The ultra-quasi-metric injective hull of a T_0 -ultra-quasi-metric space

O. O. Otafudu ^{1,2} H-P. Künzi^{1,2}

¹Department of Mathematics and Applied Mathematics University of Cape Town, Rondebosch 7701, Cape Town, South Africa.

²Topology and Category Theory Research Group, Department of Mathematics University of Cape Town, Rondebosch 7701, Cape Town, South Africa.

15th Galway Topology Colloquium, 9th–11th July 2012, Mathematical Institut, University of Oxford, Oxford, UK.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T₀-ultra-quasi-metric

Outline Introduction Preliminaries Strongly tight function pairs Envelopes or hulls of T_0 -ultra-quasi-metric spaces q-spherical completeness Total boundedness in T_0 -ultra-guasi-metric spaces

Introduction

Preliminaries

4 Envelopes or hulls of T₀-ultra-guasi-metric spaces

5 q-spherical completeness

(6) Total boundedness in T_0 -ultra-quasi-metric spaces

・ロン ・四 と ・ 回 と ・ 回 と

 $\begin{array}{c} & \text{Outline} \\ \text{Introduction} \\ \text{Preliminaries} \\ & \text{Strongly tight function pairs} \\ & \text{Envelopes or hulls of $$T_0$-ultra-quasi-metric spaces} \\ & q-\text{spherical completeness} \\ & \text{Total boundedness in $$T_0$-ultra-quasi-metric spaces} \end{array}$

• The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamsi,Isbell,Khamsi, Kirk).

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamsi,Isbell,Khamsi, Kirk).
- Bayod and Martínez-Maurica presented a related notion (namely, spherical completeness) suitable for the category of ultra-metric spaces.

- The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamsi,Isbell,Khamsi, Kirk).
- Bayod and Martínez-Maurica presented a related notion (namely, spherical completeness) suitable for the category of ultra-metric spaces.
- Recently Kemajou, Kunzi and Otafudu have developed a concept of hyperconvexity (called lsbell-convexity) that is appropriate in the category of T₀-quasi-metric spaces and non-expansive maps.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

- The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamsi,Isbell,Khamsi, Kirk).
- Bayod and Martínez-Maurica presented a related notion (namely, spherical completeness) suitable for the category of ultra-metric spaces.
- Recently Kemajou, Kunzi and Otafudu have developed a concept of hyperconvexity (called lsbell-convexity) that is appropriate in the category of *T*₀-quasi-metric spaces and non-expansive maps. In particular an explicit construction of the corresponding hull (called lsbell-hull) was provided.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T_0 -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

(日) (同) (目) (日) (日) (日)

Outline
Introduction
Preliminaries
Strongly tight function pairs
Envelopes or hulls of T_0 -ultra-quasi-metric spaces
q-spherical completeness
Total boundedness in T_0 -ultra-quasi-metric spaces

Let us mention that in the standard literature our ultra-quasi-pseudometrics are often called *non-archimedean quasi-pseudometrics*.

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Let us mention that in the standard literature our ultra-quasi-pseudometrics are often called *non-archimedean quasi-pseudometrics*. They should not be confused with *quasi-ultrametrics* as they were discussed in

They should not be confused with *quasi-ultrametrics* as they were discussed in the theory of dissimilarities.

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Let us mention that in the standard literature our ultra-quasi-pseudometrics are often called *non-archimedean quasi-pseudometrics*. They should not be confused with *quasi-ultrametrics* as they were discussed in

They should not be confused with *quasi-ultrametrics* as they were discussed in the theory of dissimilarities.

 $\begin{array}{c} & \text{Outline} \\ & \text{Introduction} \\ \textbf{Preliminaries} \\ & \text{Strongly tight function pairs} \\ & \text{Envelopes or hulls of T_0-ultra-quasi-metric spaces} \\ & q\text{-spherical completeness} \\ & \text{Total boundedness in T_0-ultra-quasi-metric spaces} \end{array}$

In this talk we shall consider sup A for many subsets $A \subseteq [0, \infty)$. In particular we recall that sup A = 0 if $A = \emptyset$.

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if

(ロ) (同) (E) (E) (E)

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T ₀ -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if (i) u(x, x) = 0 for all $x \in X$, and

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T ₀ -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if (i) u(x, x) = 0 for all $x \in X$, and (ii) $u(x, z) \le \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$.

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if (i) u(x, x) = 0 for all $x \in X$, and (ii) $u(x, z) \le \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$. Note that the so-called *conjugate* u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too.

(ロ) (同) (E) (E) (E)

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if (i) u(x, x) = 0 for all $x \in X$, and (ii) $u(x, z) \leq \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$. Note that the so-called *conjugate* u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too. The set of open balls $\{\{y \in X : u(x, y) < \epsilon\} : x \in X, \epsilon > 0\}$ yields a base for the topology $\tau(u)$ *induced by u* on X.

