a, b], [c, d]).

There are good number of works exploring the structure of partial met-

ric spaces, some of these are the following:

1. R. Heckmann, Applied Categorical Structures 7 (1999), 71—83.

2. S. Romagueraand et al, Appl. General Topology, 3 (2002) 91 –112.

3. M. P. Schellekens , Theoretical Computer Science , 315 (2004), no:1 ,

135 –149

.4. I. Altun , et al, Topology and Appl. 157 (2010), no: 18, 2778– 2785

.

5. D. Ili´c, et al, Appl. Math. Lett ., 24 (2011),n o:8, 1326 —1330.

6. T. Abdeljawad, et al; Comput. Math. Appl. 63 (2012), no:3 , 716

–719 .

For each partial metric space (X, p) let ⊑p be the binary relation over

X such that x ⊑p y if and only if p(x, x) = p(x, y). Then it can be shown

that (X, ⊑p) is a partially ordered set.

Referring to example 1, x ⊑p y if and only if either xi = yi for all i or

there exists some k < ∞ such that the length of x is k and for each i ≤ k ,

xi = yi. In other words, x ⊑p y if and only if x is an initial part of y . For

finite sequences we have an example:

⟨⟩ ⊑p ⟨2⟩ ⊑p ⟨2, 3⟩,⊑p ⟨2, 3, 5⟩ ⊑p ...,
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whose least upper bound is the infinite sequence {2, 3, 5, ...}of all prime num-

bers.

The family {Bp
ε (x) : x ∈ X, ε > 0} where Bp

ε (x) = {y : p(x, y) <

p(x, x) + ε}
is a basis for a topology τ. This topology is a T0 topology.

The family {Bp∗
ε (x) : x ∈ X, ε > 0} where Bp∗

ε (x) = {y : p(x, y) <

p(x, x) + ε} is a basis for the another topology τ ∗.

Thus we have a bi-topological space (X, τ, τ ∗ ).

There is a symmetrization topology τ s = τ ∨ τ ∗.
A partial metric induces a quasi metric given by q(x, y) = p(x, y) −

p(x, x). It has its dual q∗(x, y) = q(y, x) = p(x, y) − p(y, y) Then the

symmetrization is dp(x, y) = q∗(x, y)+ q(y, x) = 2p(x, y)− p(x, x)− p(y, y),

which is a metric .

The topology τ∨τ ∗ is actually the metric topology induced by the above

metric.

The relation can be viewed topologically

x ⊑p y iff p(x, x) = p(x, y) (x ⊑p y often called ”is part of”).

Equivalently, x ⊑p y iff y ∈ Bε(x) for each ε > 0.

iff x ∈ cl(y).

The relation xρy iff x ∈ cl(y) is automatically reflexive and transitive.

A topological space is T0 ⇐⇒ x ∈ cl(y) and y ∈ cl(x) only when x = y.

From here we can also conclude that the topology is T0.
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Definition 3 Let (X, p) be a partial metric space.

A sequence {xn} in the partial metric space (X, p) converges to the limit

x if and only if

lim
n→∞

p(x, xn) = p(x, x).

Suppose that (xn) is a sequence in a partial metric space (X, p), we define

L(xn) to be the set of limit points of (xn).

As an example , in the usual partial metric (R−, p), the sequence (− 1
n
)

has L(− 1
n
) = (−∞, 0).

Suppose that x < 0, then p(− 1
n
, x) = −min{− 1

n
, x}. Let ε > 0 be arbi-

trary. Then there exists N ≥ 1 such that − 1
n
> x, hence min{− 1

n
, x} = x

and p(− 1
n
, x) = −x = p(x, x) < p(x, x) + ϵ. Consequently − 1

n
∈ Bε(x),

hence (− 1
n
) converges to x

Proposition 1 Let (xn) be a sequence in a partial metric space (X, p).

If a point a ∈ L(xn) and a/ ⊑ a , then a/ ∈ L(xn).

Definition 4 A sequence {xn} in the partial metric space (X, p) is

called a Cauchy sequence if lim
m,n→∞

p(xm, xn) exists and is finite.

Definition 5 A partial metric space (X, p) is called complete if every

Cauchy sequence {xn} in X converges with respect to τ to a point x ∈ X

such that p(x, x) = lim
m,n→∞

p(xm, xn).

Definition 6 A mapping f : X → X is said to be continuous at x0 ∈ X

if for every ε > 0, there exists δ > 0 such that f(Bp(x0, δ)) ⊆ Bp(fx0, ε).
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The following implication follows from the above definition.

If a function f : X → X where (X, p) is a partial metric space is con-

tinuous then fxn → fx whenever xn → x as n→ ∞.

Lemma 2 Let (X, p) be a partial metric space.

