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Function Spaces

Let X be a topological space.

C (X ) = {f : f : X → R which is continuous}
Basic Open Set ∀f ∈ C (X ), ε > 0 and finite set F ⊂ X , define

B(f ,F , ε) = {g : |f (x)− g(x)| < ε where x ∈ F}

Function Space Cp(X ) is
C (X ) with the point-wise convergence topology.
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Generalized Metric Properties

Definition
M1-Space is a space with a σ closure-preserving base.

Definition
M3-Space is a space with a σ cushioned pair-base.

Fact
M1 implies M3.

Question
Does M3 imply M1?
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More Definitions

I Let B be a family of subsets of X .

Definition
B is closure-preserving if ∀B′ ⊆ B⋃

B′ =
⋃
{B : B ∈ B′}

I Let P be a family of pairs of subsets of X , i.e. (P1,P2) ∈ P.

Definition
Let P is cushioned if ∀P ′ ⊆ P,⋃

{P1 : (P1,P2) ∈ P ′ ⊆
⋃
{P2 : (P1,P2) ∈ P ′}

I B (P) is σ-closure preserving (cushioned) if it is a countable
union of closure preserving (cushioned) collections.
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Local Properties

Definition
X is called a (σ−)m1 space

if X has a (σ−)closure preserving base at every x ∈ X .

Definition
X is called a (σ−)m3 space

if X has a (σ−)cushioned pair-base at every x ∈ X .

Lemma
First countable =⇒ m1-property =⇒ m3-property, and
mi -properties =⇒ σ −mi -properties.
Monotonically normal =⇒ m3-property.
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Questions

Theorem
Cp(X ) is first countable ⇐⇒ X is countable.

Theorem (Gartside)

Cp(X ) is monotonically normal ⇐⇒ X is countable.

Question (Dow, Raḿırez Mart́ınez, Tkachuk)

Cp(X ) is m3 (or m1) ⇐⇒ X is countable?
What if X is compact?
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Restrictions on Spaces with Cp(X ) having σ-m3-property

Definition
A space Z is functionally countable if

every continuous f : Z → R has countable image.

Theorem
If Cp(X ) is a σ-m3 space, then X is functionally countable.

Corollary

If X is compact and Cp(X ) is a σ-m3 space, then X is scattered.
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Compact Scattered Spaces

Let X be a compact scattered space with height α + 1, i.e.
X (α+1) = ∅.
Here X (0) be the set of isolated points of X , inductively,

I X (β) = X \ X (β−1) if β is successive;

I X (β) = X \ (
⋃
{X (γ) : γ < β} if β is a limit ordinal;

Theorem
Let X be a compact scattered space with finite height a + 1.
For each b < a, ∃Ub = {Ux : x ∈ X (≤b) and {x} = Ux ∩ X (b)}
which is locally finite.

Then Cp(X ) is σ −m1.
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Compact Scattered Spaces
I Let X be a compact scattered space with X (α) = {∗}
I Cp(X ) is σ-m1, if

∃F =
⋃
Fn cofinal in ([X ]<ω,⊆) such that

∀n∀ closed neighborhood C of ∗, ∃E ∈ [X ]<ω and E ∩ C = ∅
such that

∀F ∈ Fn either F ⊆ C or F ∩ E 6= ∅

U

E
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Examples

I Cp(A(ω1)) and Cp(A(ω1)⊕ ω) are σ-m1.

I Let L(ω1) be one point Lindelofication of discrete space ω1

Cp(L(ω1)) is not σ-m1.
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Compact and Scattered Spaces
Similarly, We can prove,

I Let X be a compact scattered space with X (α) = {∗}
I Cp(X ) is σ −m3, if and only if

∃F =
⋃
Fn cofinal in ([X ]<ω,⊆) and G : F → [X ]<ω such

that ∀n∀ closed neighborhood C , ∃E ∈ [X ]<ω and E ∩ C = ∅
such that

∀F ∈ Fn either F ⊆ C or G (F ) ∩ E 6= ∅

U

E
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Restrictions on Spaces with Cp(X ) having m3-property

Theorem
If Cp(X ) is a m3 space, then X does not contain an uncountable
set of isolated points.

Corollary

If X is compact and Cp(X ) is a m3 space, then X is scattered and
separable.

Example

Cp(A(ω1)) is not a m3-space.
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Spaces with Cp(X ) has m1 property

Let X be a compact separable scattered space with X (α) = {?}.

Theorem (†)

Cp(X ) has m1 property if

∃F cofinal in ([X ](<ω),⊆) which satisfies
∀ closed neighborhood C of ?, ∃ finite set E ⊆ X \C
such that ∀F ∈ F , E ∩ F 6= ∅ or F ⊆ C .
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Proof of Theorem †

I Let D be the countable dense subset of X .

I Fix φ : N→ D.

I Define B = {B(0, {φ(i), 1 ≤ i ≤ |F |} ∪ F , 1/(2|F |)) : F ∈ F}.
I We can verify B is a closure-preserving base of Cp(X ).
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Example From Ψ Space

I Let A be a Maximal Almost Disjoint family on N;

I Let Ψ = N ∪ A.
Points in N are isolated;
A basic neighborhood of A ∈ A is {A} ∪ (A \ F ) where F ⊆ N
is finite;

I Let K be the one point compactifcation of Ψ. Let ? be the
‘point at infinity’;

I Cp(K ) has m1 property.

This answers the question raised by Dow, Raḿırez Mart́ınez
and Tkachuk.
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Thank You!
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