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if (i) u(x, x) = 0 for all $x \in X$, and (ii) $u(x, z) \le \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$. Note that the so-called *conjugate* u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too. The set of open balls $\{\{y \in X : u(x, y) < \epsilon\} : x \in X, \epsilon > 0\}$ yields a base for the topology $\tau(u)$ *induced by u* on X.

If u also satisfies the condition

(iii) for any $x, y \in X$, u(x, y) = 0 = u(y, x) implies that x = y, then u is called a T_0 -ultra-quasi-metric.

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let X be a set and $u: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if (i) u(x, x) = 0 for all $x \in X$, and (ii) $u(x, z) \le \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$. Note that the so-called *conjugate* u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too. The set of open balls $\{\{y \in X : u(x, y) < \epsilon\} : x \in X, \epsilon > 0\}$ yields a base for the topology $\tau(u)$ *induced by u* on X.

If u also satisfies the condition

(iii) for any $x, y \in X$, u(x, y) = 0 = u(y, x) implies that x = y, then u is called a T_0 -ultra-quasi-metric.

Observe that then $u^s = u \vee u^{-1}$ is an *ultra-metric* on *X*.

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let $X = [0, \infty)$ be equipped with n(x, y) = x if $x, y \in X$ and x > y, and n(x, y) = 0 if $x, y \in X$ and $x \le y$. It is easy to check that (X, n) is a T_0 -ultra-quasi-metric space.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let $X = [0, \infty)$ be equipped with n(x, y) = x if $x, y \in X$ and x > y, and n(x, y) = 0 if $x, y \in X$ and $x \le y$. It is easy to check that (X, n) is a T_0 -ultra-quasi-metric space. Note also that for $x, y \in [0, \infty)$ we have $n^s(x, y) = \max\{x, y\}$ if $x \ne y$ and n(x, y) = 0 if x = y. Observe that the ultra-metric n^s is complete on $[0, \infty)$.

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let $X = [0, \infty)$ be equipped with n(x, y) = x if $x, y \in X$ and x > y, and n(x, y) = 0 if $x, y \in X$ and $x \le y$. It is easy to check that (X, n) is a T_0 -ultra-quasi-metric space. Note also that for $x, y \in [0, \infty)$ we have $n^s(x, y) = \max\{x, y\}$ if $x \ne y$ and n(x, y) = 0 if x = y. Observe that the ultra-metric n^s is complete on $[0, \infty)$. Furthermore 0 is the only non-isolated point of $\tau(n^s)$. Indeed $A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is a compact subspace of $([0, \infty), n^s)$.

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Let $X = [0, \infty)$ be equipped with n(x, y) = x if $x, y \in X$ and x > y, and n(x, y) = 0 if $x, y \in X$ and $x \le y$. It is easy to check that (X, n) is a T_0 -ultra-quasi-metric space. Note also that for $x, y \in [0, \infty)$ we have $n^s(x, y) = \max\{x, y\}$ if $x \ne y$ and n(x, y) = 0 if x = y. Observe that the ultra-metric n^s is complete on $[0, \infty)$. Furthermore 0 is the only non-isolated point of $\tau(n^s)$. Indeed $A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is a compact subspace of $([0, \infty), n^s)$.

Lemma

Let $a, b, c \in [0, \infty)$. Then the following conditions are equivalent: (a) $n(a, b) \leq c$. (b) $a \leq \max\{b, c\}$.

(日) (同) (目) (日) (日) (日)

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Corollary

Let (X, u) be an ultra-quasi-pseudometric space. Consider a map $f: X \rightarrow [0, \infty)$ and let $x, y \in X$. Then the following are equivalent: (a) $n(f(x), f(y)) \le u(x, y)$; (b) $f(x) \le \max\{f(y), u(x, y)\}$.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - つへで

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Corollary

Let (X, u) be an ultra-quasi-pseudometric space. Consider a map $f: X \rightarrow [0, \infty)$ and let $x, y \in X$. Then the following are equivalent: (a) $n(f(x), f(y)) \le u(x, y)$; (b) $f(x) \le \max\{f(y), u(x, y)\}$.

Corollary

Let
$$(X, u)$$
 be an ultra-quasi-pseudometric space.
(a) Then $f : (X, u) \to ([0, \infty), n)$ is a contracting map if and only if
 $f(x) \le \max\{f(y), u(x, y)\}$ whenever $x, y \in X$.
(b) Then $f : (X, u) \to ([0, \infty), n^{-1})$ is a contracting map if and only if
 $f(x) \le \max\{f(y), u(y, x)\}$ whenever $x, y \in X$.

◆□> ◆□> ◆三> ◆三> ● □ ● のへで

Definition

Let (X, u) be a T_0 -ultra-quasi-metric space and let $\mathcal{FP}(X, u)$ be the set of all pairs $f = (f_1, f_2)$ of functions where $f_i : X \to [0, \infty)$ (i = 1, 2).