(1) A sequence {xn} is a Cauchy sequence in the partial metric space

(X, p) if and only if it is a Cauchy sequence in the metric space (X, dp).

(2) A partial metric space (X, p) is complete if and only if the metric

space (X, dp) is complete. Moreover, lim
n→∞

dp(x, xn) = 0 if and only if

p(x, x) = lim
n→∞

p(x, xn) = lim
m,n→∞

p(xm, xn).

Theorem 1 Banach contraction mapping theorem

Let (X, d) be a complete metric space and T be a self mapping on X satis-

fying the following conditions:

d(Tx, Ty) ≤ q · d(x, y) for all x, y ∈ X and q ∈ (0, 1).

Then T has a unique fixed point in X.

In functional analysis we find a lot of efforts to generalize the Banach’s

contraction mapping principle. Some references are

1. D.W.Boyd et al , Proc. Amer. Math Soc, 20 (1969) 458-464.

2. M.A.Geraghty,Proc.Amer.Math.Soc.40 (1973) 604–608.

3. J. Merryeld et al, Proc. Amer. Math. Soc. 130 (4) (2002) 927-933.

4. A.D. Arvanitakis et al , Proc. Amer. Math. Soc., 131 (12) (2003)

3647-3656.

5. T. Suzuki , Proc. Amer. Math. Soc. 136 (5) (2008) 1861-1869.
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Alber and Guerre-Delabriere introduced the concept of weak contraction

in Hilbert spaces (Ya. I. Alber, et al , New Results in Operator Theory and

its Applications, in: Oper.Theory Adv.Appl.,vol.98, Birkhä user,Basel,1997,

pp.7-22.). Rhoades in [Nonlinear Anal. , 47(4) (200l), 2683-2693.] has

shown that the result which Alber et al. proved is also valid in complete

metric spaces. We state the result of Rhoades in the following:

Definition 7 (weakly contractive mapping) A mapping T : X → X

where (X, d) is a metric space is said to be weakly contractive if

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)),

where x, y ∈ X and ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing

function such that ϕ(t) = 0 if and only if t = 0 when ϕ(t) = (1 − k)t, it

reduces to a contradiction.

Theorem 2 If T : X → X is a weakly contractive mapping where

(X, d) is a complete metric space, then T has a unique fixed point.

Dutta and Choudhury [Fixed Point Theory and Application (2008), Article

Id06368, 8pages. ] proved a generalization employing a method different

from that used by Rhoades.
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Theorem 3 Let (X, d) be a complete metric space and T : X → X be

a self mapping satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)),

where ψ, ϕ : [0,∞) → [0,∞) are both continues and monotone non decreas-

ing function with ψ(t) = 0 = ϕ(t) if and only if t=0. Then T has a unique

fixed point.

ψ is altering distance function which is a control function. Some works

on control functions are

S.V.R. Naidu, Czechoslovak Mathematical Journal, 53(128), (2003),205-

212.

K.P.R. Sastry et al, Ind. J. Pure. Appl. Math., 30 (6), (1999), 641-647.

B.S. Choudhury et al, Soochow J. Math., 31(1), (2005), 71-81.

D. M iheţ, Nonlinear Anal., 71 (2009), 2734- 2738.

Some other works on weak contraction are

1. D. Dori´c, Appl. Math. Lett., 22 (2009), 1896-1900.

2. C. E. Chidume et al, J. Math. Anal. Appl., 270(1) (2002), 189-199.

3. Choudhury et al, NonlinearAnalysis72(2010)1589 1593

4. Choudhury et al, Nonlinear Anal. 74 (2011) 2116–2126

5. Choudhury et al, J. Nonlinear Sci. Appl. 5 (2012), 243-251
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There are two further generalisations of weak contractions using two dif-

ferent technnique:

1. O. Popescu, Fixed points for (ψ, ϕ)- weak contractions, Appl. Math.

Lett., 24 (2011) 1-4.

2. B. S. Choudhury A. Kundu, (ψ, α, β)-weak contractions in partially or-

dered metric spaces, Appl. Math. Lett. 25 (2012) 6-10.

Fixed point studies in partial metric spaces were initiated in its introductory

paper.

Some subsequent works:

1. Karapiner et al, Applied Math. Lett. 24 (2011) 1894-1899.

2. Altun et al, Topology and its Appl. 157 (2010) 2778-2785.

3. I. D. Itic, Appl. Math. Lett. 24 (2011) 1326-1330.

4. O. Valero, Appl.Gen. Topology, 6 (2005) 229-240.
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1 Main Results

Theorem 2.1 Let (X,≼) be a partially ordered set and suppose that there

exists a partial metric p on X such that (X, p) is a complete partial metric

space. Suppose that ψ, α, β : [0,∞) → [0,∞) are such that, ψ is continuous

and monotone non-decreasing, α is continuous, β is lower semi-continuous,

with

ψ(t) = 0 if and only if t = 0, α(0) = β(0) = 0 (1.1)

and ψ(t)− α(t) + β(t) > 0 for all t > 0. (1.2)

Let f : X → X be a non-decreasing and continuous mapping such that

ψ(p(fx, fy)) ≤ α(p(x, y))− β(p(x, y)), for all x, y ∈ X with x ≼ y. (1.3)

If there exists x0 ∈ X such that x0 ≼ fx0, then f has a fixed point.

