The ultra-quasi-metric injective hull of a T_0-ultra-quasi-metric space

O. O. Otafudu 1,2 H-P. Künzi1,2

1Department of Mathematics and Applied Mathematics
University of Cape Town, Rondebosch 7701, Cape Town, South Africa.

2Topology and Category Theory Research Group, Department of Mathematics
University of Cape Town, Rondebosch 7701, Cape Town, South Africa.

The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamsi, Isbell, Khamsi, Kirk).
The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamisi, Isbell, Khamisi, Kirk).

Bayod and Martínez-Maurica presented a related notion (namely, spherical completeness) suitable for the category of ultra-metric spaces.
The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamisi, Isbell, Khamsi, Kirk).

Bayod and Martínez-Maurica presented a related notion (namely, spherical completeness) suitable for the category of ultra-metric spaces.

Recently Kemajou, Kunzi and Otafudu have developed a concept of hyperconvexity (called Isbell-convexity) that is appropriate in the category of T_0-quasi-metric spaces and non-expansive maps.
The theory of hyperconvexity is well developed for metric spaces by many authors (see for example Aronszajn, Panitchpakdi, Espinola, Khamsi, Isbell, Khamsi, Kirk).

Bayod and Martínez-Maurica presented a related notion (namely, spherical completeness) suitable for the category of ultra-metric spaces.

Recently Kemajou, Kunzi and Otafudu have developed a concept of hyperconvexity (called Isbell-convexity) that is appropriate in the category of T_0-quasi-metric spaces and non-expansive maps. In particular an explicit construction of the corresponding hull (called Isbell-hull) was provided.
In this talk we shall discuss how the investigations of Kemajou, Kunzi and Otafudu can be modified in order to obtain a theory that is suitable for T_0-ultra-quasi-metric spaces.
In this talk we shall discuss how the investigations of Kemajou, Kunzi and Otafudu can be modified in order to obtain a theory that is suitable for T_0-ultra-quasi-metric spaces.

Let us mention that in the standard literature our ultra-quasi-pseudometrics are often called *non-archimedean quasi-pseudometrics*.
In this talk we shall discuss how the investigations of Kemajou, Kunzi and Otafudu can be modified in order to obtain a theory that is suitable for T_0-ultra-quasi-metric spaces.

Let us mention that in the standard literature our ultra-quasi-pseudometrics are often called *non-archimedean quasi-pseudometrics*. They should not be confused with *quasi-ultrametrics* as they were discussed in the theory of dissimilarities.
In this talk we shall discuss how the investigations of Kemajou, Kunzi and Otafudu can be modified in order to obtain a theory that is suitable for T_0-ultra-quasi-metric spaces.

Let us mention that in the standard literature our ultra-quasi-pseudometrics are often called \textit{non-archimedean quasi-pseudometrics}. They should not be confused with \textit{quasi-ultrametrics} as they were discussed in the theory of dissimilarities.
In this talk we shall consider $\sup A$ for many subsets $A \subseteq [0, \infty)$. In particular we recall that $\sup A = 0$ if $A = \emptyset$.
In this talk we shall consider \(\sup A \) for many subsets \(A \subseteq [0, \infty) \). In particular we recall that \(\sup A = 0 \) if \(A = \emptyset \).

Let \(X \) be a set and \(u : X \times X \to [0, \infty) \) be a function mapping into the set \([0, \infty)\) of non-negative reals. Then \(u \) is an \textit{ultra-quasi-pseudometric} on \(X \) if
In this talk we shall consider sup A for many subsets $A \subseteq [0, \infty)$. In particular we recall that sup $A = 0$ if $A = \emptyset$.

Let X be a set and $u : X \times X \rightarrow [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an \textit{ultra-quasi-pseudometric} on X if

(i) $u(x, x) = 0$ for all $x \in X$, and
In this talk we shall consider $\sup A$ for many subsets $A \subseteq [0, \infty)$. In particular we recall that $\sup A = 0$ if $A = \emptyset$.

Let X be a set and $u : X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an \textit{ultra-quasi-pseudometric} on X if:

(i) $u(x, x) = 0$ for all $x \in X$, and

(ii) $u(x, z) \leq \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$.

\textit{O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T_0-ultra-quasi-metric space}
In this talk we shall consider $\sup A$ for many subsets $A \subseteq [0, \infty)$. In particular we recall that $\sup A = 0$ if $A = \emptyset$.

Let X be a set and $u : X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an ultra-quasi-pseudometric on X if

(i) $u(x, x) = 0$ for all $x \in X$, and

(ii) $u(x, z) \leq \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$.

Note that the so-called conjugate u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too.
In this talk we shall consider sup A for many subsets $A \subseteq [0, \infty)$. In particular we recall that $\text{sup} \ A = 0$ if $A = \emptyset$.

Let X be a set and $u : X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an \textit{ultra-quasi-pseudometric} on X if

1. $u(x, x) = 0$ for all $x \in X$, and
2. $u(x, z) \leq \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$.