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T₀-ultra-quasi-metric

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Definition

Let (X, u) be a T_0 -ultra-quasi-metric space and let $\mathcal{FP}(X, u)$ be the set of all pairs $f = (f_1, f_2)$ of functions where $f_i : X \to [0, \infty)$ (i = 1, 2). For any such pairs (f_1, f_2) and (g_1, g_2) set

$$N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Definition

Let (X, u) be a T_0 -ultra-quasi-metric space and let $\mathcal{FP}(X, u)$ be the set of all pairs $f = (f_1, f_2)$ of functions where $f_i : X \to [0, \infty)$ (i = 1, 2). For any such pairs (f_1, f_2) and (g_1, g_2) set

$$N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.$$

It is obvious that N is an extended T_0 -ultra-quasi-metric on the set $\mathcal{FP}(X, u)$ of these function pairs.

(日) (同) (目) (日) (日) (日)

Definition

Let (X, u) be a T_0 -ultra-quasi-metric space and let $\mathcal{FP}(X, u)$ be the set of all pairs $f = (f_1, f_2)$ of functions where $f_i : X \to [0, \infty)$ (i = 1, 2). For any such pairs (f_1, f_2) and (g_1, g_2) set

$$N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.$$

It is obvious that N is an extended T_0 -ultra-quasi-metric on the set $\mathcal{FP}(X, u)$ of these function pairs.

Let (X, u) be a T_0 -ultra-quasi-metric space. We shall say that a pair $f \in \mathcal{FP}(X, u)$ is *strongly tight* if for all $x, y \in X$, we have $u(x, y) \leq \max\{f_2(x), f_1(y)\}.$

(日) (同) (目) (日) (日) (日)

Definition

Let (X, u) be a T_0 -ultra-quasi-metric space and let $\mathcal{FP}(X, u)$ be the set of all pairs $f = (f_1, f_2)$ of functions where $f_i : X \to [0, \infty)$ (i = 1, 2). For any such pairs (f_1, f_2) and (g_1, g_2) set

$$N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.$$

It is obvious that N is an extended T_0 -ultra-quasi-metric on the set $\mathcal{FP}(X, u)$ of these function pairs.

Let (X, u) be a T_0 -ultra-quasi-metric space. We shall say that a pair $f \in \mathcal{FP}(X, u)$ is *strongly tight* if for all $x, y \in X$, we have $u(x, y) \leq \max\{f_2(x), f_1(y)\}$. The set of all strongly tight function pairs of a T_0 -ultra-quasi-metric space (X, u) will be denoted by $\mathcal{UT}(X, u)$.

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, $f_a(x) := (u(a, x), u(x, a))$ whenever $x \in X$, is a strongly tight pair belonging to $\mathcal{UT}(X, u)$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, $f_a(x) := (u(a, x), u(x, a))$ whenever $x \in X$, is a strongly tight pair belonging to $\mathcal{UT}(X, u)$.

Let (X, u) be a T_0 -ultra-quasi-metric space. We say that a function pair $f = (f_1, f_2)$ is *minimal* among the strongly tight pairs on (X, u) if it is a strongly tight pair and if $g = (g_1, g_2)$ is strongly tight on (X, u) and for each $x \in X$, $g_1(x) \le f_1(x)$ and $g_2(x) \le f_2(x)$, then f = g.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, $f_a(x) := (u(a, x), u(x, a))$ whenever $x \in X$, is a strongly tight pair belonging to $\mathcal{UT}(X, u)$.

Let (X, u) be a T_0 -ultra-quasi-metric space. We say that a function pair $f = (f_1, f_2)$ is *minimal* among the strongly tight pairs on (X, u) if it is a strongly tight pair and if $g = (g_1, g_2)$ is strongly tight on (X, u) and for each $x \in X$, $g_1(x) \le f_1(x)$ and $g_2(x) \le f_2(x)$, then f = g. Minimal strongly tight function pairs are also called *extremal strongly tight function pairs*.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, $f_a(x) := (u(a, x), u(x, a))$ whenever $x \in X$, is a strongly tight pair belonging to $\mathcal{UT}(X, u)$.

Let (X, u) be a T_0 -ultra-quasi-metric space. We say that a function pair $f = (f_1, f_2)$ is *minimal* among the strongly tight pairs on (X, u) if it is a strongly tight pair and if $g = (g_1, g_2)$ is strongly tight on (X, u) and for each $x \in X$, $g_1(x) \le f_1(x)$ and $g_2(x) \le f_2(x)$, then f = g. Minimal strongly tight function pairs are also called *extremal strongly tight function pairs*.

By $\nu_q(X, u)$ (or more briefly, $\nu_q(X)$) we shall denote the set of all minimal strongly tight function pairs on (X, u) equipped with the restriction of N to $\nu_q(X)$, which we shall again denote by N.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, $f_a(x) := (u(a, x), u(x, a))$ whenever $x \in X$, is a strongly tight pair belonging to $\mathcal{UT}(X, u)$.