Proof. By a condition of the theorem there exists x0 ∈ X such that

x0 ≼ fx0. We define x1 ∈ X as x1 = fx0, then x0 ≼ fx0 = x1. Since f

is non-decreasing, it follows that fx0 ≼ fx1. In this way we construct the

sequence {xn} recursively as

fxn = xn+1 for all n ≥ 0 (1.4)

for which

x0 ≼ fx0 = x1 ≼ fx1 = x2 ≼ fx2 ≼ ........ ≼ fxn−1 = xn ≼ fxn = xn+1 ≼ .....

(1.5)

If xn = xn+1, then f has a fixed point. Therefore we assume that

xn ̸= xn+1, for all n ≥ 0.
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Then it follows from the definition of p that

p(xn, xn+1) ̸= 0 for all n ≥ 0. (1.6)

Let, if possible, for some n

p(xn, xn+1) < p(xn+1, xn+2). (1.7)

Substituting x = xn and y = xn+1 in (2.3), using (2.4), (2.5), (2.7) and the

monotone property of ψ, for all n ≥ 0, we have

ψ(p(xn, xn+1)) ≤ ψ(p(xn+1, xn+2)) = ψ(p(fxn, fxn+1))

≤ α(p(xn, xn+1))− β(p(xn, xn+1)). (1.8)

Then, by (2.2), it follows that p(xn, xn+1) = 0 which contradicts (2.6).

Therefore, for all n ≥ 1, we have

p(xn, xn+1) ≤ p(xn−1, xn).

Thus the sequence {p(xn, xn+1)} is a monotone decreasing sequence of non-

negative real numbers and therefore there exists r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (1.9)

Taking n→ ∞ in (2.8), using the lower semi continuity of β and the conti-

nuities of ψ and α, we obtain ψ(r) ≤ α(r)− β(r), which, by (2.2), implies

that r = 0. Hence

lim
n→∞

p(xn, xn+1) = 0. (1.10)

Then, by (P2) of definition 1.1, we obtain

lim
n→∞

p(xn, xn) = 0 and lim
n→∞

p(xn+1, xn+1) = 0. (1.11)
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Since, from (1.1), dp(x, y) ≤ 2p(x, y) for all x, y ∈ X, we have

lim
n→∞

dp(xn, xn+1) = 0. (1.12)

Next we show that {xn} is a Cauchy sequence in (X, dp). If not, then there

exists some ε > 0 for which we can find two sub-sequences {xm(k)} and

{xn(k)} of {xn} such that, for all k ≥ 0,

n(k) > m(k) > k,

dp(xm(k), xn(k)) ≥ ε. (1.13)

and

dp(xm(k), xn(k)−1) < ε. (1.14)

Now, for all k ≥ 0, we have ε ≤ dp(xm(k), xn(k)) ≤ dp(xm(k), xn(k)−1) +

dp(xn(k)−1, xn(k))

< ε+ dp(xn(k)−1, xn(k)) (by (2.14)).

Taking k → ∞ in the above inequality, and using (2.12), we obtain

lim
k→∞

dp(xm(k), xn(k)) = ε. (1.15)

Also, for all k ≥ 0, we have

dp(xm(k)+1, xn(k)+1) ≤ dp(xm(k)+1, xm(k))+dp(xm(k), xn(k))+dp(xn(k), xn(k)+1)

and dp(xm(k), xn(k)) ≤ dp(xm(k), xm(k)+1)+dp(xm(k)+1, xn(k)+1)+dp(xn(k)+1, xn(k)).

Taking limit as k → ∞ in the above two inequalities, using (2.12) and

(2.15), we have

lim
k→∞

dp(xm(k)+1, xn(k)+1) = ε. (1.16)

Again, by (1.1), for all k > 0,

dp(xm(k), xn(k)) = 2p(xm(k), xn(k))− p(xm(k), xm(k))− p(xn(k), xn(k)),
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and

dp(xm(k)+1, xn(k)+1) = 2p(xm(k)+1, xn(k)+1)−p(xm(k)+1, xm(k)+1)−p(xn(k)+1, xn(k)+1).