Note that the so-called \textit{conjugate} u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too. The set of open balls $\{\{y \in X : u(x, y) < \epsilon\} : x \in X, \epsilon > 0\}$ yields a base for the topology $\tau(u)$ \textit{induced by u on X}.

O. O. Otafudu, H-P. Künzi, The ultra-quasi-metric injective hull of a T_0-ultra-quasi-metric
In this talk we shall consider \(\sup A \) for many subsets \(A \subseteq [0, \infty) \). In particular we recall that \(\sup A = 0 \) if \(A = \emptyset \).

Let \(X \) be a set and \(u : X \times X \to [0, \infty) \) be a function mapping into the set \([0, \infty)\) of non-negative reals. Then \(u \) is an \textit{ultra-quasi-pseudometric} on \(X \) if

(i) \(u(x, x) = 0 \) for all \(x \in X \), and

(ii) \(u(x, z) \leq \max\{u(x, y), u(y, z)\} \) whenever \(x, y, z \in X \).

Note that the so-called \textit{conjugate} \(u^{-1} \) of \(u \), where \(u^{-1}(x, y) = u(y, x) \) whenever \(x, y \in X \), is an ultra-quasi-pseudometric, too. The set of open balls

\[
\{ \{ y \in X : u(x, y) < \epsilon \} : x \in X, \epsilon > 0 \}
\]

yields a base for the topology \(\tau(u) \) \textit{induced by} \(u \) on \(X \).

If \(u \) also satisfies the condition

(iii) for any \(x, y \in X, \) \(u(x, y) = 0 = u(y, x) \) implies that \(x = y \), then \(u \) is called a \textit{T}_0\textit{-ultra-quasi-metric}.
In this talk we shall consider \(\sup A \) for many subsets \(A \subseteq [0, \infty) \). In particular we recall that \(\sup A = 0 \) if \(A = \emptyset \).

Let \(X \) be a set and \(u : X \times X \to [0, \infty) \) be a function mapping into the set \([0, \infty) \) of non-negative reals. Then \(u \) is an **ultra-quasi-pseudometric** on \(X \) if

(i) \(u(x, x) = 0 \) for all \(x \in X \), and

(ii) \(u(x, z) \leq \max\{u(x, y), u(y, z)\} \) whenever \(x, y, z \in X \).

Note that the so-called **conjugate** \(u^{-1} \) of \(u \), where \(u^{-1}(x, y) = u(y, x) \) whenever \(x, y \in X \), is an ultra-quasi-pseudometric, too. The set of open balls \(\{\{y \in X : u(x, y) < \epsilon\} : x \in X, \epsilon > 0\} \) yields a base for the topology \(\tau(u) \) **induced by \(u \) on \(X \).**

If \(u \) also satisfies the condition

(iii) for any \(x, y \in X \), \(u(x, y) = 0 = u(y, x) \) implies that \(x = y \), then \(u \) is called a **\(T_0 \)-ultra-quasi-metric**.

Observe that then \(u^s = u \vee u^{-1} \) is an **ultra-metric** on \(X \).
Example

Let $X = [0, \infty)$ be equipped with $n(x, y) = x$ if $x, y \in X$ and $x > y$, and $n(x, y) = 0$ if $x, y \in X$ and $x \leq y$. It is easy to check that (X, n) is a T_0-ultra-quasi-metric space.
Example

Let $X = [0, \infty)$ be equipped with $n(x, y) = x$ if $x, y \in X$ and $x > y$, and $n(x, y) = 0$ if $x, y \in X$ and $x \leq y$. It is easy to check that (X, n) is a T_0-ultra-quasi-metric space.

Note also that for $x, y \in [0, \infty)$ we have $n^s(x, y) = \max\{x, y\}$ if $x \neq y$ and $n(x, y) = 0$ if $x = y$. Observe that the ultra-metric n^s is complete on $[0, \infty)$.
Example

Let \(X = [0, \infty) \) be equipped with \(n(x, y) = x \) if \(x, y \in X \) and \(x > y \), and \(n(x, y) = 0 \) if \(x, y \in X \) and \(x \leq y \). It is easy to check that \((X, n) \) is a \(T_0 \)-ultra-quasi-metric space.

Note also that for \(x, y \in [0, \infty) \) we have \(n^s(x, y) = \max\{x, y\} \) if \(x \neq y \) and \(n(x, y) = 0 \) if \(x = y \). Observe that the ultra-metric \(n^s \) is complete on \([0, \infty) \). Furthermore 0 is the only non-isolated point of \(\tau(n^s) \). Indeed \(A = \{0\} \cup \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \) is a compact subspace of \(([0, \infty), n^s) \).
Example

Let $X = [0, \infty)$ be equipped with $n(x, y) = x$ if $x, y \in X$ and $x > y$, and $n(x, y) = 0$ if $x, y \in X$ and $x \leq y$. It is easy to check that (X, n) is a T_0-ultra-quasi-metric space.