Let (X, u) be a T_0 -ultra-quasi-metric space. We say that a function pair $f = (f_1, f_2)$ is *minimal* among the strongly tight pairs on (X, u) if it is a strongly tight pair and if $g = (g_1, g_2)$ is strongly tight on (X, u) and for each $x \in X$, $g_1(x) \le f_1(x)$ and $g_2(x) \le f_2(x)$, then f = g. Minimal strongly tight function pairs are also called *extremal strongly tight function pairs*.

By $\nu_q(X, u)$ (or more briefly, $\nu_q(X)$) we shall denote the set of all minimal strongly tight function pairs on (X, u) equipped with the restriction of N to $\nu_q(X)$, which we shall again denote by N.

In the following we shall call ($\nu_q(X), N$) the *ultra-quasi-metrically injective hull* of (X, u). The reason for this name will be explained later.

◆□→ ◆□→ ◆注→ ◆注→ □ 注

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space and let $f \in \nu_q(X)$. For all $x, y \in X$, $(f_1(x) > f_1(y)$ implies that $f_1(x) \le u(y, x)$) and $(f_2(x) > f_2(y)$ implies that $f_2(x) \le u(x, y)$).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space and let $f \in \nu_q(X)$. For all $x, y \in X$, $(f_1(x) > f_1(y)$ implies that $f_1(x) \le u(y, x)$) and $(f_2(x) > f_2(y)$ implies that $f_2(x) \le u(x, y)$).

Corollary

Let (X, u) be a T_0 -ultra-quasi-metric space. If $f = (f_1, f_2)$ is a minimal strongly tight function pair on (X, u), then $f_1(x) \leq \max\{f_1(y), u(y, x)\}$ and $f_2(x) \leq \max\{f_2(y), u(x, y)\}$ whenever $x, y \in X$. Thus $f_1 : (X, u) \rightarrow ([0, \infty), n^{-1})$ and $f_2 : (X, u) \rightarrow ([0, \infty), n)$ are contracting maps (see Corollary above).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Lemma

Suppose that (f_1, f_2) is a minimal strongly tight pair of functions on a T_0 -ultra-quasi-metric space (X, u). Then

$$f_2(x) = \sup\{u(x, y) : y \in X \text{ and } u(x, y) > f_1(y)\} =$$
$$\sup\{(f_x)_1(y) : y \in X \text{ and } (f_x)_1(y) > f_1(y)\}$$

and

$$f_1(x) = \sup\{u(y, x) : y \in X \text{ and } u(y, x) > f_2(y)\} = \\ \sup\{(f_x)_2(y) : y \in X \text{ and } (f_x)_2(y) > f_2(y)\}$$

whenever $x \in X$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Lemma

Suppose that (f_1, f_2) is a minimal strongly tight pair of functions on a T_0 -ultra-quasi-metric space (X, u). Then

$$f_2(x) = \sup\{u(x, y) : y \in X \text{ and } u(x, y) > f_1(y)\} =$$
$$\sup\{(f_x)_1(y) : y \in X \text{ and } (f_x)_1(y) > f_1(y)\}$$

and

$$f_1(x) = \sup\{u(y, x) : y \in X \text{ and } u(y, x) > f_2(y)\} = \\ \sup\{(f_x)_2(y) : y \in X \text{ and } (f_x)_2(y) > f_2(y)\}$$

whenever $x \in X$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Lemma

Let $(f_1, f_2), (g_1, g_2)$ be minimal strongly tight pairs of functions on a T_0 -ultra-quasi-metric space (X, u). Then

$$N((f_1, f_2), (g_1, g_2)) = \sup_{x \in X} n(f_1(x), g_1(x)) = \sup_{x \in X} n(g_2(x), f_2(x)).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆目 ● ● ●

Lemma

Let $(f_1, f_2), (g_1, g_2)$ be minimal strongly tight pairs of functions on a T_0 -ultra-quasi-metric space (X, u). Then

$$N((f_1, f_2), (g_1, g_2)) = \sup_{x \in X} n(f_1(x), g_1(x)) = \sup_{x \in X} n(g_2(x), f_2(x)).$$

Corollary

Let (X, u) be a T_0 -ultra-quasi-metric space. Any minimal strongly tight function pair $f = (f_1, f_2)$ on X satisfies the following conditions:

$$f_1(x) = \sup_{y \in X} n(u(y, x), f_2(y)) = \sup_{y \in X} n(f_1(y), u(x, y))$$

and

$$f_2(x) = \sup_{y \in X} n(u(x, y), f_1(y)) = \sup_{y \in X} n(f_2(y), u(y, x))$$

whenever $x \in X$.

