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Why am I showing you this...?

Think of continuous injective functions as cameras with really,
really good resolution.

Theorem

If X is compact, Y is Hausdorff, and f : X → Y is continuous and
injective, then f embeds X into Y .

Can we weaken the injectivity of f so that the theorem remains
true?
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Other attempts

1 My entire thesis

2 Cleavability

Definition

Let X and Y be topological spaces. We say X is cleavable over
Y if for every A ⊆ X there exists a continuous function
fA : X → Y such that fA(A) ∩ fA(X \ A) = ∅.
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Cleavability

“On Cleavability of Topological Spaces over R, Rn, and
Rω”: every compact Hausdorff space X cleavable over R
(resp. Rω) is homeomorphic to a subspace of R (resp. Rω).

“On Cleavability of Continua over LOTS”: any continuum
cleavable over a LOTS L is embeddable into L.

“Cleavability of compacta over the two arrows”: any
compactum cleavable over the Double Arrow Space is
homeomorphic to a subspace of the Double Arrow Space.

“Cleavability and scattered sets of non-trivial fibers”: if X is a
compactum cleavable over a separable LOTS Y such that
there exists a function f : X → Y with a scattered set of
non-trivial fibers, then X us a LOTS
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Almost-injectivity

Definition

If X and Y are spaces, and f : X → Y is a function, then Mf

denotes the set
{

x ∈ X : |f −1(f (x))| > 1
}

.

This definition is specifically relevant in the context of cleavability.

Question

If X is an infinite T2 compactum, Y a LOTS, and there exists
f ∈ C (X ,Y ) such that |Mf | ≤ ℵ0, then is X a LOTS?

Question

If X is an infinite T2 compactum, Y a LOTS with property P, and
there exists f ∈ C (X ,Y ) such that |Mf | ≤ ℵ0, must X have
property P?
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Two notes

1 We must always assume X is T2.

Example

Let X = {x1, x2} with the trivial topology, and let Y = {y1, y2}
with the discrete topology. Then there exists an almost-injective
function from X to Y (in particular, the constant function onto
y1) but even though Y is T2, X is not.

2 We consider any constant function from a countable space X
to a LOTS Y to be an almost-injective function.
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Two notes proof

Theorem

If X is compact and T2, Y is a topological space, and f : X → Y
is a constant map, then X is a LOTS.

Proof.

X must be countable as X = Mf . Since X is compact, countable,
and metrizable, by a theorem of Mazurkiewicz & Sierpinski, X
must be homeomorphic to a countable ordinal, and is therefore a
LOTS.
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An Example

Theorem

If X is compact T2, Y is scattered T2, and there exists an
almost-injective f ∈ C (X ,Y ), then X is scattered.

Proof.

Assume for a contradiction that X contains a dense-in-itself subset
A. Let A be closed. Consider f (A). Since Y is scattered, f (A)
contains an isolated point, y . We know since Mf is countable, that
f −1(y) must be countable, and as f is continuous, must be closed
and compact as well. Therefore by a theorem of Mazurkiewicz &
Sierpinski, f −1(y) is homeomorphic to a countable ordinal. (Note
that f −1(y) may be a single point.) Thus for some x ∈ f −1(y), x
is isolated. Notice that f −1(y) is open since y is isolated in f (A),
and therefore x must be isolated in the entire space X . However
x ∈ A, contradicting the assumption that A is dense-in-itself.
Therefore X must be scattered.
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Other results

Theorem

If X is compact T2, Y is a first-countable T2 space, and there
exists an almost-injective f ∈ C (X ,Y ), then X is first-countable.

Theorem

If X is compact T2, Y second-countable and T2, and there exists
an almost-injective f ∈ C (X ,Y ), then X is second-countable.

Theorem

If X is compact T2, Y is a metric space, and there exists an
almost-injective f ∈ C (X ,Y ), then X is metrizable.

Theorem

If X is compact T2, Y is T2, and there exists an almost-injective
f ∈ C (X ,Y ), then |X | ≤ |Y |.
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First Counter-Example

Example

Let X be the one-point compactification of the disjoint union of
ω1, ω2, and ω, and Y be the one-point compactification of the
disjoint union of ω1 and ω2. Then there exists an almost-injection
from X to Y , but X is not a LOTS.
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Second Counter-Example

Example

Let X be the one-point compactification of the disjoint union of
ω1, ω2, and ω, and let Y be the one-point compactification of ω1

and ω2. Let X̂ be the one-point compactification of ω-many copies
of X , and let Ŷ be the one-point compactification of ω-many
copies of Y . Then there exists an almost-injection f ∈ C (X̂ , Ŷ ),
but X is not a LOTS.
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Picking up the pieces

Question

If X is an infinite T2 compactum, Y a LOTS, and there exists
f ∈ C (X ,Y ) such that |Mf | ≤ ℵ0, then must X be the union of a
LOTS and a scattered set?

Despite these counter-examples, we feel answering whether the
existence of an almost-injective function implies linear orderability
of a space is still a worthwhile question to ask.
Thus, we begin by looking at almost-injective functions from
infinite T2 compacta to the ordinals.
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The basics

If X is an infinite T2 compactum, Y is an ordinal, and there exists
an almost-injective f ∈ C (X ,Y ), we know:

1 X is scattered

2 ...That’s about it
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The balance between overview and interesting details

Definition

For ordinal numbers α, the α-th Cantor-Bendixson derivative of
a topological space X is defined by transfinite induction as follows:

X 0 = X

Xα+1 = (Xα)′

Xλ =
⋂
α<λ

Xα for limit ordinals λ.

The smallest ordinal α such that Xα+1 = Xα is called the
Cantor-Bendixson rank of X , written as CB(X ).

Definition

Let X be a scattered topological space, and x ∈ X . We use the
notation rank(x) to mean the least ordinal α such that x /∈ Xα.
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The balance between overview and interesting details

Theorem

If X is an infinite T2 compactum, Y is an ordinal, and there exists
an almost-injective f ∈ C (X ,Y ), then X is a LOTS.

Proof.

The idea is to consider CB(f (Mf )). Since Mf is countable, f (Mf )
must be countable, and therefore CB(f (Mf )) must be countable.
The case where CB(f (Mf )) = α + 1 for α 6= 0 is easy. Enumerate
the elements of f (Mf )α as yn; since Y is an ordinal, and
rank(yn) = α+ 1, it must be the case that cf ((0, yn)) is countable.
Therefore we can split up Y into easy to manage intervals, use the
inductive hypothesis, and presto - we get a LOTS.
The case where CB(f (Mf )) = λ for some limit ordinal λ is a bit
trickier, but has the same principle. We just consider (f (Mf ))λ

instead of f (Mf )λ.
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cont’d.

The case where CB(f (Mf )) = 1, however, is the trickiest, and
involves three technical and mechanical proofs.
In any case, however, we still get a LOTS!
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Open Questions

Question

When is it the case that if X is an infinite T2 compactum, Y is a
LOTS, and there exists an almost-injective f ∈ C (X ,Y ), then X is
a LOTS?

Question

When is it the case that if X is an infinite T2 compactum, Y is a
LOTS, and there exists an almost-injective f ∈ C (X ,Y ), then X is
embeddable into Y ?

Question

If X is an infinite T2 compactum, Y is a LOTS, and there exists
an almost-injective f ∈ C (X ,Y ), must X be the union of a LOTS
and a scattered set?
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