Function Spaces and Local Properties

Ziqin Feng and Paul Gartside

15th Topology Galway Colloquium

July 09, 2012

• 3 >

Function Spaces

Let X be a topological space.

 $C(X) = \{f : f : X \to \mathbb{R} \text{ which is continuous}\}$

Basic Open Set $\forall f \in C(X)$, $\epsilon > 0$ and finite set $F \subset X$, define

 $B(f, F, \epsilon) = \{g : |f(x) - g(x)| < \epsilon \text{ where } x \in F\}$

Function Space $C_p(X)$ is C(X) with the point-wise convergence topology.

・ 同 ト ・ ヨ ト ・ ヨ ト

Function Spaces

Let X be a topological space.

 $C(X) = \{f : f : X \to \mathbb{R} \text{ which is continuous}\}$ Basic Open Set $\forall f \in C(X)$, $\epsilon > 0$ and finite set $F \subset X$, define

 $B(f, F, \epsilon) = \{g : |f(x) - g(x)| < \epsilon \text{ where } x \in F\}$

Function Space $C_p(X)$ is C(X) with the point-wise convergence topology.

向下 イヨト イヨト

Function Spaces

Let X be a topological space.

 $C(X) = \{f : f : X \to \mathbb{R} \text{ which is continuous}\}$ Basic Open Set $\forall f \in C(X)$, $\epsilon > 0$ and finite set $F \subset X$, define

$$B(f, F, \epsilon) = \{g : |f(x) - g(x)| < \epsilon \text{ where } x \in F\}$$

Function Space $C_p(X)$ is C(X) with the point-wise convergence topology. Generalized Metric Properties

Definition M_1 -Space is a space with a σ closure-preserving base. Definition M_3 -Space is a space with a σ cushioned pair-base.

Fact M_1 implies M_3 .

Question
Does M₃ imply M₁?

伺 とう ヨン うちょう

Generalized Metric Properties

Definition M_1 -Space is a space with a σ closure-preserving base. Definition

 M_3 -Space is a space with a σ cushioned pair-base.

Fact M_1 implies M_3 .

Question
Does M₃ imply M₁?

• 3 >

Generalized Metric Properties

Definition M_1 -Space is a space with a σ closure-preserving base. Definition M_3 -Space is a space with a σ cushioned pair-base. Fact M_1 implies M_3 .

Question Does M₃ imply M₁?

- E - M

More Definitions

• Let \mathcal{B} be a family of subsets of X.

Definition \mathcal{B} is closure-preserving if $\forall \mathcal{B}' \subseteq \mathcal{B}$ $\overline{\bigcup \mathcal{B}'} = \bigcup \{\overline{B} : B \in \mathcal{B}'\}$

• Let \mathcal{P} be a family of pairs of subsets of X, i.e. $(P_1, P_2) \in \mathcal{P}$.

Definition

Let \mathcal{P} is cushioned if $\forall \mathcal{P}' \subseteq \mathcal{P}$,

 $\overline{\bigcup\{P_1:(P_1,P_2)\in\mathcal{P}'}\subseteq\bigcup\{\overline{P_2}:(P_1,P_2)\in\mathcal{P}'\}$

B (P) is σ-closure preserving (cushioned) if it is a countable union of closure preserving (cushioned) collections.

同 ト イヨ ト イヨト

More Definitions

• Let \mathcal{B} be a family of subsets of X.

Definition \mathcal{B} is closure-preserving if $\forall \mathcal{B}' \subseteq \mathcal{B}$ $\overline{\bigcup \mathcal{B}'} = \bigcup \{\overline{B} : B \in \mathcal{B}'\}$

• Let \mathcal{P} be a family of pairs of subsets of X, i.e. $(P_1, P_2) \in \mathcal{P}$.