. Taking k → ∞, in the above two relations, using (2.11), (2.15) and (2.16)

we get

lim
k→∞

p(xm(k), xn(k)) =
ε

2
(1.17)

and

lim
k→∞

p(xm(k)+1, xn(k)+1) =
ε

2
. (1.18)

Again since m(k) < n(k) implies xm(k) ≼ xn(k), substituting x = xm(k) and

y = xn(k) in (2.3), for all k ≥ 0, we get,

ψ(p(xm(k)+1, xn(k)+1)) = ψ(p(fxm(k), fxn(k)))

≤ α(p(xm(k), xn(k)))− β(p(xm(k), xn(k))).

Taking k → ∞ in the above inequality, using (2.17), (2.18), the continuities

of ψ, α and the facts that β is lower semi continuous, we have,

ψ(
ε

2
) ≤ α(

ε

2
)− β(

ε

2
).

By (2.2), this implies that ε = 0 which is a contradiction. Therefore the

sequence {xn} is a Cauchy sequence in (X, dp). Since (X, p) is complete,

by lemma 1.3, (X, dp) is also complete and therefore the sequence {xn} is

convergent to some z in X, that is,

lim
n→∞

xn = z. (1.19)

Thus by lemma 1.3

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (1.20)
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Again by (1.1), for all m,n > 0,

dp(xn, xm) = 2p(xn, xm)− p(xn, xn)− p(xm, xm).

Taking limit m,n → ∞, using (2.11) and the fact that {xn} is a Cauchy

sequence in (X, dp), we have

lim
n,m→∞

p(xn, xm) = 0.

Then from (2.20), it follows that

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0. (1.21)

Next we prove that fz = z.

By virtue of (2.19), the continuity of f implies that fxn → fz as n→ ∞.

Then, by lemma 1.3, we have

p(fz, fz) = lim
n→∞

p(fxn, fz) = lim
n→∞

p(xn+1, fz). (1.22)

Now,

p(z, fz) ≤ p(z, xn+1) + p(xn+1, fz)− p(xn+1, xn+1)

≤ p(z, xn+1) + p(xn+1, fz).

Taking n → ∞ in the above inequality, using (2.19), (2.21) and (2.22) we

obtain

p(z, fz) ≤ lim
n→∞

p(z, xn+1) + lim
n→∞

p(xn+1, fz)

= p(fz, fz).

Using the above inequality and the monotone property of ψ, we obtain

ψ(p(z, fz)) ≤ ψ(p(fz, fz)) ≤ α(p(z, z))− β(p(z, z)) (by (2.3)).
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Then, form (2.1) and (2.21), we obtain

p(z, fz) = 0.

It then follows from (P1) and (P2) of the definition 1.1 that z = fz.

This completes the proof of the theorem.

Our next theorem is obtained by replacing the continuity of f in theorem

2.1 by an ordered theoretic condition.

Theorem 2.2 Let (X,≼) be a partially ordered set and suppose that there

exists a partial metric p on X such that (X, p) is a complete partial metric

space. We assume that if any nondecreasing sequence {xn} in X converges

to z, then

xn ≼ z for all n ≥ 0. (1.23)

Suppose that ψ, α, β : [0,∞) → [0,∞) are such that, ψ is continuous and

monotone non-decreasing, α is continuous, β is lower semi-continuous, with

ψ(t) = 0 if and only if t = 0, α(0) = β(0) = 0

and ψ(t)− α(t) + β(t) > 0 for all t > 0.

Let f : X → X be a non-decreasing mapping such that

ψ(p(fx, fy)) ≤ α(p(x, y))− β(p(x, y)) for all x, y ∈ X and x ≺ y (x ̸= y),

(1.24)

If there exists x0 ∈ X such that x0 ≼ fx0, then f has a fixed point.

Proof. Following the steps identically as in the proof of the theorem 2.1

we obtain (2.19) and (2.21). Then, by (2.6) and (2.19), we have that {xn}
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is a non-decreasing sequence that converges to z in X. If xn = z, for some

n, then, from (2.5) and (2.23), it follows that xn = xn+1, in which case we

have a fixed point. So we assume that xn ̸= z for all n ≥ 0. Then, from

(2.24), we obtain

ψ(p(fz, xn+1)) = ψ(p(fz, fxn)) ≤ α(p(z, xn))− β(p(z, xn)). (1.25)

Also,

p(fz, xn+1) ≤ p(fz, z) + p(z, xn+1)− p(z, z)

and p(fz, z) ≤ p(fz, xn+1) + p(xn+1, z)− p(xn+1, xn+1).

Taking n→ ∞, in the above two inequalities, using (2.11) and (2.21) we get

p(fz, z) = lim
n→∞

p(fz, xn+1).

Taking n → ∞ in (2.25), using the continuities of ψand α, the lower semi

continuity of β, (2.19), (2.21), and the above limit we have

ψ(p(fz, z)) ≤ α(p(z, z))− β(p(z, z)). (1.26)

In view of (2.1) and (2.21) it then follows that

p(fz, z) = 0.