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Proposition Let $f = (f_1, f_2)$ be a strongly tight function pair on a T_0 -ultra-quasi-metric space (X, u) such that

 $f_1(x) \le \max\{f_1(y), u(y, x)\}$ and $f_2(x) \le \max\{f_2(y), u(x, y)\}$

whenever $x, y \in X$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Proposition Let $f = (f_1, f_2)$ be a strongly tight function pair on a T_0 -ultra-quasi-metric space (X, u) such that

 $f_1(x) \le \max\{f_1(y), u(y, x)\}$ and $f_2(x) \le \max\{f_2(y), u(x, y)\}$

whenever $x, y \in X$. Furthermore suppose that there is a sequence $(a_n)_{n \in \mathbb{N}}$ in X with $\lim_{n \to \infty} f_1(a_n) = 0$ and $\lim_{n \to \infty} f_2(a_n) = 0$. Then f is a minimal strongly tight pair.

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Proposition Let $f = (f_1, f_2)$ be a strongly tight function pair on a T_0 -ultra-quasi-metric space (X, u) such that

 $f_1(x) \le \max\{f_1(y), u(y, x)\}$ and $f_2(x) \le \max\{f_2(y), u(x, y)\}$

whenever $x, y \in X$. Furthermore suppose that there is a sequence $(a_n)_{n \in \mathbb{N}}$ in X with $\lim_{n \to \infty} f_1(a_n) = 0$ and $\lim_{n \to \infty} f_2(a_n) = 0$. Then f is a minimal strongly tight pair.

Outline Introduction Preliminaries Strongly tight function pairs Envelopes or hulls of T₀-ultra-quasi-metric spaces Total boundedness in T₀-ultra-quasi-metric spaces

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, the pair f_a belongs to $\nu_q(X, u)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆目 ● ● ●

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, the pair f_a belongs to $\nu_q(X, u)$.

Theorem

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $f \in \nu_q(X, u)$ and $a \in X$ we have that $N(f, f_a) = f_1(a)$ and $N(f_a, f) = f_2(a)$. The map $e_X : (X, u) \rightarrow (\nu_q(X, u), N)$ defined by $e_X(a) = f_a$ whenever $a \in X$ is an isometric embedding.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $a \in X$, the pair f_a belongs to $\nu_q(X, u)$.

Theorem

Let (X, u) be a T_0 -ultra-quasi-metric space. For each $f \in \nu_q(X, u)$ and $a \in X$ we have that $N(f, f_a) = f_1(a)$ and $N(f_a, f) = f_2(a)$. The map $e_X : (X, u) \to (\nu_q(X, u), N)$ defined by $e_X(a) = f_a$ whenever $a \in X$ is an isometric embedding.

Corollary

Let (X, u) be a T_0 -ultra-quasi-metric space. Then N is indeed a T_0 -ultra-quasi-metric on $\nu_q(X)$.

(ロ) (同) (E) (E) (E)

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T_0 -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Lemma

Suppose that (X, u) is a T_0 -ultra-quasi-metric space and $(f_1, f_2) \in \nu_q(X, u)$ such that $f_1(a) = 0 = f_2(a)$ for some $a \in X$. Then $(f_1, f_2) = e_X(a)$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Lemma

Suppose that (X, u) is a T_0 -ultra-quasi-metric space and $(f_1, f_2) \in \nu_q(X, u)$ such that $f_1(a) = 0 = f_2(a)$ for some $a \in X$. Then $(f_1, f_2) = e_X(a)$.

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. Then for any $f, g \in \nu_q(X, u)$ we have that $N(f, g) = \sup\{u(x_1, x_2) : x_1, x_2 \in X, u(x_1, x_2) > f_2(x_1) \text{ and } u(x_1, x_2) > g_1(x_2)\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

	Outline
	Introduction
	Preliminaries
	Strongly tight function pairs
Envelopes or hulls of	T ₀ -ultra-quasi-metric spaces
	q-spherical completeness
Total boundedness in	T_0 -ultra-quasi-metric spaces

Lemma

Suppose that (X, u) is a T_0 -ultra-quasi-metric space and $(f_1, f_2) \in \nu_q(X, u)$ such that $f_1(a) = 0 = f_2(a)$ for some $a \in X$. Then $(f_1, f_2) = e_X(a)$.

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space. Then for any $f, g \in \nu_q(X, u)$ we have that $N(f, g) = \sup\{u(x_1, x_2) : x_1, x_2 \in X, u(x_1, x_2) > f_2(x_1) \text{ and } u(x_1, x_2) > g_1(x_2)\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Let (X, u) be an ultra-quasi-pseudometric space and for each $x \in X$ and $r \in [0, \infty)$ let $C_u(x, r) = \{y \in X : u(x, y) \le r\}$ be the $\tau(u^{-1})$ -closed ball of radius r at x.

Let (X, u) be an ultra-quasi-pseudometric space and for each $x \in X$ and $r \in [0, \infty)$ let $C_u(x, r) = \{y \in X : u(x, y) \le r\}$ be the $\tau(u^{-1})$ -closed ball of radius r at x.

