
Examiners’ Report: Final Honour School of Mathematics Part

A Trinity Term 2013

November 13, 2013

Part I

A. STATISTICS

• Numbers and percentages in each class.
See Table 1.

Table 1: Numbers in each class

Range Numbers Percentages %
2013 2012 2011 2010 2009 2013 2012 2011 2010 2009

70–100 49 56 55 50 45 31.21 33.73 33.33 32.89 29.61
60–69 71 78 79 72 69 45.22 46.99 47.88 45.39 47.37
50–59 32 28 23 20 29 20.38 16.87 13.94 13.16 19.08
40–49 4 2 7 10 9 2.55 1.2 4.24 6.58 5.92
30–39 1 2 1 0 0 0.64 1.2 0.61 0 0
0–29 0 0 0 0 0 0 0 0 0 0

Total 157 166 165 152 152 100 100 100 100 100

• Numbers of vivas and effects of vivas on classes of result.
Not applicable.

• Marking of scripts.
All scripts were all single marked according to a pre-agreed marking scheme which was
strictly adhered to. For details of the extensive checking process, see Part II, Section
A.

• Numbers taking each paper.
All 157 take the set of four papers AC1, AC2, AO1 and AO2. Statistics for these papers
are shown in Table 2 on page 2.
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Table 2: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

AC1 157 53.92 12.64 65.29 9.52
AC2 157 68.31 15.10 66.54 10.82
AO1 157 61.15 12.98 64.27 9.21
AO2 157 71.40 13.60 65.97 10.91

B. New examining methods and procedures

None

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

The new Prelims course was introduced this year, so that next year will see the revised Part
A.

D. Notice of examination conventions for candidates

The first Notice to Candidates was issued on 22nd November 2012 and the second notice on
the 1st May 2013.

These can be found at https://www.maths.ox.ac.uk/notices/undergrad/2012-13/part-a, and
contain details of the examinations and assessments. The course Handbook contains the full
examination conventions and all candidates are issued with this at Induction in their first year.
All notices and examination conventions are on-line at http://www.maths.ox.ac.uk/notices/undergrad.
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Part II

A. General Comments on the Examination

The examiners would like to express their gratitude to

• Nia Roderick for overseeing Part A examinations during 2012/13.

• Also Waldemar Schlackow, assisted by Helen Lowe, for continuing to develop the exami-
nations database, responding to examiner requests and providing such a good framework
for the examinations data.

• We would also like to thank Charlotte Turner-Smith, Sandy Patel, Vicky Archibald and
Jessica Sheard for all their sterling work in keeping track of the scripts and marks and
everything else they do during the busy examination period.

• We also thank those assessors who set their questions promptly, took care in checking
and marking them, and met their deadlines. This is invaluable help for the work of the
examiners.

• All the assessors and the internal examiners would like to thank the external examiner
Dr Mark Wildon for his careful reading of the draft papers, scrutiny of the examination
scripts and insightful comments throughout the year.

Timetable

The examinations began on Monday 17th June at 9.30am and ended on Thursday 20th June
at 12.30pm.

Medical certificates and other special circumstances

See Section F

Setting and checking of papers and marks processing

As it is usual practice, questions for AC1 and AC2 were set by the examiners and also marked
by them. The papers AO1 and AO2 were set and marked by the course lecturers. The
setters produced model answers and marking schemes led by instructions from the teaching
committee in order to minimize the need for recalibration.
The internal examiners met in December to consider the questions for AC1 and AC2. The
course lecturers were invited to comment on the notation used and in general on the appropri-
ateness of the questions. Corrections and modifications were agreed by the internal examiners
and the revised questions were sent to external examiner.
In a second meeting the external examiners discussed the comments of the external examiner
and made further adjustments before finalising the questions. The same cycle was repeated in
Hilary term for the Hilary term courses and at the end of Hilary and beginning of Trinity term
for the Trinity term courses. Before questions were submitted to the Examination Schools,
setters were required to sign off a camera-ready copy of their questions.
All examination scripts were collected by the markers from the Mathematical Institute and
returned there after marking. A team of graduate checkers under the supervision of Nia
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Roderick, assisted by Sandy Patel, sorted all the scripts for each paper, cross-checking against
the mark scheme to spot any unmarked questions or part of questions, addition errors or
wrongly recorded marks. Also sub-totals for each part were checked against the marks scheme,
noting any incorrect addition. An examiner was present at all times to authorise any required
corrections.

