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The theory of hyperconvexity is well developed for metric spaces by many
authors (see for example Aronszajn, Panitchpakdi, Espinola,
Khamsi,Isbell,Khamsi, Kirk).

Bayod and Mart́ınez-Maurica presented a related notion (namely,
spherical completeness) suitable for the category of ultra-metric spaces.

Recently Kemajou, Kunzi and Otafudu have developed a concept of
hyperconvexity (called Isbell-convexity) that is appropriate in the category
of T0-quasi-metric spaces and non-expansive maps.In particular an explicit
construction of the corresponding hull (called Isbell-hull) was provided.
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In this talk we shall discuss how the investigations of Kemajou, Kunzi and
Otafudu can be modified in order to obtain a theory that is suitable for
T0-ultra-quasi-metric spaces.

Let us mention that in the standard literature our ultra-quasi-pseudometrics are
often called non-archimedean quasi-pseudometrics.
They should not be confused with quasi-ultrametrics as they were discussed in
the theory of dissimilarities.
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In this talk we shall consider sup A for many subsets A ⊆ [0,∞). In particular
we recall that supA = 0 if A = ∅.

Let X be a set and u : X × X → [0,∞) be a function mapping into the set
[0,∞) of non-negative reals. Then u is an ultra-quasi-pseudometric on X if
(i) u(x , x) = 0 for all x ∈ X , and
(ii) u(x , z) ≤ max{u(x , y), u(y , z)} whenever x , y , z ∈ X .
Note that the so-called conjugate u−1 of u, where u−1(x , y) = u(y , x)
whenever x , y ∈ X , is an ultra-quasi-pseudometric, too. The set of open balls
{{y ∈ X : u(x , y) < ε} : x ∈ X , ε > 0} yields a base for the topology τ(u)
induced by u on X .
If u also satisfies the condition
(iii) for any x , y ∈ X , u(x , y) = 0 = u(y , x) implies that x = y , then u is called
a T0-ultra-quasi-metric.
Observe that then us = u ∨ u−1 is an ultra-metric on X .
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Example

Let X = [0,∞) be equipped with n(x , y) = x if x , y ∈ X and x > y , and
n(x , y) = 0 if x , y ∈ X and x ≤ y . It is easy to check that (X , n) is a
T0-ultra-quasi-metric space.

Note also that for x , y ∈ [0,∞) we have ns(x , y) = max{x , y} if x 6= y and
n(x , y) = 0 if x = y . Observe that the ultra-metric ns is complete on [0,∞).
Furthermore 0 is the only non-isolated point of τ(ns). Indeed
A = {0} ∪ { 1

n
: n ∈ N} is a compact subspace of ([0,∞), ns).

Lemma

Let a, b, c ∈ [0,∞). Then the following conditions are equivalent:
(a) n(a, b) ≤ c.
(b) a ≤ max{b, c}.
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Corollary

Let (X , u) be an ultra-quasi-pseudometric space. Consider a map
f : X → [0,∞) and let x , y ∈ X . Then the following are equivalent:
(a) n(f (x), f (y)) ≤ u(x , y);
(b) f (x) ≤ max{f (y), u(x , y)}.

Corollary

Let (X , u) be an ultra-quasi-pseudometric space.
(a) Then f : (X , u) → ([0,∞), n) is a contracting map if and only if
f (x) ≤ max{f (y), u(x , y)} whenever x , y ∈ X .
(b) Then f : (X , u) → ([0,∞), n−1) is a contracting map if and only if
f (x) ≤ max{f (y), u(y , x)} whenever x , y ∈ X .
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Definition

Let (X , u) be a T0-ultra-quasi-metric space and let FP(X , u) be the set of all
pairs f = (f1, f2) of functions where fi : X → [0,∞) (i = 1, 2).

For any such pairs (f1, f2) and (g1, g2) set

N((f1, f2), (g1, g2)) = max{sup
x∈X

n(f1(x), g1(x)), sup
x∈X

n(g2(x), f2(x))}.

It is obvious that N is an extended T0-ultra-quasi-metric on the set FP(X , u)
of these function pairs.