Lemma

Let (X, u) be an ultra-quasi-pseudometric space. Moreover let $x, y \in X$ and $r, s \ge 0$. Then $C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset$ if and only if $u(x, y) \le \max\{r, s\}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆目 ● ● ●

Let (X, u) be an ultra-quasi-pseudometric space and for each $x \in X$ and $r \in [0, \infty)$ let $C_u(x, r) = \{y \in X : u(x, y) \le r\}$ be the $\tau(u^{-1})$ -closed ball of radius r at x.

Lemma

Let (X, u) be an ultra-quasi-pseudometric space. Moreover let $x, y \in X$ and $r, s \ge 0$. Then $C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset$ if and only if $u(x, y) \le \max\{r, s\}$.

Definition

Let (X, u) be an ultra-quasi-pseudometric space. Let $(x_i)_{i \in I}$ be a family of points in X and let $(r_i)_{i \in I}$ and $(s_i)_{i \in I}$ be families of non-negative reals.

э

Let (X, u) be an ultra-quasi-pseudometric space and for each $x \in X$ and $r \in [0, \infty)$ let $C_u(x, r) = \{y \in X : u(x, y) \le r\}$ be the $\tau(u^{-1})$ -closed ball of radius r at x.

Lemma

Let (X, u) be an ultra-quasi-pseudometric space. Moreover let $x, y \in X$ and $r, s \ge 0$. Then $C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset$ if and only if $u(x, y) \le \max\{r, s\}$.

Definition

Let (X, u) be an ultra-quasi-pseudometric space. Let $(x_i)_{i \in I}$ be a family of points in X and let $(r_i)_{i \in I}$ and $(s_i)_{i \in I}$ be families of non-negative reals. We say that $(C_u(x_i, r_i), C_{u^{-1}}(x_i, s_i))_{i \in I}$ has the *mixed binary intersection property* provided that $u(x_i, x_j) \leq \max\{r_i, s_j\}$ whenever $i, j \in I$.

э

Let (X, u) be an ultra-quasi-pseudometric space and for each $x \in X$ and $r \in [0, \infty)$ let $C_u(x, r) = \{y \in X : u(x, y) \le r\}$ be the $\tau(u^{-1})$ -closed ball of radius r at x.

Lemma

Let (X, u) be an ultra-quasi-pseudometric space. Moreover let $x, y \in X$ and $r, s \ge 0$. Then $C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset$ if and only if $u(x, y) \le \max\{r, s\}$.

Definition

Let (X, u) be an ultra-quasi-pseudometric space. Let $(x_i)_{i \in I}$ be a family of points in X and let $(r_i)_{i \in I}$ and $(s_i)_{i \in I}$ be families of non-negative reals. We say that $(C_u(x_i, r_i), C_{u-1}(x_i, s_i))_{i \in I}$ has the *mixed binary intersection property* provided that $u(x_i, x_j) \leq \max\{r_i, s_j\}$ whenever $i, j \in I$. We say that (X, u) is *q-spherically complete* provided that each family $(C_u(x_i, r_i), C_{u-1}(x_i, s_i))_{i \in I}$ possessing the mixed binary intersection property satisfies $\bigcap_{i \in I} (C_u(x_i, r_i) \cap C_{u-1}(x_i, s_i)) \neq \emptyset$.

э

Example

The T_0 -ultra-quasi-metric space ($[0, \infty), n$) is *q*-spherically complete.

0. 0. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T₀-ultra-quasi-metric

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Example

The T_0 -ultra-quasi-metric space $([0, \infty), n)$ is *q*-spherically complete.

Proposition(a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is *q*-spherically complete if and only if (X, u^{-1}) is *q*-spherically complete.

Example

The T_0 -ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.

Proposition(a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is *q*-spherically complete if and only if (X, u^{-1}) is *q*-spherically complete. (b) Let (X, u) be a T_0 -ultra-quasi-metric space. If (X, u) is *q*-spherically complete, then (X, u^s) is spherically complete.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Example

The T_0 -ultra-quasi-metric space $([0, \infty), n)$ is *q*-spherically complete.

Proposition(a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is *q*-spherically complete if and only if (X, u^{-1}) is *q*-spherically complete. (b) Let (X, u) be a T_0 -ultra-quasi-metric space. If (X, u) is *q*-spherically complete, then (X, u^s) is spherically complete. **Proposition** Each *q*-spherically complete T_0 -ultra-quasi-metric space (X, u) is bicomplete.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆目 ● ● ●

Example

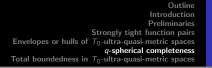
The T_0 -ultra-quasi-metric space $([0, \infty), n)$ is *q*-spherically complete.

Proposition(a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is *q*-spherically complete if and only if (X, u^{-1}) is *q*-spherically complete. (b) Let (X, u) be a T_0 -ultra-quasi-metric space. If (X, u) is *q*-spherically complete, then (X, u^s) is spherically complete. **Proposition** Each *q*-spherically complete T_0 -ultra-quasi-metric space (X, u) is bicomplete.

Theorem

A T_0 -ultra-quasi-metric space is q-spherically complete if and only if it is ultra-quasi-metrically injective.