Note also that for $x, y \in [0, \infty)$ we have $n^s(x, y) = \max\{x, y\}$ if $x \neq y$ and $n(x, y) = 0$ if $x = y$. Observe that the ultra-metric n^s is complete on $[0, \infty)$. Furthermore, 0 is the only non-isolated point of $\tau(n^s)$. Indeed, $A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is a compact subspace of $([0, \infty), n^s)$.

Lemma

Let $a, b, c \in [0, \infty)$. Then the following conditions are equivalent:

(a) $n(a, b) \leq c$.
(b) $a \leq \max\{b, c\}$.
Corollary

Let \((X, u)\) be an ultra-quasi-pseudometric space. Consider a map \(f : X \to [0, \infty)\) and let \(x, y \in X\). Then the following are equivalent:

(a) \(n(f(x), f(y)) \leq u(x, y)\);
(b) \(f(x) \leq \max\{f(y), u(x, y)\}\).
Corollary

Let \((X, u)\) be an ultra-quasi-pseudometric space. Consider a map \(f : X \to [0, \infty)\) and let \(x, y \in X\). Then the following are equivalent:

(a) \(n(f(x), f(y)) \leq u(x, y)\);
(b) \(f(x) \leq \max\{f(y), u(x, y)\}\).

Corollary

Let \((X, u)\) be an ultra-quasi-pseudometric space.

(a) Then \(f : (X, u) \to ([0, \infty), n)\) is a contracting map if and only if \(f(x) \leq \max\{f(y), u(x, y)\}\) whenever \(x, y \in X\).
(b) Then \(f : (X, u) \to ([0, \infty), n^{-1})\) is a contracting map if and only if \(f(x) \leq \max\{f(y), u(y, x)\}\) whenever \(x, y \in X\).
Definition

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space and let \(\mathcal{FP}(X, u)\) be the set of all pairs \(f = (f_1, f_2)\) of functions where \(f_i : X \to [0, \infty)\) \((i = 1, 2)\).
Definition

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space and let \(\mathcal{FP}(X, u)\) be the set of all pairs \(f = (f_1, f_2)\) of functions where \(f_i : X \rightarrow [0, \infty)\) \((i = 1, 2)\). For any such pairs \((f_1, f_2)\) and \((g_1, g_2)\) set

\[
N(((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.
\]
Definition

Let \((X, u) \) be a \(T_0 \)-ultra-quasi-metric space and let \(\mathcal{FP}(X, u) \) be the set of all pairs \(f = (f_1, f_2) \) of functions where \(f_i : X \to [0, \infty) \) \((i = 1, 2) \).
For any such pairs \((f_1, f_2) \) and \((g_1, g_2) \) set
\[
N((f_1, f_2), (g_1, g_2)) = \max \{ \sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x)) \}.
\]

It is obvious that \(N \) is an extended \(T_0 \)-ultra-quasi-metric on the set \(\mathcal{FP}(X, u) \) of these function pairs.
Definition

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space and let \(\mathcal{FP}(X, u)\) be the set of all pairs \(f = (f_1, f_2)\) of functions where \(f_i : X \to [0, \infty)\) \((i = 1, 2)\). For any such pairs \((f_1, f_2)\) and \((g_1, g_2)\) set

\[
N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.
\]

It is obvious that \(N\) is an extended \(T_0\)-ultra-quasi-metric on the set \(\mathcal{FP}(X, u)\) of these function pairs.

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. We shall say that a pair \(f \in \mathcal{FP}(X, u)\) is **strongly tight** if for all \(x, y \in X\), we have

\[
u(x, y) \leq \max\{f_2(x), f_1(y)\}.
\]
Definition

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space and let \(\mathcal{FP}(X, u)\) be the set of all pairs \(f = (f_1, f_2)\) of functions where \(f_i : X \rightarrow [0, \infty)\) \((i = 1, 2)\).

For any such pairs \((f_1, f_2)\) and \((g_1, g_2)\) set

\[
N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.
\]

It is obvious that \(N\) is an extended \(T_0\)-ultra-quasi-metric on the set \(\mathcal{FP}(X, u)\) of these function pairs.

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. We shall say that a pair \(f \in \mathcal{FP}(X, u)\) is strongly tight if for all \(x, y \in X\), we have

\[
u(x, y) \leq \max\{f_2(x), f_1(y)\}.
\]

The set of all strongly tight function pairs of a \(T_0\)-ultra-quasi-metric space \((X, u)\) will be denoted by \(UT(X, u)\).
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\),
\[f_a(x) := (u(a, x), u(x, a)) \text{ whenever } x \in X, \]
is a strongly tight pair belonging to \(UT(X, u)\).
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\),
\[f_a(x) := (u(a, x), u(x, a)) \] whenever \(x \in X\), is a strongly tight pair belonging to \(UT(X, u)\).