Let (X , u) be a T0-ultra-quasi-metric space. We shall say that a pair
f ∈ FP(X , u) is strongly tight if for all x , y ∈ X , we have
u(x , y) ≤ max{f2(x), f1(y)}.
The set of all strongly tight function pairs of a T0-ultra-quasi-metric space
(X , u) will be denoted by UT (X , u).
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Lemma

Let (X , u) be a T0-ultra-quasi-metric space. For each a ∈ X,
fa(x) := (u(a, x), u(x , a)) whenever x ∈ X , is a strongly tight pair belonging to
UT (X , u).

Let (X , u) be a T0-ultra-quasi-metric space. We say that a function pair
f = (f1, f2) is minimal among the strongly tight pairs on (X , u) if it is a
strongly tight pair and if g = (g1, g2) is strongly tight on (X , u) and for each
x ∈ X , g1(x) ≤ f1(x) and g2(x) ≤ f2(x), then f = g .
Minimal strongly tight function pairs are also called extremal strongly tight
function pairs.
By νq(X , u) (or more briefly, νq(X )) we shall denote the set of all minimal
strongly tight function pairs on (X , u) equipped with the restriction of N to
νq(X ), which we shall again denote by N.
In the following we shall call (νq(X ), N) the ultra-quasi-metrically injective hull
of (X , u). The reason for this name will be explained later.
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Lemma

Let (X , u) be a T0-ultra-quasi-metric space and let f ∈ νq(X ). For all x , y ∈ X ,
(f1(x) > f1(y) implies that f1(x) ≤ u(y , x)) and (f2(x) > f2(y) implies that
f2(x) ≤ u(x , y)).

Corollary

Let (X , u) be a T0-ultra-quasi-metric space. If f = (f1, f2) is a minimal strongly
tight function pair on (X , u), then f1(x) ≤ max{f1(y), u(y , x)} and
f2(x) ≤ max{f2(y), u(x , y)} whenever x , y ∈ X . Thus
f1 : (X , u) → ([0,∞), n−1) and f2 : (X , u) → ([0,∞), n) are contracting maps
(see Corollary above).
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Lemma

Suppose that (f1, f2) is a minimal strongly tight pair of functions on a
T0-ultra-quasi-metric space (X , u). Then

f2(x) = sup{u(x , y) : y ∈ X and u(x , y) > f1(y)} =

sup{(fx)1(y) : y ∈ X and (fx)1(y) > f1(y)}
and

f1(x) = sup{u(y , x) : y ∈ X and u(y , x) > f2(y)} =

sup{(fx)2(y) : y ∈ X and (fx)2(y) > f2(y)}
whenever x ∈ X .
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Lemma

Let (f1, f2), (g1, g2) be minimal strongly tight pairs of functions on a
T0-ultra-quasi-metric space (X , u). Then

N((f1, f2), (g1, g2)) = sup
x∈X

n(f1(x), g1(x)) = sup
x∈X

n(g2(x), f2(x)).

Corollary

Let (X , u) be a T0-ultra-quasi-metric space. Any minimal strongly tight
function pair f = (f1, f2) on X satisfies the following conditions:

f1(x) = sup
y∈X

n(u(y , x), f2(y)) = sup
y∈X

n(f1(y), u(x , y))

and
f2(x) = sup

y∈X
n(u(x , y), f1(y)) = sup

y∈X
n(f2(y), u(y , x))

whenever x ∈ X .
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Proposition Let f = (f1, f2) be a strongly tight function pair on a
T0-ultra-quasi-metric space (X , u) such that

f1(x) ≤ max{f1(y), u(y , x)} and f2(x) ≤ max{f2(y), u(x , y)}

whenever x , y ∈ X .

Furthermore suppose that there is a sequence (an)n∈N in X
with limn→∞ f1(an) = 0 and limn→∞ f2(an) = 0. Then f is a minimal strongly
tight pair.
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Lemma

Let (X , u) be a T0-ultra-quasi-metric space. For each a ∈ X , the pair fa
belongs to νq(X , u).