・ロン ・四 と ・ ヨ と ・ ヨ と



Proposition Let (X, u) be a T_0 -ultra-quasi-metric space. Then $(f_1, f_2) \in \nu_q(X, u)$ implies that $(f_2, f_1) \in \nu_q(X, u^{-1})$. Therefore

$$s: (\nu_q(X, u), N) \rightarrow (\nu_q(X, u^{-1}), N^{-1})$$

where s is defined by s((f,g)) = (g,f) whenever $(f,g) \in \nu_q(X,u)$ is a bijective isometric map. (Indeed the ultra-quasi-metrically injective hull $(\nu_q(X,u), N)$ of (X, u) is isometric to the conjugate space of the ultra-quasi-metrically injective hull $(\nu_q(X, u^{-1}), N)$ of (X, u^{-1}) .)

イロト イポト イヨト イヨト 二日

Proposition Let (X, u) be a T_0 -ultra-quasi-metric space. Then $(f_1, f_2) \in \nu_q(X, u)$ implies that $(f_2, f_1) \in \nu_q(X, u^{-1})$. Therefore

$$s:(\nu_q(X,u),N) \rightarrow (\nu_q(X,u^{-1}),N^{-1})$$

where s is defined by s((f,g)) = (g, f) whenever $(f,g) \in \nu_q(X, u)$ is a bijective isometric map. (Indeed the ultra-quasi-metrically injective hull $(\nu_q(X, u), N)$ of (X, u) is isometric to the conjugate space of the ultra-quasi-metrically injective hull $(\nu_q(X, u^{-1}), N)$ of (X, u^{-1}) .) **Proposition** Let (X, m) be an ultra-metric space. Then p(f) = (f, f) defines an isometric embedding of $(\nu_s(X, m), E)$ into $(\nu_q(X, m), N)$.

Proposition Let (X, u) be a T_0 -ultra-quasi-metric space. Then $(f_1, f_2) \in \nu_q(X, u)$ implies that $(f_2, f_1) \in \nu_q(X, u^{-1})$. Therefore

$$s:(\nu_q(X,u),N) \rightarrow (\nu_q(X,u^{-1}),N^{-1})$$

where s is defined by s((f,g)) = (g,f) whenever $(f,g) \in \nu_q(X,u)$ is a bijective isometric map. (Indeed the ultra-quasi-metrically injective hull $(\nu_q(X, u), N)$ of (X, u) is isometric to the conjugate space of the ultra-quasi-metrically injective hull $(\nu_q(X, u^{-1}), N)$ of (X, u^{-1}) .) **Proposition** Let (X, m) be an ultra-metric space. Then p(f) = (f, f) defines an isometric embedding of $(\nu_s(X, m), E)$ into $(\nu_q(X, m), N)$. **Proposition** Let (X, u) be a T_0 -ultra-quasi-metric space. If $s = (s_1, s_2)$ is a minimal strongly tight pair of functions on the T_0 -ultra-quasi-metric space $(\nu_q(X), N)$, then $s \circ e_X$ is a minimal strongly tight pair of functions on (X, u).

Proposition The following statements are true for any T_0 -ultra-quasi-metric space (X, u). (a) $(\nu_q(X), N)$ is *q*-spherically complete.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Proposition The following statements are true for any T_0 -ultra-quasi-metric space (X, u).

(a) $(\nu_q(X), N)$ is *q*-spherically complete.

(b) $(\nu_q(X), N)$ is an ultra-quasi-metrically injective hull of X, i.e. no proper subset of $\nu_q(X)$ which contains X as a subspace is q-spherically complete. The ultra-quasi-metrically injective hull of the T_0 -ultra-quasi-metric space (X, u) is unique up to isometry.

Proposition The following statements are true for any T_0 -ultra-quasi-metric space (X, u).

(a) $(\nu_q(X), N)$ is q-spherically complete.

(b) $(\nu_q(X), N)$ is an ultra-quasi-metrically injective hull of X, i.e. no proper subset of $\nu_q(X)$ which contains X as a subspace is q-spherically complete. The ultra-quasi-metrically injective hull of the T_0 -ultra-quasi-metric space (X, u) is unique up to isometry.

Corollary

The following statements are equivalent for a T_0 -ultra-quasi-metric space (X, u): (a) (X, u) is q-spherically complete. (b) For each $f \in \nu_q(X)$ there is $x \in X$ such that $f_1 = (f_x)_1$ and $f_2 = (f_x)_2$. (c) For each $f \in \nu_q(X)$ there is $x \in X$ such that $f_1(x) = 0 = f_2(x)$.

(ロ) (同) (E) (E) (E)

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Recall that a quasi-pseudometric space (X, d) is called *totally bounded* provided that the pseudometric space (X, d^s) is totally bounded.