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. We say that a function pair \(f = (f_1, f_2)\) is minimal among the strongly tight pairs on \((X, u)\) if it is a strongly tight pair and if \(g = (g_1, g_2)\) is strongly tight on \((X, u)\) and for each \(x \in X\), \(g_1(x) \leq f_1(x)\) and \(g_2(x) \leq f_2(x)\), then \(f = g\).
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\),
\[f_a(x) := (u(a, x), u(x, a)) \]
whenever \(x \in X\), is a strongly tight pair belonging to \(UT(X, u)\).

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. We say that a function pair
\(f = (f_1, f_2)\) is \textit{minimal} among the strongly tight pairs on \((X, u)\) if it is a
strongly tight pair and if \(g = (g_1, g_2)\) is strongly tight on \((X, u)\) and for each
\(x \in X\), \(g_1(x) \leq f_1(x)\) and \(g_2(x) \leq f_2(x)\), then \(f = g\).
Minimal strongly tight function pairs are also called \textit{extremal strongly tight}
function pairs.
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\),
\[
f_a(x) := (u(a, x), u(x, a))
\]
whenever \(x \in X\), is a strongly tight pair belonging to \(UT(X, u)\).

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. We say that a function pair
\[
f = (f_1, f_2)
\]
is \textit{minimal} among the strongly tight pairs on \((X, u)\) if it is a
strongly tight pair and if \(g = (g_1, g_2)\) is strongly tight on \((X, u)\) and for each
\(x \in X\), \(g_1(x) \leq f_1(x)\) and \(g_2(x) \leq f_2(x)\), then \(f = g\).
Minimal strongly tight function pairs are also called \textit{extremal strongly tight function pairs}.

By \(\nu_q(X, u)\) (or more briefly, \(\nu_q(X)\)) we shall denote the set of all minimal
strongly tight function pairs on \((X, u)\) equipped with the restriction of \(N\) to
\(\nu_q(X)\), which we shall again denote by \(N\).
Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\), \(f_a(x) := (u(a, x), u(x, a))\) whenever \(x \in X\), is a strongly tight pair belonging to \(UT(X, u)\).

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. We say that a function pair \(f = (f_1, f_2)\) is minimal among the strongly tight pairs on \((X, u)\) if it is a strongly tight pair and if \(g = (g_1, g_2)\) is strongly tight on \((X, u)\) and for each \(x \in X\), \(g_1(x) \leq f_1(x)\) and \(g_2(x) \leq f_2(x)\), then \(f = g\).

Minimal strongly tight function pairs are also called extremal strongly tight function pairs.

By \(\nu_q(X, u)\) (or more briefly, \(\nu_q(X)\)) we shall denote the set of all minimal strongly tight function pairs on \((X, u)\) equipped with the restriction of \(N\) to \(\nu_q(X)\), which we shall again denote by \(N\).

In the following we shall call \((\nu_q(X), N)\) the ultra-quasi-metrically injective hull of \((X, u)\). The reason for this name will be explained later.
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space and let \(f \in \nu_q(X)\). For all \(x, y \in X\), \((f_1(x) > f_1(y))\) implies that \(f_1(x) \leq u(y, x)\) and \((f_2(x) > f_2(y))\) implies that \(f_2(x) \leq u(x, y)\).
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space and let \(f \in \nu_q(X)\). For all \(x, y \in X\), \((f_1(x) > f_1(y))\) implies that \(f_1(x) \leq u(y, x)\) and \((f_2(x) > f_2(y))\) implies that \(f_2(x) \leq u(x, y)\).

Corollary

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. If \(f = (f_1, f_2)\) is a minimal strongly tight function pair on \((X, u)\), then \(f_1(x) \leq \max\{f_1(y), u(y, x)\}\) and \(f_2(x) \leq \max\{f_2(y), u(x, y)\}\) whenever \(x, y \in X\). Thus \(f_1 : (X, u) \to ([0, \infty), n^{-1})\) and \(f_2 : (X, u) \to ([0, \infty), n)\) are contracting maps (see Corollary above).
Lemma

Suppose that \((f_1, f_2)\) is a minimal strongly tight pair of functions on a \(T_0\)-ultra-quasi-metric space \((X, u)\). Then

\[
f_2(x) = \sup\{u(x, y) : y \in X \text{ and } u(x, y) > f_1(y)\} = \\
\sup\{(f_2)_1(y) : y \in X \text{ and } (f_2)_1(y) > f_1(y)\}
\]

and

\[
f_1(x) = \sup\{u(y, x) : y \in X \text{ and } u(y, x) > f_2(y)\} = \\
\sup\{(f_1)_2(y) : y \in X \text{ and } (f_1)_2(y) > f_2(y)\}
\]

whenever \(x \in X\).
Lemma

Suppose that \((f_1, f_2)\) is a minimal strongly tight pair of functions on a \(T_0\)-ultra-quasi-metric space \((X, u)\). Then