Since p(fz, z) = 0, using (P2) and (P1) of definition 1.1, we have z = fz.

Remark 2.1: In theorem 2.2 we require the inequality in (2.24), which

is the same as in (2.3), only to be satisfied for x ≺ y, while in the proof we

have given for theorem 2.1, it is necessary to assume that the inequality also
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holds when x = y.

Theorem 2.3 Let (X,≼) be a partially ordered set and let there be a

partial metric p on X such that (X, p) is a complete partial metric space.

Let f : X → X be a continuous and non-decreasing mapping such that

ψ(p(fx, fy)) ≤ ψ(p(x, y))− β(p(x, y)) whenever x, y ∈ X and x ≼ y,

(1.27)

where

i) ψ : [0,∞) → [0,∞) is a monotone non-decreasing function such that

ψ(t) = 0 if and only if t = 0,

ii) β : [0,∞) → [0,∞) is a function satisfying β(0) = 0, lim inf
n→∞

β(an) >

0 whenever lim
n→∞

an = a > 0,

iii) β(t) > ψ(t)− ψ(t−) for all t > 0, where ψ(t−) is the left limit of ψ at

t.

If there exists x0 ∈ X such that x0 ≼ fx0, then f has a fixed point.

Proof. Starting with x0 ∈ X, and following the same steps as in theorem

2.1, we obtain a sequence {xn} in X defined as

fxn = xn+1 for all n ≥ 0, (1.28)

for which

x0 ≼ fx0 = x1 ≼ fx1 = x2 ≼ fx2 ≼ ........ ≼ fxn−1 = xn ≼ fxn = xn+1 ≼ .....

(1.29)

If xn = xn+1, then f has a fixed point. Therefore we assume that

xn ̸= xn+1, for all n ≥ 0.
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Then it follows from the definition of p that

p(xn, xn+1) ̸= 0 for all n ≥ 0. (1.30)

Let, if possible, for some n

p(xn, xn+1) < p(xn+1, xn+2). (1.31)

Substituting x = xn and y = xn+1 in (2.27), using (2.28), (2.29), (2.31) and

the monotone property of ψ, for all n ≥ 0, we have

ψ(p(xn, xn+1)) ≤ ψ(p(xn+1, xn+2))

= ψ(p(fxn, fxn+1))

≤ ψ(p(xn, xn+1))− β(p(xn, xn+1)). (1.32)

A consequence of the properties of β given in condition (ii) of the theorem

is that β(a) > 0 for a > 0. Then from (2.30), β(p(xn, xn+1)) > 0. With this,

(2.32) leads to a contradiction. Therefore, for all n ≥ 1,

p(xn, xn+1) ≤ p(xn−1, xn).

Thus the sequence {p(xn, xn+1)} is a monotone decreasing sequence of non-

negative real numbers and consequently there exists r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (1.33)

Suppose that r > 0. If there exists n such that p(xn, xn+1) = r, then, by

(2.32) we have ψ(r) ≤ ψ(r)− β(r). Since β(r) > 0, this is a contradiction.

So p(xn, xn+1) > r, for all n ≥ 0. Then taking limit infimum as n → ∞ in

(2.32), using (2.33) and the fact that {p(xn, xn+1)} is monotone decreasing,

we have

ψ(r+) ≤ ψ(r+)− lim
n→∞

inf β(p(xn, xn+1)).
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By virtue of condition (ii), lim
n→∞

inf β(p(xn, xn+1)) > 0. So the above inequal-

ity leads to a contradiction. Hence

lim
n→∞

p(xn, xn+1) = 0. (1.34)

It follows by (P1) and (P2) of definition 1.1 that

lim
n→∞

p(xn, xn) = 0. (1.35)

Since from (1.1), dp(x, y) ≤ 2p(x, y) for all x, y ∈ X, for all n ≥ 0, from

(2.34) it follows that

lim
n→∞

dp(xn, xn+1) = 0. (1.36)

Next we show that {xn} is a Cauchy sequence in (X, dp). If not, then there

exists some ε > 0 for which we can find two subsequences {xm(k)} and {xn(k)}
of {xn} such that, for all k ≥ 0,

n(k) > m(k) > k,

dp(xm(k), xn(k)) ≥ ε (1.37)

and

dp(xm(k), xn(k)−1) < ε. (1.38)

Now, for all k ≥ 0, we have ε ≤ dp(xm(k), xn(k)) ≤ dp(xm(k), xn(k)−1) +

dp(xn(k)−1, xn(k))

< ε+ dp(xn(k)−1, xn(k)) (by (2.38)).