Theorem

Let (X , u) be a T0-ultra-quasi-metric space. For each f ∈ νq(X , u) and a ∈ X
we have that N(f , fa) = f1(a) and N(fa, f ) = f2(a). The map
eX : (X , u) → (νq(X , u), N) defined by eX (a) = fa whenever a ∈ X is an
isometric embedding.

Corollary

Let (X , u) be a T0-ultra-quasi-metric space. Then N is indeed a
T0-ultra-quasi-metric on νq(X ).
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Lemma

Suppose that (X , u) is a T0-ultra-quasi-metric space and (f1, f2) ∈ νq(X , u)
such that f1(a) = 0 = f2(a) for some a ∈ X . Then (f1, f2) = eX (a).

Lemma

Let (X , u) be a T0-ultra-quasi-metric space. Then for any f , g ∈ νq(X , u) we
have that N(f , g) = sup{u(x1, x2) : x1, x2 ∈ X , u(x1, x2) > f2(x1) and
u(x1, x2) > g1(x2)}.
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Suppose that (X , u) is a T0-ultra-quasi-metric space and (f1, f2) ∈ νq(X , u)
such that f1(a) = 0 = f2(a) for some a ∈ X . Then (f1, f2) = eX (a).

Lemma

Let (X , u) be a T0-ultra-quasi-metric space. Then for any f , g ∈ νq(X , u) we
have that N(f , g) = sup{u(x1, x2) : x1, x2 ∈ X , u(x1, x2) > f2(x1) and
u(x1, x2) > g1(x2)}.
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Let (X , u) be an ultra-quasi-pseudometric space and for each x ∈ X and
r ∈ [0,∞) let Cu(x , r) = {y ∈ X : u(x , y) ≤ r} be the τ(u−1)-closed ball of
radius r at x .

Lemma

Let (X , u) be an ultra-quasi-pseudometric space. Moreover let x , y ∈ X and
r , s ≥ 0. Then Cu(x , r) ∩ Cu−1(y , s) 6= ∅ if and only if u(x , y) ≤ max{r , s}.

Definition

Let (X , u) be an ultra-quasi-pseudometric space. Let (xi )i∈I be a family of
points in X and let (ri )i∈I and (si )i∈I be families of non-negative reals. We say
that (Cu(xi , ri ), Cu−1(xi , si ))i∈I has the mixed binary intersection property
provided that u(xi , xj) ≤ max{ri , sj} whenever i , j ∈ I .We say that (X , u) is
q-spherically complete provided that each family (Cu(xi , ri ), Cu−1(xi , si ))i∈I

possessing the mixed binary intersection property satisfies
∩i∈I (Cu(xi , ri ) ∩ Cu−1(xi , si )) 6= ∅.
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Example

The T0-ultra-quasi-metric space ([0,∞), n) is q-spherically complete.

Proposition(a) Let (X , u) be an ultra-quasi-pseudometric space. Then (X , u)
is q-spherically complete if and only if (X , u−1) is q-spherically complete.
(b) Let (X , u) be a T0-ultra-quasi-metric space. If (X , u) is q-spherically
complete, then (X , us) is spherically complete.
Proposition Each q-spherically complete T0-ultra-quasi-metric space (X , u) is
bicomplete.

Theorem

A T0-ultra-quasi-metric space is q-spherically complete if and only if it is
ultra-quasi-metrically injective.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Example

The T0-ultra-quasi-metric space ([0,∞), n) is q-spherically complete.

Proposition(a) Let (X , u) be an ultra-quasi-pseudometric space. Then (X , u)
is q-spherically complete if and only if (X , u−1) is q-spherically complete.

(b) Let (X , u) be a T0-ultra-quasi-metric space. If (X , u) is q-spherically
complete, then (X , us) is spherically complete.
Proposition Each q-spherically complete T0-ultra-quasi-metric space (X , u) is
bicomplete.

Theorem

A T0-ultra-quasi-metric space is q-spherically complete if and only if it is
ultra-quasi-metrically injective.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Example

The T0-ultra-quasi-metric space ([0,∞), n) is q-spherically complete.

Proposition(a) Let (X , u) be an ultra-quasi-pseudometric space. Then (X , u)
is q-spherically complete if and only if (X , u−1) is q-spherically complete.
(b) Let (X , u) be a T0-ultra-quasi-metric space. If (X , u) is q-spherically
complete, then (X , us) is spherically complete.

Proposition Each q-spherically complete T0-ultra-quasi-metric space (X , u) is
bicomplete.

Theorem

A T0-ultra-quasi-metric space is q-spherically complete if and only if it is
ultra-quasi-metrically injective.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Example

The T0-ultra-quasi-metric space ([0,∞), n) is q-spherically complete.

Proposition(a) Let (X , u) be an ultra-quasi-pseudometric space. Then (X , u)
is q-spherically complete if and only if (X , u−1) is q-spherically complete.
(b) Let (X , u) be a T0-ultra-quasi-metric space. If (X , u) is q-spherically
complete, then (X , us) is spherically complete.
Proposition Each q-spherically complete T0-ultra-quasi-metric space (X , u) is
bicomplete.

Theorem

A T0-ultra-quasi-metric space is q-spherically complete if and only if it is
ultra-quasi-metrically injective.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Example

The T0-ultra-quasi-metric space ([0,∞), n) is q-spherically complete.

Proposition(a) Let (X , u) be an ultra-quasi-pseudometric space. Then (X , u)
is q-spherically complete if and only if (X , u−1) is q-spherically complete.
(b) Let (X , u) be a T0-ultra-quasi-metric space. If (X , u) is q-spherically
complete, then (X , us) is spherically complete.
Proposition Each q-spherically complete T0-ultra-quasi-metric space (X , u) is
bicomplete.

Theorem

A T0-ultra-quasi-metric space is q-spherically complete if and only if it is
ultra-quasi-metrically injective.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Proposition Let (X , u) be a T0-ultra-quasi-metric space. Then
(f1, f2) ∈ νq(X , u) implies that (f2, f1) ∈ νq(X , u−1). Therefore

s : (νq(X , u), N) → (νq(X , u−1), N−1)

where s is defined by s((f , g)) = (g , f ) whenever (f , g) ∈ νq(X , u) is a
bijective isometric map. (Indeed the ultra-quasi-metrically injective hull
(νq(X , u), N) of (X , u) is isometric to the conjugate space of the
ultra-quasi-metrically injective hull (νq(X , u−1), N) of (X , u−1).)

Proposition Let (X , m) be an ultra-metric space. Then p(f ) = (f , f ) defines
an isometric embedding of (νs(X , m), E) into (νq(X , m), N).
Proposition Let (X , u) be a T0-ultra-quasi-metric space. If s = (s1, s2) is a
minimal strongly tight pair of functions on the T0-ultra-quasi-metric space
(νq(X ), N), then s ◦ eX is a minimal strongly tight pair of functions on (X , u).

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Proposition Let (X , u) be a T0-ultra-quasi-metric space. Then
(f1, f2) ∈ νq(X , u) implies that (f2, f1) ∈ νq(X , u−1). Therefore

s : (νq(X , u), N) → (νq(X , u−1), N−1)

where s is defined by s((f , g)) = (g , f ) whenever (f , g) ∈ νq(X , u) is a
bijective isometric map. (Indeed the ultra-quasi-metrically injective hull
(νq(X , u), N) of (X , u) is isometric to the conjugate space of the
ultra-quasi-metrically injective hull (νq(X , u−1), N) of (X , u−1).)
Proposition Let (X , m) be an ultra-metric space. Then p(f ) = (f , f ) defines
an isometric embedding of (νs(X , m), E) into (νq(X , m), N).

Proposition Let (X , u) be a T0-ultra-quasi-metric space. If s = (s1, s2) is a
minimal strongly tight pair of functions on the T0-ultra-quasi-metric space
(νq(X ), N), then s ◦ eX is a minimal strongly tight pair of functions on (X , u).

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Proposition Let (X , u) be a T0-ultra-quasi-metric space. Then
(f1, f2) ∈ νq(X , u) implies that (f2, f1) ∈ νq(X , u−1). Therefore

s : (νq(X , u), N) → (νq(X , u−1), N−1)

where s is defined by s((f , g)) = (g , f ) whenever (f , g) ∈ νq(X , u) is a
bijective isometric map. (Indeed the ultra-quasi-metrically injective hull
(νq(X , u), N) of (X , u) is isometric to the conjugate space of the
ultra-quasi-metrically injective hull (νq(X , u−1), N) of (X , u−1).)
Proposition Let (X , m) be an ultra-metric space. Then p(f ) = (f , f ) defines
an isometric embedding of (νs(X , m), E) into (νq(X , m), N).
Proposition Let (X , u) be a T0-ultra-quasi-metric space. If s = (s1, s2) is a
minimal strongly tight pair of functions on the T0-ultra-quasi-metric space
(νq(X ), N), then s ◦ eX is a minimal strongly tight pair of functions on (X , u).

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T0-ultra-quasi-metric space



Outline
Introduction
Preliminaries

Strongly tight function pairs
Envelopes or hulls of T0-ultra-quasi-metric spaces

q-spherical completeness
Total boundedness in T0-ultra-quasi-metric spaces

Proposition The following statements are true for any T0-ultra-quasi-metric
space (X , u).
(a) (νq(X ), N) is q-spherically complete.

(b) (νq(X ), N) is an ultra-quasi-metrically injective hull of X , i.e. no proper
subset of νq(X ) which contains X as a subspace is q-spherically complete. The
ultra-quasi-metrically injective hull of the T0-ultra-quasi-metric space (X , u) is
unique up to isometry.

Corollary

The following statements are equivalent for a T0-ultra-quasi-metric space
(X , u) :
(a) (X , u) is q-spherically complete.
(b) For each f ∈ νq(X ) there is x ∈ X such that f1 = (fx)1 and f2 = (fx)2.
(c) For each f ∈ νq(X ) there is x ∈ X such that f1(x) = 0 = f2(x).
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Recall that a quasi-pseudometric space (X , d) is called totally bounded
provided that the pseudometric space (X , d s) is totally bounded.

Lemma

Let (X , u) be a T0-ultra-quasi-metric space that is totally bounded and let
ε > 0. Then there is a finite subset E of X such that

{f1(x) : f ∈ νq(X ), x ∈ X , f1(x) > ε} ∪ {f2(x) : f ∈ νq(X ), x ∈ X , f2(x) > ε} =

{u(e, e′) : e, e′ ∈ E , u(e, e′) > ε}.
In particular, there is a real b > 0 such that for any f = (f1, f2) ∈ νq(X ) we
have (f1(X ) ∪ f2(X )) ⊆ [0, b].

Proposition If (X , u) is a totally bounded T0-ultra-quasi-metric space, then the
T0-ultra-quasi-metric space (νq(X , u), N) is totally bounded, too.

Corollary

Let (X , m) be a totally bounded ultra-metric space. Then the completion of
(X , m) is isometric to (νs(X ), E).
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Recall that a quasi-pseudometric space (X , d) is called totally bounded
provided that the pseudometric space (X , d s) is totally bounded.

Lemma

Let (X , u) be a T0-ultra-quasi-metric space that is totally bounded and let
ε > 0. Then there is a finite subset E of X such that

{f1(x) : f ∈ νq(X ), x ∈ X , f1(x) > ε} ∪ {f2(x) : f ∈ νq(X ), x ∈ X , f2(x) > ε} =

{u(e, e′) : e, e′ ∈ E , u(e, e′) > ε}.
In particular, there is a real b > 0 such that for any f = (f1, f2) ∈ νq(X ) we
have (f1(X ) ∪ f2(X )) ⊆ [0, b].

Proposition If (X , u) is a totally bounded T0-ultra-quasi-metric space, then the
T0-ultra-quasi-metric space (νq(X , u), N) is totally bounded, too.

Corollary

Let (X , m) be a totally bounded ultra-metric space. Then the completion of
(X , m) is isometric to (νs(X ), E).
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Example

Let X = {0, 1} be equipped with the discrete metric u defined by u(x , y) = 1 if
x 6= y , and u(x , y) = 0 otherwise. Then (X , u) is not q-spherically complete,
although it is spherically complete.
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Thank you for attention
Merci
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