\[
f_2(x) = \sup \{ u(x, y) : y \in X \text{ and } u(x, y) > f_1(y) \} = \sup \{ (f_x)_1(y) : y \in X \text{ and } (f_x)_1(y) > f_1(y) \}
\]

and

\[
f_1(x) = \sup \{ u(y, x) : y \in X \text{ and } u(y, x) > f_2(y) \} = \sup \{ (f_x)_2(y) : y \in X \text{ and } (f_x)_2(y) > f_2(y) \}
\]

whenever \(x \in X\).
Lemma

Let \((f_1, f_2), (g_1, g_2)\) be minimal strongly tight pairs of functions on a \(T_0\)-ultra-quasi-metric space \((X, u)\). Then

\[
N((f_1, f_2), (g_1, g_2)) = \sup_{x \in X} n(f_1(x), g_1(x)) = \sup_{x \in X} n(g_2(x), f_2(x)).
\]
Lemma

Let \((f_1, f_2), (g_1, g_2)\) be minimal strongly tight pairs of functions on a \(T_0\)-ultra-quasi-metric space \((X, u)\). Then

\[N((f_1, f_2), (g_1, g_2)) = \sup_{x \in X} n(f_1(x), g_1(x)) = \sup_{x \in X} n(g_2(x), f_2(x)). \]

Corollary

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Any minimal strongly tight function pair \(f = (f_1, f_2)\) on \(X\) satisfies the following conditions:

\[f_1(x) = \sup_{y \in X} n(u(y, x), f_2(y)) = \sup_{y \in X} n(f_1(y), u(x, y)) \]

and

\[f_2(x) = \sup_{y \in X} n(u(x, y), f_1(y)) = \sup_{y \in X} n(f_2(y), u(y, x)) \]

whenever \(x \in X\).
Proposition Let $f = (f_1, f_2)$ be a strongly tight function pair on a T_0-ultra-quasi-metric space (X, u) such that

$$f_1(x) \leq \max\{f_1(y), u(y, x)\} \text{ and } f_2(x) \leq \max\{f_2(y), u(x, y)\}$$

whenever $x, y \in X$.
Proposition Let $f = (f_1, f_2)$ be a strongly tight function pair on a T_0-ultra-quasi-metric space (X, u) such that
\[
f_1(x) \leq \max\{f_1(y), u(y, x)\} \text{ and } f_2(x) \leq \max\{f_2(y), u(x, y)\}
\]
whenever $x, y \in X$. Furthermore suppose that there is a sequence $(a_n)_{n \in \mathbb{N}}$ in X with $\lim_{n \to \infty} f_1(a_n) = 0$ and $\lim_{n \to \infty} f_2(a_n) = 0$. Then f is a minimal strongly tight pair.
Proposition Let \(f = (f_1, f_2) \) be a strongly tight function pair on a \(T_0 \)-ultra-quasi-metric space \((X, u)\) such that

\[
f_1(x) \leq \max\{f_1(y), u(y, x)\} \quad \text{and} \quad f_2(x) \leq \max\{f_2(y), u(x, y)\}
\]

whenever \(x, y \in X \). Furthermore suppose that there is a sequence \((a_n)_{n \in \mathbb{N}}\) in \(X \) with \(\lim_{n \to \infty} f_1(a_n) = 0 \) and \(\lim_{n \to \infty} f_2(a_n) = 0 \). Then \(f \) is a minimal strongly tight pair.
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\), the pair \(f_a\) belongs to \(\nu_q(X, u)\).
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\), the pair \(f_a\) belongs to \(\nu_q(X, u)\).

Theorem

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(f \in \nu_q(X, u)\) and \(a \in X\) we have that \(N(f, f_a) = f_1(a)\) and \(N(f_a, f) = f_2(a)\). The map \(e_X : (X, u) \rightarrow (\nu_q(X, u), N)\) defined by \(e_X(a) = f_a\) whenever \(a \in X\) is an isometric embedding.
Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(a \in X\), the pair \(f_a\) belongs to \(\nu_q(X, u)\).

Theorem

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. For each \(f \in \nu_q(X, u)\) and \(a \in X\) we have that \(N(f, f_a) = f_1(a)\) and \(N(f_a, f) = f_2(a)\). The map \(e_X : (X, u) \to (\nu_q(X, u), N)\) defined by \(e_X(a) = f_a\) whenever \(a \in X\) is an isometric embedding.

Corollary

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Then \(N\) is indeed a \(T_0\)-ultra-quasi-metric on \(\nu_q(X)\).
Lemma

Suppose that (X, u) is a T_0-ultra-quasi-metric space and $(f_1, f_2) \in \nu_q(X, u)$ such that $f_1(a) = 0 = f_2(a)$ for some $a \in X$. Then $(f_1, f_2) = e_X(a)$.
Lemma

Suppose that \((X, u)\) is a \(T_0\)-ultra-quasi-metric space and \((f_1, f_2) \in \nu_q(X, u)\) such that \(f_1(a) = 0 = f_2(a)\) for some \(a \in X\). Then \((f_1, f_2) = e_X(a)\).

Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Then for any \(f, g \in \nu_q(X, u)\) we have that \(N(f, g) = \sup\{u(x_1, x_2) : x_1, x_2 \in X, u(x_1, x_2) > f_2(x_1) \text{ and } u(x_1, x_2) > g_1(x_2)\}\).
Lemma

Suppose that \((X, u)\) is a \(T_0\)-ultra-quasi-metric space and \((f_1, f_2) \in \nu_q(X, u)\) such that \(f_1(a) = 0 = f_2(a)\) for some \(a \in X\). Then \((f_1, f_2) = e_X(a)\).

Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Then for any \(f, g \in \nu_q(X, u)\) we have that \(N(f, g) = \sup\{u(x_1, x_2) : x_1, x_2 \in X, u(x_1, x_2) > f_2(x_1) \text{ and } u(x_1, x_2) > g_1(x_2)\}\).
Let \((X, u)\) be an ultra-quasi-pseudometric space and for each \(x \in X\) and \(r \in [0, \infty)\) let \(C_u(x, r) = \{y \in X : u(x, y) \leq r\}\) be the \(\tau(u^{-1})\)-closed ball of radius \(r\) at \(x\).
Let \((X, u)\) be an ultra-quasi-pseudometric space and for each \(x \in X\) and \(r \in [0, \infty)\) let \(C_u(x, r) = \{y \in X : u(x, y) \leq r\}\) be the \(\tau(u^{-1})\)-closed ball of radius \(r\) at \(x\).

Lemma

Let \((X, u)\) be an ultra-quasi-pseudometric space. Moreover let \(x, y \in X\) and \(r, s \geq 0\). Then \(C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset\) if and only if \(u(x, y) \leq \max\{r, s\}\).
Let \((X, u)\) be an ultra-quasi-pseudometric space and for each \(x \in X\) and \(r \in [0, \infty)\) let \(C_u(x, r) = \{y \in X : u(x, y) \leq r\}\) be the \(\tau(u^{-1})\)-closed ball of radius \(r\) at \(x\).

Lemma

Let \((X, u)\) be an ultra-quasi-pseudometric space. Moreover let \(x, y \in X\) and \(r, s \geq 0\). Then \(C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset\) if and only if \(u(x, y) \leq \max\{r, s\}\).

Definition

Let \((X, u)\) be an ultra-quasi-pseudometric space. Let \((x_i)_{i \in I}\) be a family of points in \(X\) and let \((r_i)_{i \in I}\) and \((s_i)_{i \in I}\) be families of non-negative reals.
Let \((X, u)\) be an ultra-quasi-pseudometric space and for each \(x \in X\) and \(r \in [0, \infty)\) let \(C_u(x, r) = \{y \in X : u(x, y) \leq r\}\) be the \(\tau(u^{-1})\)-closed ball of radius \(r\) at \(x\).

Lemma

Let \((X, u)\) be an ultra-quasi-pseudometric space. Moreover let \(x, y \in X\) and \(r, s \geq 0\). Then \(C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset\) if and only if \(u(x, y) \leq \max\{r, s\}\).

Definition

Let \((X, u)\) be an ultra-quasi-pseudometric space. Let \((x_i)_{i \in I}\) be a family of points in \(X\) and let \((r_i)_{i \in I}\) and \((s_i)_{i \in I}\) be families of non-negative reals. We say that \((C_u(x_i, r_i), C_{u^{-1}}(x_i, s_i))_{i \in I}\) has the **mixed binary intersection property** provided that \(u(x_i, x_j) \leq \max\{r_i, s_j\}\) whenever \(i, j \in I\).
Let \((X, u)\) be an ultra-quasi-pseudometric space and for each \(x \in X\) and \(r \in [0, \infty)\) let \(C_u(x, r) = \{y \in X : u(x, y) \leq r\}\) be the \(\tau(u^{-1})\)-closed ball of radius \(r\) at \(x\).

Lemma

Let \((X, u)\) be an ultra-quasi-pseudometric space. Moreover let \(x, y \in X\) and \(r, s \geq 0\). Then \(C_u(x, r) \cap C_{u^{-1}}(y, s) \neq \emptyset\) if and only if \(u(x, y) \leq \max\{r, s\}\).

Definition

Let \((X, u)\) be an ultra-quasi-pseudometric space. Let \((x_i)_{i \in I}\) be a family of points in \(X\) and let \((r_i)_{i \in I}\) and \((s_i)_{i \in I}\) be families of non-negative reals. We say that \((C_u(x_i, r_i), C_{u^{-1}}(x_i, s_i))_{i \in I}\) has the **mixed binary intersection property** provided that \(u(x_i, x_j) \leq \max\{r_i, s_j\}\) whenever \(i, j \in I\). We say that \((X, u)\) is **\(q\)-spherically complete** provided that each family \((C_u(x_i, r_i), C_{u^{-1}}(x_i, s_i))_{i \in I}\) possessing the mixed binary intersection property satisfies \(\bigcap_{i \in I}(C_u(x_i, r_i) \cap C_{u^{-1}}(x_i, s_i)) \neq \emptyset\).
Example

The T_0-ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.
Example

The T_0-ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.