Taking k → ∞ in the above inequality, using (2.36), we obtain

lim
k→∞

dp(xm(k), xn(k)) = ε. (1.39)

Also, for all k ≥ 0, we have
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dp(xm(k)−1, xn(k)−1) ≤ dp(xm(k)−1, xm(k))+dp(xm(k), xn(k))+dp(xn(k), xn(k)−1)

and dp(xm(k), xn(k)) ≤ dp(xm(k), xm(k)−1)+dp(xm(k)−1, xn(k)−1)+dp(xn(k)−1, xn(k)).

Taking limit as k → ∞ in the above two inequalities, using (2.36) and

(2.39) we obtain

lim
k→∞

dp(xm(k)−1, xn(k)−1) = ε. (1.40)

Putting x = xm(k) and y = xn(k) in (1.1), we have

dp(xm(k), xn(k)) = 2p(xm(k), xn(k))− p(xm(k), xm(k))− p(xn(k), xn(k)).

Then taking k → ∞ and using (2.35), (2.36) and(2.39) we get

lim
k→∞

p(xm(k), xn(k)) =
ε

2
. (1.41)

Similarly, using (2.35), (2.36) and(2.40) we have

lim
k→∞

p(xm(k)−1, xn(k)−1) =
ε

2
. (1.42)

Next we show that for sufficiently large k, p(xm(k), xn(k)) ≤
ε

2
.

If not, then there exists a subsequence {k(i)} of N such that for all i > 0,

ε

2
< p(xm(k(i)), xn(k(i)))). (1.43)

In view of (2.29), substituting x = xm(k(i))−1 and y = xn(k(i))−1 in (2.27), for

all i > 0, we have

ψ(p(xm(k(i)), xn(k(i)))) = ψ(p(fxm(k(i))−1, fxn(k(i))−1))

≤ ψ(p(xm(k(i))−1, xn(k(i))−1))− β(p(xm(k(i))−1, xn(k(i))−1)).(1.44)

Taking limit as i → ∞ in (2.44), using (2.42), (2.43) and the monotone

property of ψ, we obtain

ψ(
ε

2

+

) ≤ ψ(
ε

2

+

)− lim inf
i→∞

β(p(xm(k(i))−1, xn(k(i))−1)).
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But by a property of β, (2.41) implies that lim inf
i→∞

β(p(xm(k(i))−1, xn(k(i))−1)) >

0. Then the above inequality gives a contradiction. Thus for sufficiently large

k, p(xm(k), xn(k)) ≤
ε

2
.

Again from (1.1) we have

dp(xm(k), xn(k)) = 2p(xm(k), xn(k))− p(xm(k), xm(k))− p(xn(k), xn(k)).

Taking k → ∞ and using (2.35) and (2.37), we have p(xm(k), xn(k)) ≥ ε

2
.

Then the above observation along with (2.41) implies that, there exists a

positive integer k1 such that for all k ≥ k1,

p(xm(k), xn(k)) =
ε

2
. (1.45)

Substituting x = xm(k) and y = yn(k) in (2.27), using (2.29), we obtain

ψ(p(xm(k)+1, xn(k)+1)) = ψ(p(fxm(k), fxn(k)))

≤ ψ(p(xm(k), xn(k)))− β(p(xm(k), xn(k)))(1.46)

Then by (2.45), for all k ≥ k1

ψ(p(xm(k)+1, xn(k)+1)) ≤ ψ(
ε

2
)− β(

ε

2
) < ψ(

ε

2
). (1.47)

Thus, by (2.47), using the monotone property of ψ, for all k ≥ k1, we have

p(xm(k)+1, xn(k)+1) <
ε

2
. (1.48)

Taking the limit as k → ∞ in (2.46), using (2.45) and (2.48), we obtain

ψ(
ε

2

−
) ≤ ψ(

ε

2
)− β(

ε

2
), which contradicts condition (iii).

Therefore the sequence {xn} is a Cauchy sequence in (X, dp). Since (X, p)

is complete, by lemma 1.3, (X, dp) is complete and consequently the sequence

{xn} is convergent to z in X, that is,

lim
n→∞

xn = z. (1.49)
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Thus, by lemma 1.3,

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (1.50)

Again by (1.1), for all m,n ≥ 0

dp(xn, xm) = 2p(xn, xm)− p(xn, xn)− p(xm, xm).

Taking limit m,n → ∞, using (2.35) and the fact that {xn} is a Cauchy

sequence in (X, dp), we have

lim
n,m→∞

p(xn, xm) = 0.

Then, from (2.50), it follows that

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0. (1.51)

Next we prove that fz = z.

By virtue of (2.49), the continuity of f implies that fxn → fz as n→ ∞.