(ロ) (同) (E) (E) (E)

 $\begin{array}{c} & \text{Outline} \\ \text{Introduction} \\ \text{Preliminaries} \\ \text{Strongly tight function pairs} \\ \text{Envelopes or hulls of T_0-ultra-quasi-metric spaces} \\ \hline \text{Total boundedness in T_0-ultra-quasi-metric spaces} \end{array}$

Recall that a quasi-pseudometric space (X, d) is called *totally bounded* provided that the pseudometric space (X, d^s) is totally bounded.

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space that is totally bounded and let $\epsilon > 0$. Then there is a finite subset E of X such that

 $\{f_1(x): f \in \nu_q(X), x \in X, f_1(x) > \epsilon\} \cup \{f_2(x): f \in \nu_q(X), x \in X, f_2(x) > \epsilon\} =$

 $\{u(e,e'): e,e' \in E, u(e,e') > \epsilon\}.$

In particular, there is a real b > 0 such that for any $f = (f_1, f_2) \in \nu_q(X)$ we have $(f_1(X) \cup f_2(X)) \subseteq [0, b]$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

 $\begin{array}{c} & \text{Outline} \\ \text{Introduction} \\ \text{Preliminaries} \\ \text{Strongly tight function pairs} \\ \text{Envelopes or hulls of T_0-ultra-quasi-metric spaces} \\ \hline \text{Total boundedness in T_0-ultra-quasi-metric spaces} \end{array}$

Recall that a quasi-pseudometric space (X, d) is called *totally bounded* provided that the pseudometric space (X, d^s) is totally bounded.

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space that is totally bounded and let $\epsilon > 0$. Then there is a finite subset E of X such that

 $\{f_1(x): f \in \nu_q(X), x \in X, f_1(x) > \epsilon\} \cup \{f_2(x): f \in \nu_q(X), x \in X, f_2(x) > \epsilon\} =$

 $\{u(e,e'): e,e' \in E, u(e,e') > \epsilon\}.$

In particular, there is a real b > 0 such that for any $f = (f_1, f_2) \in \nu_q(X)$ we have $(f_1(X) \cup f_2(X)) \subseteq [0, b]$.

Proposition If (X, u) is a totally bounded T_0 -ultra-quasi-metric space, then the T_0 -ultra-quasi-metric space $(\nu_q(X, u), N)$ is totally bounded, too.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Recall that a quasi-pseudometric space (X, d) is called *totally bounded* provided that the pseudometric space (X, d^s) is totally bounded.

Lemma

Let (X, u) be a T_0 -ultra-quasi-metric space that is totally bounded and let $\epsilon > 0$. Then there is a finite subset E of X such that

 $\{f_1(x): f \in \nu_q(X), x \in X, f_1(x) > \epsilon\} \cup \{f_2(x): f \in \nu_q(X), x \in X, f_2(x) > \epsilon\} =$

 $\{u(e,e'): e,e' \in E, u(e,e') > \epsilon\}.$

In particular, there is a real b > 0 such that for any $f = (f_1, f_2) \in \nu_q(X)$ we have $(f_1(X) \cup f_2(X)) \subseteq [0, b]$.

Proposition If (X, u) is a totally bounded T_0 -ultra-quasi-metric space, then the T_0 -ultra-quasi-metric space $(\nu_q(X, u), N)$ is totally bounded, too.

Corollary

Let (X, m) be a totally bounded ultra-metric space. Then the completion of (X, m) is isometric to $(\nu_s(X), E)$.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T₀-ultra-quasi-metric

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Example

Let $X = \{0, 1\}$ be equipped with the discrete metric u defined by u(x, y) = 1 if $x \neq y$, and u(x, y) = 0 otherwise. Then (X, u) is not q-spherically complete, although it is spherically complete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Outline	
Introduction	
Preliminaries	
Strongly tight function pairs	
Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
q-spherical completeness	
Total boundedness in T_0 -ultra-quasi-metric spaces	

Example

Let $X = \{0, 1\}$ be equipped with the discrete metric u defined by u(x, y) = 1 if $x \neq y$, and u(x, y) = 0 otherwise. Then (X, u) is not q-spherically complete, although it is spherically complete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Introduction Preliminaries Strongly tight function pairs Envelopes or hulls of T_0 -ultra-quasi-metric spaces q-spherical completeness Total boundedness in T. ultra supers	Outline	
Strongly tight function pairs Envelopes or hulls of T_0 -ultra-quasi-metric spaces q-spherical completeness	Introduction	
Envelopes or hulls of T ₀ -ultra-quasi-metric spaces <i>q</i> -spherical completeness	Preliminaries	
<i>q</i> -spherical completeness	Strongly tight function pairs	
	Envelopes or hulls of T_0 -ultra-quasi-metric spaces	
Total boundedness in T with a guasi metric spaces	<i>q</i> -spherical completeness	
Total boundedness in 70-ultra-quasi-metric spaces	otal boundedness in T_0 -ultra-quasi-metric spaces	

Thank you for attention Merci

0. 0. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T₀-ultra-quasi-metric

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @