Almost Injectivity

Shari S. Levine

15th Galway Topology Colloquium, University of Oxford

11 July, 2012

Can you identify the person in the following picture?

æ

___ ▶ <

Can you identify the person in the following picture?

___ ▶ <

Can you identify the person in the following picture?

合 ▶ ◀

Can you identify the person in the following picture?

___ ▶ <

Can you identify the person in the following picture?

/□ ▶ / □

Why am I showing you this...?

æ

э

▲□ ▶ ▲ 三 ▶ ▲

Think of continuous injective functions as cameras with really, really good resolution.

Think of continuous injective functions as cameras with really, really good resolution.

Theorem

If X is compact, Y is Hausdorff, and $f : X \to Y$ is continuous and injective, then f embeds X into Y.

Think of continuous injective functions as cameras with really, really good resolution.

Theorem

If X is compact, Y is Hausdorff, and $f : X \to Y$ is continuous and injective, then f embeds X into Y.

Can we weaken the injectivity of f so that the theorem remains true?

Other attempts

æ

э

⊡ ► < ≣

My entire thesis

æ

- ● ● ●

- My entire thesis
- Oleavability

æ

___ ▶ <

- My entire thesis
- 2 Cleavability

Definition

Let X and Y be topological spaces. We say X is **cleavable over** Y if for every $A \subseteq X$ there exists a continuous function $f_A : X \to Y$ such that $f_A(A) \cap f_A(X \setminus A) = \emptyset$.

Cleavability

(4日) (日)

æ

⊸ ≣ ▶

 "On Cleavability of Topological Spaces over *R*, *Rⁿ*, and *R^ω*": every compact Hausdorff space X cleavable over *R* (resp. *R^ω*) is homeomorphic to a subspace of *R* (resp. *R^ω*).

- "On Cleavability of Topological Spaces over *R*, *Rⁿ*, and *R^ω*": every compact Hausdorff space X cleavable over *R* (resp. *R^ω*) is homeomorphic to a subspace of *R* (resp. *R^ω*).
- "On Cleavability of Continua over LOTS": any continuum cleavable over a LOTS *L* is embeddable into *L*.

- "On Cleavability of Topological Spaces over *R*, *Rⁿ*, and *R^ω*": every compact Hausdorff space X cleavable over *R* (resp. *R^ω*) is homeomorphic to a subspace of *R* (resp. *R^ω*).
- "On Cleavability of Continua over LOTS": any continuum cleavable over a LOTS *L* is embeddable into *L*.
- "Cleavability of compacta over the two arrows": any compactum cleavable over the Double Arrow Space is homeomorphic to a subspace of the Double Arrow Space.

- "On Cleavability of Topological Spaces over *R*, *Rⁿ*, and *R^ω*": every compact Hausdorff space X cleavable over *R* (resp. *R^ω*) is homeomorphic to a subspace of *R* (resp. *R^ω*).
- "On Cleavability of Continua over LOTS": any continuum cleavable over a LOTS *L* is embeddable into *L*.
- "Cleavability of compacta over the two arrows": any compactum cleavable over the Double Arrow Space is homeomorphic to a subspace of the Double Arrow Space.
- "Cleavability and scattered sets of non-trivial fibers": if X is a compactum cleavable over a separable LOTS Y such that there exists a function f : X → Y with a scattered set of non-trivial fibers, then X us a LOTS

æ

_ र ≣ ≯

▲ 母 ▶ ▲ 臣

Definition

If X and Y are spaces, and $f: X \to Y$ is a function, then M_f denotes the set $\{x \in X : |f^{-1}(f(x))| > 1\}$.

___ ▶ <

Definition

If X and Y are spaces, and $f: X \to Y$ is a function, then M_f denotes the set $\{x \in X : |f^{-1}(f(x))| > 1\}$.

This definition is specifically relevant in the context of cleavability.

Definition

If X and Y are spaces, and $f: X \to Y$ is a function, then M_f denotes the set $\{x \in X : |f^{-1}(f(x))| > 1\}$.

This definition is specifically relevant in the context of cleavability.

Question

If X is an infinite T_2 compactum, Y a LOTS, and there exists $f \in \mathscr{C}(X, Y)$ such that $|M_f| \leq \aleph_0$, then is X a LOTS?

Definition

If X and Y are spaces, and $f: X \to Y$ is a function, then M_f denotes the set $\{x \in X : |f^{-1}(f(x))| > 1\}$.