Proposition (a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is q-spherically complete if and only if (X, u^{-1}) is q-spherically complete.
Example

The T_0-ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.

Proposition

(a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is q-spherically complete if and only if (X, u^{-1}) is q-spherically complete.

(b) Let (X, u) be a T_0-ultra-quasi-metric space. If (X, u) is q-spherically complete, then (X, u^s) is spherically complete.
Example

The T_0-ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.

Proposition (a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is q-spherically complete if and only if (X, u^{-1}) is q-spherically complete.

(b) Let (X, u) be a T_0-ultra-quasi-metric space. If (X, u) is q-spherically complete, then (X, u^s) is spherically complete.

Proposition Each q-spherically complete T_0-ultra-quasi-metric space (X, u) is bicomplete.
Example

The T_0-ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.

Proposition

(a) Let (X, u) be an ultra-quasi-pseudometric space. Then (X, u) is q-spherically complete if and only if (X, u^{-1}) is q-spherically complete.

(b) Let (X, u) be a T_0-ultra-quasi-metric space. If (X, u) is q-spherically complete, then (X, u^s) is spherically complete.

Proposition

Each q-spherically complete T_0-ultra-quasi-metric space (X, u) is bicomplete.

Theorem

A T_0-ultra-quasi-metric space is q-spherically complete if and only if it is ultra-quasi-metrically injective.
Proposition Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Then \((f_1, f_2) \in \nu_q(X, u)\) implies that \((f_2, f_1) \in \nu_q(X, u^{-1})\). Therefore

\[s : (\nu_q(X, u), N) \rightarrow (\nu_q(X, u^{-1}), N^{-1}) \]

where \(s\) is defined by \(s((f, g)) = (g, f)\) whenever \((f, g) \in \nu_q(X, u)\) is a bijective isometric map. (Indeed the ultra-quasi-metrically injective hull \((\nu_q(X, u), N)\) of \((X, u)\) is isometric to the conjugate space of the ultra-quasi-metrically injective hull \((\nu_q(X, u^{-1}), N)\) of \((X, u^{-1})\).)
Proposition Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Then \((f_1, f_2) \in \nu_q(X, u)\) implies that \((f_2, f_1) \in \nu_q(X, u^{-1})\). Therefore

\[s : (\nu_q(X, u), N) \to (\nu_q(X, u^{-1}), N^{-1}) \]

where \(s\) is defined by \(s((f, g)) = (g, f)\) whenever \((f, g) \in \nu_q(X, u)\) is a bijective isometric map. (Indeed the ultra-quasi-metrically injective hull \((\nu_q(X, u), N)\) of \((X, u)\) is isometric to the conjugate space of the ultra-quasi-metrically injective hull \((\nu_q(X, u^{-1}), N)\) of \((X, u^{-1})\).)

Proposition Let \((X, m)\) be an ultra-metric space. Then \(p(f) = (f, f)\) defines an isometric embedding of \((\nu_s(X, m), E)\) into \((\nu_q(X, m), N)\).
Proposition Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. Then \((f_1, f_2) \in \nu_q(X, u)\) implies that \((f_2, f_1) \in \nu_q(X, u^{-1})\). Therefore

\[
s : (\nu_q(X, u), N) \rightarrow (\nu_q(X, u^{-1}), N^{-1})
\]

where \(s\) is defined by \(s((f, g)) = (g, f)\) whenever \((f, g) \in \nu_q(X, u)\) is a bijective isometric map. (Indeed the ultra-quasi-metrically injective hull \((\nu_q(X, u), N)\) of \((X, u)\) is isometric to the conjugate space of the ultra-quasi-metrically injective hull \((\nu_q(X, u^{-1}), N)\) of \((X, u^{-1})\)).

Proposition Let \((X, m)\) be an ultra-metric space. Then \(p(f) = (f, f)\) defines an isometric embedding of \((\nu_s(X, m), E)\) into \((\nu_q(X, m), N)\).

Proposition Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space. If \(s = (s_1, s_2)\) is a minimal strongly tight pair of functions on the \(T_0\)-ultra-quasi-metric space \((\nu_q(X), N)\), then \(s \circ e_X\) is a minimal strongly tight pair of functions on \((X, u)\).
Proposition The following statements are true for any T_0-ultra-quasi-metric space (X, u).