Then, by lemma 1.3, we have

p(fz, fz) = lim
n→∞

p(fxn, fz) = lim
n→∞

p(xn+1, fz). (1.52)

Now,

p(z, fz) ≤ p(z, xn+1) + p(xn+1, fz)− p(xn+1, xn+1)

≤ p(z, xn+1) + p(xn+1, fz).

Taking n → ∞ in the above inequality, using (2.49), (2.51) and (2.52), we

obtain

p(z, fz) ≤ lim
n→∞

p(z, xn+1) + lim
n→∞

p(xn+1, fz)

= p(fz, fz).
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Using the above inequality and the monotone property of ψ, we obtain,

ψ(p(z, fz)) ≤ ψ(p(fz, fz)) ≤ ψ(p(z, z))− β(p(z, z)) (by(2.27)). (1.53)

In view of (i), (ii) and (2.51) we obtain p(z, fz) = 0. Then from (P1) and

(P2) of the definition 1.1, it follows that z = fz.

Our next theorem is obtained by replacing the continuity of f by an ordered

theoretic condition.

Theorem 2.4 Let (X,≼) be a partially ordered set and suppose that there

exists a partial metric p on X such that (X, p) is a complete partial metric

space. We assume that if any nondecreasing sequence {xn} in X converges

to z, then

xn ≼ z for all n ≥ 0. (1.54)

Let f : X → X be a non-decreasing mapping such that

ψ(p(fx, fy)) ≤ ψ(p(x, y))− β(p(x, y)) for all x, y ∈ X and x ≺ y (x ̸= y),

(1.55)

where ψ and β satisfies all the condition of theorem 2.3. If there exists

x0 ∈ X such that x0 ≼ fx0, then f has a fixed point.

Proof. Following the steps identically as in the proof of the theorem 2.3

we obtain (2.49) and (2.51). Then, by (2.29) and (2.49), we have that {xn}
is a non-decreasing sequence that converges to z in X. If xn = z, for some

n, then, from (2.29) and (2.54), it follows that xn = xn+1, in which case we

have a fixed point. So we assume that xn ̸= z for all n ≥ 0.

Now,

p(fz, xn+1) ≤ p(fz, z) + p(z, xn+1)− p(z, z)

and p(fz, z) ≤ p(fz, xn+1) + p(xn+1, z)− p(xn+1, xn+1).
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Taking n → ∞, in the above two inequalities, using (2.35) and (2.51) we

get

p(fz, z) = lim
n→∞

p(fz, xn+1). (1.56)

From (2.27), we obtain

ψ(p(fz, xn+1)) = ψ(p(fz, fxn)) ≤ ψ(p(z, xn))− β(p(z, xn)).

Taking n → ∞, in the above inequality, using (2.56), the continuity of ψ

and lower semi continuity of β, we have

ψ(p(fz, z)) ≤ ψ(p(z, z))− β(p(z, z)).

In view of the properties of (i) and (ii) we arrive at a contradiction, unless

p(fz, z) = 0. Since p(z, z) = 0 and p(z, fz) = 0, from (P1) and (P2) of

definition 1.1, it follows that z = fz.

In the sequel, we present several corollaries which extends several existing

results.

Remark 2.2: Under the assumption when partial metric is a metric our

theorems 2.1 and 2.2 extends several existing results.

1. If we take ψ(t) = α(t) for all t > 0 and β(t) is a continuous and

nondecreasing mapping, in Theorem 2.1 and 2.2.

a) we obtain an extension of theorem 2.1 and 2.2 of [20] to partially

ordered metric spaces.

b) Also we obtain an extension of theorem of Dutta and Choudhury [15]

to metric spaces.
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2. Theorem 2.1 is an extension of the result of Eslamian and Abkar [17]

to a partially ordered metric spaces.

2 Examples

In this section we discuss two illustrative examples.

Example 3.1 We describe the following complete partial metric space. Let

X =[0,1] and p : X × X →R+ be defined as p(x, y) = max{x, y}. Then
(X,≼) is a partially ordered set with x ≼ y whenever x ≥ y.

Let f : X → X be defined as fx = x− 1

2
x2 for all x ∈ X.

Then f is a continuous function on X.

Let x0 = c > 0. Then x0 ≼ fx0.

Let ψ, α, β : [0,∞) → [0,∞) be defined respectively as follows

ψ(t) = t, α(t) = t− 1

4
t2, β(t) =

t2

8
, for all t ≥ 0.

Then ψ, α, β are continuous and ψ(t)− α(t) + β(t) = t− t+
1

4
t2 − t2

8
=

t2

8
> 0 for all t > 0.

Let x, y ∈ X. Without loss of generality we assume x ≥ y.

Then, p(fx, fy) = max{x− 1

2
x2, y − 1

2
y2} = x− 1

2
x2,

p(x, y) = max{x, y} = x
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and ψ(p(fx, fy)) = x− 1

2
x2 ≤ x− 3

8
x2

= x− 1

4
x2 − 1

8
x2

= α(p(x, y))− β(p(x, y)).

Thus all the conditions of Theorem 2.1 are satisfied. Then by an applica-

tion of theorem 2.1 we have a fixed point of f. Here ”0” is a fixed point of f .

Example 3.2 We describe the following complete partial metric space.

Let X = {0, 1, 2, 3, 4, .....}. We define p : X ×X →R+ as

p(x, y) =

{
x+ y + 2, if x ̸= y,

1, if x = y.

Then p is a partial metric on X.

The properties (P1), (P2) and (P3) are directly verified by inspection.

We prove (P4) in the following. Let a, b, c ∈ X. If a ̸= c then

i) p(a, c) = a+ c+2 < a+ b+2+ b+ c+2− 1 = p(a, b)+ p(b, c)− p(b, b)

(if b ̸= a and b ̸= c).

ii) p(a, c) = a+ c+2 < 1+ a+ c+2 = p(a, b) + p(b, c)− p(b, b) (if b = a

and b ̸= c).

If a = c then p(a, c) = 1 ≤ p(a, b)+ p(b, c)− 1 = p(a, b)+ p(b, c)− p(b, b).

Thus (P4) is satisfied.

In view of (1.1) the function dp : X ×X → R+ defined as

dp(x, y) =

{
2x+ 2y + 2, if x ̸= y,

0, if x = y.

It is a metric on X. We define a partial ordering ‘≼ ’ in X as x ≼ y if and

only if x ≥ y and (x − y) is divisible by 2, for all x, y ∈ {2, 3, 4, .....} and
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1 ≼ 0, 2 ≼ 1.

Let f : X → X be defined as fx =

{
x− 2, if x ≥ 2,

0, if x = 0, 1.

Let ψ, α , β : [0,∞) → [0,∞) be defined as ψ(t) = t, for all t ≥ 0,

α(t) =

{
t+ 1

t
, for t > 1,

2t2, for t ∈ [0, 1]
and β(t) =

{
1 + 1

t
, for t > 1,

2t, for t ∈ [0, 1].

Also for x0 = 10 we have fx0 = 8 that is, x0 ≼ fx0, Let x ̸= y. With out loss

of generality we assume that x > y. Then the following cases are possible.

Case I x ∈ {1, 2} and y ∈ {0, 1, 2}, then fx = 0 = fy, and

. p(f(x), f(y)) = p(0, 0) = 1, p(1, 0) = p(0, 1) = 3, p(2, 1) = p(1, 2) =

5.

Thus ψ(p(fx, fy)) = 1 ≤ α(p(x, y))− β(p(x, y)) is satisfied.

Case II x ∈ {3, 4, 5, ...} and y ∈ {0, 1, 2}, then fx = x− 2, fy = 0.

Now p(f(x), f(y)) = x−2+2 = x, and ψ(p(fx, fy)) = x. Also p(x, y) =

x+ y + 2 ≥ 5.

Therefore,

ψ(p(fx, fy)) = x < x+y+1 = (x+y+2)+
1

(x+ y + 2)
−1− 1

(x+ y + 2)
= α(p(x, y))− β(p(x, y)).

Cases III x ∈ {4, 5, ...} and y ∈ {3, 4, 5...}, then fx = x−2, fy = y−2.

Then p(fx, fy) = x + y − 2, for x ̸= y and p(x, y) = x + y + 2, for

x ̸= y.

ψ(p(fx, fy)) = x+ y − 2 < x+ y + 1

= x + y + 2 +
1

x+ y + 2
− 1 − 1

x+ y + 2
= α(p(x, y)) −

β(p(x, y)).
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Combining all the above three cases we conclude that for all x, y ∈ X,

ψ(p(fx, fy)) ≤ α(p(x, y))− β(p(x, y)) holds.

It is observed that ψ, α, β and f satisfy all their required conditions in

Theorem 2.2. It follows, by an application of Theorem 2.2, that f has a

fixed point. Here ”0” is the a fixed point of f .

Remark 3.1: It is seen that the inequality (2.3) is not satisfied when

x = y. Hence Theorem 2.1 is not applicable to example 3.2.

30



References

[1] T. Abdeljawad, E. Karapınar, K. Tas, Existence and uniqueness of

common fixed point on partial metric spaces, Appl. Math. Lett., 24

(2011) 1900-1904.

[2] R.P. Agarwal, M. A. El-Gebeily, D. O’regan, Generalized contractions

in partially ordered metric spaces, Appl. Anal., 87 (1) (2008) 109-116.

[3] Ya.I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps

in Hilbert spaces, in: New Results in Operator Theory and its Applica-

tions, in:Oper.TheoryAdv.Appl.,vol.98,Birkhäuser,Basel,1997,pp.7–22.
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