This definition is specifically relevant in the context of cleavability.

Question

If X is an infinite T_2 compactum, Y a LOTS, and there exists $f \in \mathscr{C}(X, Y)$ such that $|M_f| \leq \aleph_0$, then is X a LOTS?

Question

If X is an infinite T_2 compactum, Y a LOTS with property P, and there exists $f \in \mathscr{C}(X, Y)$ such that $|M_f| \leq \aleph_0$, must X have property P?

Two notes

<ロ> <同> <同> < 同> < 同>

æ

• We must always assume X is T_2 .

æ

• We must always assume X is T_2 .

Example

Let $X = \{x_1, x_2\}$ with the trivial topology, and let $Y = \{y_1, y_2\}$ with the discrete topology. Then there exists an almost-injective function from X to Y (in particular, the constant function onto y_1) but even though Y is T_2 , X is not.

• We must always assume X is T_2 .

Example

Let $X = \{x_1, x_2\}$ with the trivial topology, and let $Y = \{y_1, y_2\}$ with the discrete topology. Then there exists an almost-injective function from X to Y (in particular, the constant function onto y_1) but even though Y is T_2 , X is not.

We consider any constant function from a countable space X to a LOTS Y to be an almost-injective function.

Two notes proof

æ

Im ▶ < 10</p>

Theorem

If X is compact and T_2 , Y is a topological space, and $f : X \to Y$ is a constant map, then X is a LOTS.

- ▲ - 局

Theorem

If X is compact and T_2 , Y is a topological space, and $f : X \to Y$ is a constant map, then X is a LOTS.

Proof.

X must be countable as $X = M_f$. Since X is compact, countable, and metrizable, by a theorem of Mazurkiewicz & Sierpinski, X must be homeomorphic to a countable ordinal, and is therefore a LOTS.

・ロット (日) ・ (日) ・

æ

Э

Theorem

If X is compact T_2 , Y is scattered T_2 , and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is scattered.

___ ▶ <

Theorem

If X is compact T_2 , Y is scattered T_2 , and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is scattered.

Proof.

Assume for a contradiction that X contains a dense-in-itself subset A. Let A be closed. Consider f(A).

Theorem

If X is compact T_2 , Y is scattered T_2 , and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is scattered.

Proof.

Assume for a contradiction that X contains a dense-in-itself subset A. Let A be closed. Consider f(A). Since Y is scattered, f(A) contains an isolated point, y.

Theorem

If X is compact T_2 , Y is scattered T_2 , and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is scattered.

Proof.

Assume for a contradiction that X contains a dense-in-itself subset A. Let A be closed. Consider f(A). Since Y is scattered, f(A) contains an isolated point, y. We know since M_f is countable, that $f^{-1}(y)$ must be countable, and as f is continuous, must be closed and compact as well. Therefore by a theorem of Mazurkiewicz & Sierpinski, $f^{-1}(y)$ is homeomorphic to a countable ordinal. (Note that $f^{-1}(y)$ may be a single point.)

An Example

Theorem

If X is compact T_2 , Y is scattered T_2 , and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is scattered.

Proof.

Assume for a contradiction that X contains a dense-in-itself subset A. Let A be closed. Consider f(A). Since Y is scattered, f(A) contains an isolated point, y. We know since M_f is countable, that $f^{-1}(y)$ must be countable, and as f is continuous, must be closed and compact as well. Therefore by a theorem of Mazurkiewicz & Sierpinski, $f^{-1}(y)$ is homeomorphic to a countable ordinal. (Note that $f^{-1}(y)$ may be a single point.) Thus for some $x \in f^{-1}(y)$, x is isolated. Notice that $f^{-1}(y)$ is open since y is isolated in f(A), and therefore x must be isolated in the entire space X.

An Example

Theorem

If X is compact T_2 , Y is scattered T_2 , and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is scattered.

Proof.

Assume for a contradiction that X contains a dense-in-itself subset A. Let A be closed. Consider f(A). Since Y is scattered, f(A)contains an isolated point, y. We know since M_f is countable, that $f^{-1}(v)$ must be countable, and as f is continuous, must be closed and compact as well. Therefore by a theorem of Mazurkiewicz & Sierpinski, $f^{-1}(y)$ is homeomorphic to a countable ordinal. (Note that $f^{-1}(y)$ may be a single point.) Thus for some $x \in f^{-1}(y)$, x is isolated. Notice that $f^{-1}(y)$ is open since y is isolated in f(A), and therefore x must be isolated in the entire space X. However $x \in A$, contradicting the assumption that A is dense-in-itself. Therefore X must be scattered.

æ

Э

Im ▶ < 10</p>

Theorem

If X is compact T_2 , Y is a first-countable T_2 space, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is first-countable.

___ ▶ _ 4

Theorem

If X is compact T_2 , Y is a first-countable T_2 space, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is first-countable.

Theorem

If X is compact T_2 , Y second-countable and T_2 , and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is second-countable.

Theorem

If X is compact T_2 , Y is a first-countable T_2 space, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is first-countable.

Theorem

If X is compact T_2 , Y second-countable and T_2 , and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is second-countable.

Theorem

If X is compact T_2 , Y is a metric space, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is metrizable.

Theorem

If X is compact T_2 , Y is a first-countable T_2 space, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is first-countable.

Theorem

If X is compact T_2 , Y second-countable and T_2 , and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is second-countable.

Theorem

If X is compact T_2 , Y is a metric space, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is metrizable.

Theorem

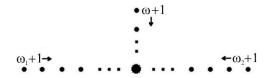
If X is compact T_2 , Y is T_2 , and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then $|X| \leq |Y|$.

First Counter-Example

æ

_ ₽ ▶

First Counter-Example

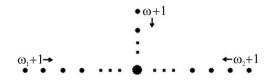


æ

∃ >

▲ □ ▶ ▲ □ ▶ ▲

First Counter-Example



Example

Let X be the one-point compactification of the disjoint union of ω_1 , ω_2 , and ω , and Y be the one-point compactification of the disjoint union of ω_1 and ω_2 . Then there exists an almost-injection from X to Y, but X is not a LOTS.

Second Counter-Example

æ

Example

Let X be the one-point compactification of the disjoint union of ω_1 , ω_2 , and ω , and let Y be the one-point compactification of ω_1 and ω_2 . Let \hat{X} be the one-point compactification of ω -many copies of X, and let \hat{Y} be the one-point compactification of ω -many copies of Y. Then there exists an almost-injection $f \in \mathscr{C}(\hat{X}, \hat{Y})$, but X is not a LOTS.

Picking up the pieces

æ

⊡ ► < ≣

If X is an infinite T_2 compactum, Y a LOTS, and there exists $f \in \mathscr{C}(X, Y)$ such that $|M_f| \leq \aleph_0$, then must X be the union of a LOTS and a scattered set?

If X is an infinite T_2 compactum, Y a LOTS, and there exists $f \in \mathscr{C}(X, Y)$ such that $|M_f| \leq \aleph_0$, then must X be the union of a LOTS and a scattered set?

Despite these counter-examples, we feel answering whether the existence of an almost-injective function implies linear orderability of a space is still a worthwhile question to ask.

If X is an infinite T_2 compactum, Y a LOTS, and there exists $f \in \mathscr{C}(X, Y)$ such that $|M_f| \leq \aleph_0$, then must X be the union of a LOTS and a scattered set?

Despite these counter-examples, we feel answering whether the existence of an almost-injective function implies linear orderability of a space is still a worthwhile question to ask.

Thus, we begin by looking at almost-injective functions from infinite T_2 compacts to the ordinals.

The basics

æ

・日本 ・日本 ・日

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, we know:

- If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, we know:
 - X is scattered

- If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, we know:
 - X is scattered
 - Interview 2 ... That's about it

Definition

For ordinal numbers α , the α -th **Cantor-Bendixson derivative** of a topological space X is defined by transfinite induction as follows:

• $X^0 = X$

•
$$X^{\alpha+1} = (X^{\alpha})'$$

•
$$X^{\lambda} = \bigcap_{\alpha < \lambda} X^{\alpha}$$
 for limit ordinals λ .

The smallest ordinal α such that $X^{\alpha+1} = X^{\alpha}$ is called the **Cantor-Bendixson rank** of X, written as CB(X).

Definition

For ordinal numbers α , the α -th **Cantor-Bendixson derivative** of a topological space X is defined by transfinite induction as follows:

• $X^0 = X$

•
$$X^{\alpha+1} = (X^{\alpha})'$$

•
$$X^{\lambda} = \bigcap_{\alpha < \lambda} X^{\alpha}$$
 for limit ordinals λ .

The smallest ordinal α such that $X^{\alpha+1} = X^{\alpha}$ is called the **Cantor-Bendixson rank** of X, written as CB(X).