(a) $(\nu_q(X), N)$ is q-spherically complete.
Proposition The following statements are true for any T_0-ultra-quasi-metric space (X, u).
(a) $(\nu_q(X), N)$ is q-spherically complete.
(b) $(\nu_q(X), N)$ is an ultra-quasi-metrically injective hull of X, i.e. no proper subset of $\nu_q(X)$ which contains X as a subspace is q-spherically complete. The ultra-quasi-metrically injective hull of the T_0-ultra-quasi-metric space (X, u) is unique up to isometry.
Proposition The following statements are true for any T_0-ultra-quasi-metric space (X, u).

(a) $(\nu_q(X), N)$ is q-spherically complete.
(b) $(\nu_q(X), N)$ is an ultra-quasi-metrically injective hull of X, i.e. no proper subset of $\nu_q(X)$ which contains X as a subspace is q-spherically complete. The ultra-quasi-metrically injective hull of the T_0-ultra-quasi-metric space (X, u) is unique up to isometry.

Corollary

The following statements are equivalent for a T_0-ultra-quasi-metric space (X, u):

(a) (X, u) is q-spherically complete.
(b) For each $f \in \nu_q(X)$ there is $x \in X$ such that $f_1 = (f_x)_1$ and $f_2 = (f_x)_2$.
(c) For each $f \in \nu_q(X)$ there is $x \in X$ such that $f_1(x) = 0 = f_2(x)$.
Recall that a quasi-pseudometric space \((X, d)\) is called \textit{totally bounded} provided that the pseudometric space \((X, d^s)\) is totally bounded.
Recall that a quasi-pseudometric space (X, d) is called \textit{totally bounded} provided that the pseudometric space (X, d^s) is totally bounded.

\textbf{Lemma}

\textit{Let (X, u) be a T_0-ultra-quasi-metric space that is totally bounded and let $\epsilon > 0$. Then there is a finite subset E of X such that}

\[\{f_1(x) : f \in \nu_q(X), x \in X, f_1(x) > \epsilon\} \cup \{f_2(x) : f \in \nu_q(X), x \in X, f_2(x) > \epsilon\} = \{u(e, e') : e, e' \in E, u(e, e') > \epsilon\}. \]

\textit{In particular, there is a real $b > 0$ such that for any $f = (f_1, f_2) \in \nu_q(X)$ we have $(f_1(X) \cup f_2(X)) \subseteq [0, b]$.}
Recall that a quasi-pseudometric space \((X, d)\) is called *totally bounded* provided that the pseudometric space \((X, d^s)\) is totally bounded.

Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space that is totally bounded and let \(\epsilon > 0\). Then there is a finite subset \(E\) of \(X\) such that

\[
\{f_1(x) : f \in \nu_q(X), x \in X, f_1(x) > \epsilon\} \cup \{f_2(x) : f \in \nu_q(X), x \in X, f_2(x) > \epsilon\} = \\
\{u(e, e') : e, e' \in E, u(e, e') > \epsilon\}.
\]

In particular, there is a real \(b > 0\) such that for any \(f = (f_1, f_2) \in \nu_q(X)\) we have \((f_1(X) \cup f_2(X)) \subseteq [0, b]\).

Proposition If \((X, u)\) is a totally bounded \(T_0\)-ultra-quasi-metric space, then the \(T_0\)-ultra-quasi-metric space \((\nu_q(X, u), N)\) is totally bounded, too.
Recall that a quasi-pseudometric space \((X, d)\) is called *totally bounded* provided that the pseudometric space \((X, d^s)\) is totally bounded.

Lemma

Let \((X, u)\) be a \(T_0\)-ultra-quasi-metric space that is totally bounded and let \(\epsilon > 0\). Then there is a finite subset \(E\) of \(X\) such that

\[
\{ f_1(x) : f \in \nu_q(X), x \in X, f_1(x) > \epsilon \} \cup \{ f_2(x) : f \in \nu_q(X), x \in X, f_2(x) > \epsilon \} = \\
\{ u(e, e') : e, e' \in E, u(e, e') > \epsilon \}.
\]

In particular, there is a real \(b > 0\) such that for any \(f = (f_1, f_2) \in \nu_q(X)\) we have \((f_1(X) \cup f_2(X)) \subseteq [0, b]\).

Proposition If \((X, u)\) is a totally bounded \(T_0\)-ultra-quasi-metric space, then the \(T_0\)-ultra-quasi-metric space \((\nu_q(X, u), N)\) is totally bounded, too.

Corollary

Let \((X, m)\) be a totally bounded ultra-metric space. Then the completion of \((X, m)\) is isometric to \((\nu_s(X), E)\).
Example

Let $X = \{0, 1\}$ be equipped with the discrete metric u defined by $u(x, y) = 1$ if $x \neq y$, and $u(x, y) = 0$ otherwise. Then (X, u) is not q-spherically complete, although it is spherically complete.
Example

Let $X = \{0, 1\}$ be equipped with the discrete metric u defined by $u(x, y) = 1$ if $x \neq y$, and $u(x, y) = 0$ otherwise. Then (X, u) is not q-spherically complete, although it is spherically complete.
Thank you for attention

Merci