Definition

Let \mathcal{P} is cushioned if $\forall \mathcal{P}' \subseteq \mathcal{P}$, $\overline{\bigcup \{P_1 : (P_1, P_2) \in \mathcal{P}'} \subseteq \bigcup \{\overline{P_2} : (P_1, P_2) \in \mathcal{P}'\}$

 B (P) is σ-closure preserving (cushioned) if it is a countable union of closure preserving (cushioned) collections.

More Definitions

• Let \mathcal{B} be a family of subsets of X.

Definition \mathcal{B} is closure-preserving if $\forall \mathcal{B}' \subseteq \mathcal{B}$

 $\overline{\bigcup \mathcal{B}'} = \bigcup \{ \overline{B} : B \in \mathcal{B}' \}$

• Let \mathcal{P} be a family of pairs of subsets of X, i.e. $(P_1, P_2) \in \mathcal{P}$.

Definition

Let \mathcal{P} is cushioned if $\forall \mathcal{P}' \subseteq \mathcal{P}$, $\overline{\bigcup \{P_1 : (P_1, P_2) \in \mathcal{P}'} \subseteq \bigcup \{\overline{P_2} : (P_1, P_2) \in \mathcal{P}'\}$

 B (P) is σ-closure preserving (cushioned) if it is a countable union of closure preserving (cushioned) collections.

Local Properties

Definition X is called a $(\sigma-)m_1$ space if X has a $(\sigma-)$ closure preserving base at every $x \in X$.

Definition X is called a $(\sigma-)m_3$ space if X has a $(\sigma-)$ cushioned pair-base at every $x \in X$.

Lemma

First countable \implies m_1 -property \implies m_3 -property, and m_i -properties \implies σ – m_i -properties. Monotonically normal \implies m_3 -property.

Local Properties

Definition X is called a $(\sigma-)m_1$ space if X has a $(\sigma-)$ closure preserving base at every $x \in X$.

Definition X is called a $(\sigma-)m_3$ space if X has a $(\sigma-)$ cushioned pair-base at every $x \in X$.

Lemma

First countable $\implies m_1$ -property $\implies m_3$ -property, and m_i -properties $\implies \sigma - m_i$ -properties. Monotonically normal $\implies m_3$ -property.

Questions

Theorem $C_p(X)$ is first countable $\iff X$ is countable. Theorem (Gartside) $C_p(X)$ is monotonically normal $\iff X$ is countable. Question (Dow, Ramírez Martínez, Tkachuk) $C_p(X)$ is m_3 (or m_1) $\iff X$ is countable?

What if X is compact?

・ 同 ト ・ ヨ ト ・ ヨ ト

Questions

Theorem $C_p(X)$ is first countable $\iff X$ is countable. Theorem (Gartside) $C_p(X)$ is monotonically normal $\iff X$ is countable. Question (Dow, Ramírez Martínez, Tkachuk) $C_p(X)$ is m_3 (or m_1) $\iff X$ is countable? What if X is compact?

• 3 >

Restrictions on Spaces with $C_p(X)$ having σ - m_3 -property

$\begin{array}{l} \mbox{Definition}\\ \mbox{A space } Z \mbox{ is functionally countable if}\\ \mbox{ every continuous } f: Z \to \mathbb{R} \mbox{ has countable image}. \end{array}$

Theorem If $C_p(X)$ is a σ -m₃ space, then X is functionally countable.

Corollary

If X is compact and $C_p(X)$ is a σ -m₃ space, then X is scattered.

向下 イヨト イヨト

Restrictions on Spaces with $C_p(X)$ having σ - m_3 -property

 $\begin{array}{l} \mbox{Definition}\\ \mbox{A space } Z \mbox{ is functionally countable if}\\ \mbox{ every continuous } f: Z \to \mathbb{R} \mbox{ has countable image}. \end{array}$

Theorem If $C_p(X)$ is a σ -m₃ space, then X is functionally countable.

Corollary

If X is compact and $C_p(X)$ is a σ -m₃ space, then X is scattered.

• E •

Restrictions on Spaces with $C_p(X)$ having σ - m_3 -property

Definition A space Z is functionally countable if every continuous $f : Z \to \mathbb{R}$ has countable image. Theorem If $C_p(X)$ is a σ -m₃ space, then X is functionally countable. Corollary If X is compact and $C_p(X)$ is a σ -m₃ space, then X is scattered.

Let X be a compact scattered space with height $\alpha + 1$, i.e. $X^{(\alpha+1)} = \emptyset$.

Here $X^{(0)}$ be the set of isolated points of X, inductively,

• $X^{(\beta)} = X \setminus X^{(\beta-1)}$ if β is successive;

• $X^{(\beta)} = X \setminus (\bigcup \{X^{(\gamma)} : \gamma < \beta\} \text{ if } \beta \text{ is a limit ordinal};$

Theorem

Let X be a compact scattered space with finite height a + 1. For each b < a, $\exists U_b = \{U_x : x \in X^{(\leq b)} \text{ and } \{x\} = U_x \cap X^{(b)}\}$ which is locally finite.

Then $C_p(X)$ is $\sigma - m_1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a compact scattered space with height $\alpha + 1$, i.e. $X^{(\alpha+1)} = \emptyset$.

Here $X^{(0)}$ be the set of isolated points of X, inductively,

•
$$X^{(\beta)} = X \setminus X^{(\beta-1)}$$
 if β is successive;

•
$$X^{(\beta)} = X \setminus (\bigcup \{X^{(\gamma)} : \gamma < \beta\}$$
 if β is a limit ordinal;

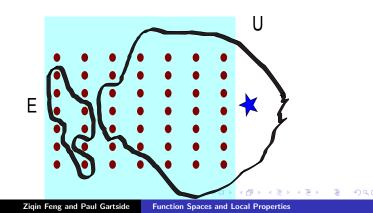
Theorem

Let X be a compact scattered space with finite height a + 1. For each b < a, $\exists U_b = \{U_x : x \in X^{(\leq b)} \text{ and } \{x\} = U_x \cap X^{(b)}\}$ which is locally finite.

Then
$$C_p(X)$$
 is $\sigma - m_1$.

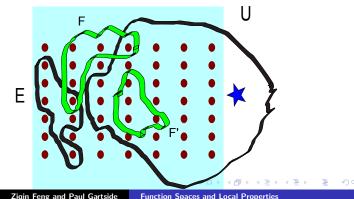
- Let X be a compact scattered space with X^(α) = {*}
- ► $C_p(X)$ is σ - m_1 , if $\exists \mathcal{F} = \bigcup \mathcal{F}_n$ cofinal in $([X]^{<\omega}, \subseteq)$ such that $\forall n \forall$ closed neighborhood C of $*, \exists E \in [X]^{<\omega}$ and $E \cap C = \emptyset$ such that

 $\forall F \in \mathcal{F}_n \text{ either } F \subseteq C \text{ or } F \cap E \neq \emptyset$



- Let X be a compact scattered space with X^(α) = {*}
- \triangleright $C_p(X)$ is σ - m_1 , if $\exists \mathcal{F} = \bigcup \mathcal{F}_n$ cofinal in $([X]^{<\omega}, \subseteq)$ such that $\forall n \forall$ closed neighborhood *C* of $*, \exists E \in [X]^{<\omega}$ and $E \cap C = \emptyset$ such that

 $\forall F \in \mathcal{F}_n$ either $F \subseteq C$ or $F \cap E \neq \emptyset$



Ziqin Feng and Paul Gartside

Examples

• $C_{\rho}(A(\omega_1))$ and $C_{\rho}(A(\omega_1) \oplus \omega)$ are σ - m_1 .

Let L(ω₁) be one point Lindelofication of discrete space ω₁ C_ρ(L(ω₁)) is not σ-m₁.

(4回) (4回) (4回)

æ

Examples

- $C_{\rho}(A(\omega_1))$ and $C_{\rho}(A(\omega_1) \oplus \omega)$ are σ - m_1 .
- Let L(ω₁) be one point Lindelofication of discrete space ω₁ C_p(L(ω₁)) is not σ-m₁.

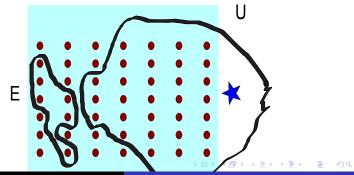
▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

2

Similarly, We can prove,

- Let X be a compact scattered space with X^(α) = {*}
- $C_p(X)$ is σm_3 , if and only if $\exists \mathcal{F} = \bigcup \mathcal{F}_n$ cofinal in $([X]^{<\omega}, \subseteq)$ and $G : \mathcal{F} \to [X]^{<\omega}$ such that $\forall n \forall$ closed neighborhood $C, \exists E \in [X]^{<\omega}$ and $E \cap C = \emptyset$ such that

 $\forall F \in \mathcal{F}_n \text{ either } F \subseteq C \text{ or } G(F) \cap E \neq \emptyset$

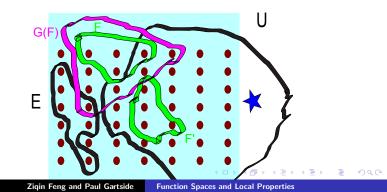


Ziqin Feng and Paul Gartside Function Spaces and Local Properties

Similarly, We can prove,

- Let X be a compact scattered space with X^(α) = {*}
- $C_p(X)$ is σm_3 , if and only if $\exists \mathcal{F} = \bigcup \mathcal{F}_n$ cofinal in $([X]^{<\omega}, \subseteq)$ and $G : \mathcal{F} \to [X]^{<\omega}$ such that $\forall n \forall$ closed neighborhood $C, \exists E \in [X]^{<\omega}$ and $E \cap C = \emptyset$ such that

 $\forall F \in \mathcal{F}_n \text{ either } F \subseteq C \text{ or } G(F) \cap E \neq \emptyset$



Restrictions on Spaces with $C_p(X)$ having m_3 -property

Theorem

If $C_p(X)$ is a m_3 space, then X does not contain an uncountable set of isolated points.

Corollary

If X is compact and $C_p(X)$ is a m_3 space, then X is scattered and separable.

Example $C_{\rho}(A(\omega_1))$ is not a m_3 -space.

向下 イヨト イヨト

Restrictions on Spaces with $C_p(X)$ having m_3 -property

Theorem

If $C_p(X)$ is a m_3 space, then X does not contain an uncountable set of isolated points.

Corollary

If X is compact and $C_p(X)$ is a m_3 space, then X is scattered and separable.

Example $C_{\rho}(A(\omega_1))$ is not a m_3 -space.

向下 イヨト イヨト

Restrictions on Spaces with $C_p(X)$ having m_3 -property

Theorem

If $C_p(X)$ is a m_3 space, then X does not contain an uncountable set of isolated points.

Corollary

If X is compact and $C_p(X)$ is a m_3 space, then X is scattered and separable.

Example $C_p(A(\omega_1))$ is not a m_3 -space.

• E •

Spaces with $C_{\rho}(X)$ has m_1 property

Let X be a compact separable scattered space with $X^{(\alpha)} = \{\star\}$. Theorem (†)

> $C_p(X)$ has m_1 property if $\exists \mathcal{F} \text{ cofinal in } ([X]^{(<\omega)}, \subseteq) \text{ which satisfies}$ $\forall \text{ closed neighborhood } C \text{ of } \star, \exists \text{ finite set } E \subseteq X \setminus C$ such that $\forall F \in \mathcal{F}, E \cap F \neq \emptyset \text{ or } F \subseteq C.$

- ▶ Let *D* be the countable dense subset of *X*.
- Fix $\phi : \mathbb{N} \to D$.
- Define $\mathcal{B} = \{B(0, \{\phi(i), 1 \le i \le |F|\} \cup F, 1/(2|F|)) : F \in \mathcal{F}\}.$
- We can verify \mathcal{B} is a closure-preserving base of $C_p(X)$.

(1) マン・ション・

- ▶ Let *D* be the countable dense subset of *X*.
- Fix $\phi : \mathbb{N} \to D$.
- Define $\mathcal{B} = \{B(0, \{\phi(i), 1 \le i \le |F|\} \cup F, 1/(2|F|)) : F \in \mathcal{F}\}.$
- We can verify \mathcal{B} is a closure-preserving base of $C_p(X)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ Let *D* be the countable dense subset of *X*.
- Fix $\phi : \mathbb{N} \to D$.
- Define $\mathcal{B} = \{B(0, \{\phi(i), 1 \le i \le |F|\} \cup F, 1/(2|F|)) : F \in \mathcal{F}\}.$
- We can verify \mathcal{B} is a closure-preserving base of $C_p(X)$.

伺 とう ヨン うちょう

- Let D be the countable dense subset of X.
- Fix $\phi : \mathbb{N} \to D$.
- Define $\mathcal{B} = \{B(0, \{\phi(i), 1 \le i \le |F|\} \cup F, 1/(2|F|)) : F \in \mathcal{F}\}.$
- We can verify \mathcal{B} is a closure-preserving base of $C_p(X)$.

• Let \mathcal{A} be a Maximal Almost Disjoint family on \mathbb{N} ;

- Let $\Psi = \mathbb{N} \cup \mathcal{A}$.
 - Points in \mathbb{N} are isolated;
 - A basic neighborhood of $A \in \mathcal{A}$ is $\{A\} \cup (A \setminus F)$ where $F \subseteq \mathbb{N}$ is finite;
- Let K be the one point compactification of Ψ. Let * be the 'point at infinity';
- $C_p(K)$ has m_1 property.

This answers the question raised by Dow, Ramírez Martínez and Tkachuk.

- Let \mathcal{A} be a Maximal Almost Disjoint family on \mathbb{N} ;
- Let $\Psi = \mathbb{N} \cup \mathcal{A}$.

Points in \mathbb{N} are isolated;

A basic neighborhood of $A \in \mathcal{A}$ is $\{A\} \cup (A \setminus F)$ where $F \subseteq \mathbb{N}$ is finite;

- Let K be the one point compactification of Ψ. Let * be the 'point at infinity';
- $C_p(K)$ has m_1 property.

This answers the question raised by Dow, Ramírez Martínez and Tkachuk.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let \mathcal{A} be a Maximal Almost Disjoint family on \mathbb{N} ;
- Let $\Psi = \mathbb{N} \cup \mathcal{A}$.

Points in \mathbb{N} are isolated;

A basic neighborhood of $A \in \mathcal{A}$ is $\{A\} \cup (A \setminus F)$ where $F \subseteq \mathbb{N}$ is finite;

 Let K be the one point compactification of Ψ. Let * be the 'point at infinity';

• $C_p(K)$ has m_1 property.

This answers the question raised by Dow, Ramírez Martínez and Tkachuk.

(日本) (日本) (日本)

- Let \mathcal{A} be a Maximal Almost Disjoint family on \mathbb{N} ;
- Let $\Psi = \mathbb{N} \cup \mathcal{A}$.

Points in \mathbb{N} are isolated;

A basic neighborhood of $A \in \mathcal{A}$ is $\{A\} \cup (A \setminus F)$ where $F \subseteq \mathbb{N}$ is finite;

- Let K be the one point compactification of Ψ. Let * be the 'point at infinity';
- $C_p(K)$ has m_1 property.

This answers the question raised by Dow, Ramírez Martínez and Tkachuk.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank You!

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