Definition

Let X be a scattered topological space, and $x \in X$. We use the notation rank(x) to mean the least ordinal α such that $x \notin X^{\alpha}$.

Theorem

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is a LOTS.

Theorem

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is a LOTS.

Proof.

The idea is to consider $CB(f(M_f))$.

Theorem

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is a LOTS.

Proof.

The idea is to consider $CB(f(M_f))$. Since M_f is countable, $f(M_f)$ must be countable, and therefore $CB(f(M_f))$ must be countable.

Theorem

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is a LOTS.

Proof.

The idea is to consider $CB(f(M_f))$. Since M_f is countable, $f(M_f)$ must be countable, and therefore $CB(f(M_f))$ must be countable. The case where $CB(f(M_f)) = \alpha + 1$ for $\alpha \neq 0$ is easy. Enumerate the elements of $f(M_f)^{\alpha}$ as y_n ; since Y is an ordinal, and rank $(y_n) = \alpha + 1$, it must be the case that $cf((0, y_n))$ is countable.

Theorem

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is a LOTS.

Proof.

The idea is to consider $CB(f(M_f))$. Since M_f is countable, $f(M_f)$ must be countable, and therefore $CB(f(M_f))$ must be countable. The case where $CB(f(M_f)) = \alpha + 1$ for $\alpha \neq 0$ is easy. Enumerate the elements of $f(M_f)^{\alpha}$ as y_n ; since Y is an ordinal, and $rank(y_n) = \alpha + 1$, it must be the case that $cf((0, y_n))$ is countable. Therefore we can split up Y into easy to manage intervals, use the inductive hypothesis, and presto - we get a LOTS.

Theorem

If X is an infinite T_2 compactum, Y is an ordinal, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, then X is a LOTS.

Proof.

The idea is to consider $CB(f(M_f))$. Since M_f is countable, $f(M_f)$ must be countable, and therefore $CB(f(M_f))$ must be countable. The case where $CB(f(M_f)) = \alpha + 1$ for $\alpha \neq 0$ is easy. Enumerate the elements of $f(M_f)^{\alpha}$ as y_n ; since Y is an ordinal, and $\operatorname{rank}(y_n) = \alpha + 1$, it must be the case that $cf((0, y_n))$ is countable. Therefore we can split up Y into easy to manage intervals, use the inductive hypothesis, and presto - we get a LOTS. The case where $CB(f(M_f)) = \lambda$ for some limit ordinal λ is a bit trickier, but has the same principle. We just consider $(f(M_f))^{\lambda}$ instead of $f(M_f)^{\lambda}$.

cont'd.

The case where $CB(f(M_f)) = 1$, however, is the trickiest, and involves three technical and mechanical proofs.

cont'd.

The case where $CB(f(M_f)) = 1$, however, is the trickiest, and involves three technical and mechanical proofs. In any case, however, we still get a LOTS!

Open Questions

æ

-

母▶ ∢ ≣▶

When is it the case that if X is an infinite T_2 compactum, Y is a LOTS, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is a LOTS?

When is it the case that if X is an infinite T_2 compactum, Y is a LOTS, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is a LOTS?

Question

When is it the case that if X is an infinite T_2 compactum, Y is a LOTS, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is embeddable into Y?

When is it the case that if X is an infinite T_2 compactum, Y is a LOTS, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is a LOTS?

Question

When is it the case that if X is an infinite T_2 compactum, Y is a LOTS, and there exists an almost-injective $f \in \mathscr{C}(X, Y)$, then X is embeddable into Y?

Question

If X is an infinite T_2 compactum, Y is a LOTS, and there exists an almost-injective $f \in \mathcal{C}(X, Y)$, must X be the union of a LOTS and a scattered set?

References

- A. V. Arhangel'skiĭ. Some metrization theorems. Uspehi Mat. Nauk, 18(5): 139-145, 1963.
- R. Z. Buzyakova. On Cleavability of Continua over LOTS. Proceedings of the American Mathematical Society, 132(7): 2171-2181, 2004.
- R. Z. Buzyakova. Cleavability of compacta over the two arrows. *Topology and its Applications*, 151: 144-156, 2005.
- S. Mazurkiewicz and W. Sierpiński. Contribution à la topologie des ensembles dénombrables. *Fundamenta Mathematicae*, 1(1): 17-27, 1920.

Shari Levine. Cleavability and scattered sets of non-trivial fibers. *Topology and its Applications*, 159 (14): 3171–3179, 2012