Determination of University Standardised Marks

The examiners followed the standard procedure for converting raw marks to University Stan-
dardized Marks (USM). The raw marks are totals of marks on each question, the USMs are
statements of the quality of marks on a standard scale. Here 70 corresponds to ‘first class’,
50 to ‘second class’ and 40 to ‘third class’. In order to map the raw marks to USMs in a way
that respects the qualitative descriptors of each class the standard procedure has been to use
a piecewise linear map. It starts from the assumption that the majority of scripts for a paper
will fall in the USM range 57-72, which is just below the II(i)/II(ii) borderline and just above
the I/II(i) borderline respectively. In this range the map is taken to have a constant gradient
and is determined by the parameters C1 and C2, that are the raw marks corresponding to
a USM of 72 and 57 respectively. The guidance requires that the examiners should use the
entire range of USMs. Our procedure interpolates the map linearly from (C1, 72) to (M, 100)
where M is the maximum possible raw mark. In order to allow for judging the position of
the II(i)/III borderline on each paper, which corresponds to a USM of 40, the map is inter-
polated linearly between (C3, 37) and (C2, 57) and then again between (0, 0) and (C3, 37). It
is important that the positions of the corners in the piecewise linear map are not on the class
borderlines in order to avoid distortion of the class boundaries. Thus, the conversion is fixed
by the choice of the three parameters C1, C2 and C3, the raw marks that are mapped to USM
of 72, 57 and 37 respectively.
The examiners chose the values of the parameters as listed in Table 3 guided by the advice from
the Teaching Committee and by examining individuals on each paper around the borderlines.

Table 3: Parameter Values

Paper C1 C2 C3

AC1 65 41 19
AC2 80 53 24
AO1 75 48 23
AO2 83 60 27
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Table 4 gives the resulting final rank and percentage of candidates with this overall average
USM (or greater).

Table 4: Rank and percentage of candidates with this overall
average USM (or greater)

Av USM Rank Candidates with this USM or above %

90 1 1 0.64
86 2 2 1.27
85 3 3 1.91
83 4 5 3.18
81 6 8 5.10
80 9 10 6.37
79 11 13 8.28
78 14 14 8.92
77 15 16 10.19
76 17 18 11.46
75 19 26 16.56
74 27 31 19.75
73 32 33 21.02
72 34 38 24.20
71 39 41 26.11
70 42 49 31.21
69 50 54 34.39
68 55 63 40.13
67 64 73 46.50
66 74 79 50.32
65 80 87 55.41
64 88 95 60.51
63 96 104 66.24
62 105 110 70.06
61 111 115 73.25
60 116 120 76.43
59 121 130 82.80
58 131 132 84.08
57 133 139 88.54
55 140 141 89.81
54 142 142 90.45
53 143 148 94.27
51 149 149 94.90
50 150 152 96.82
48 153 155 98.73
41 156 156 99.36
35 157 157 100
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B. Equal opportunities issues and breakdown of the results by gender

Table 5, page 6 shows the performances of candidates broken down by gender.

Table 5: Breakdown of results by gender

Range Total Male Female
Number % Number % Number %

70–100 49 31.21 40 34.78 9 21.43
60–69 71 45.22 54 46.96 17 40.48
50–59 32 20.38 18 15.65 14 33.33
40–49 4 2.55 2 1.74 2 4.76
30–39 1 0.64 1 0.87 0 0
0–29 0 0 0 0 0 0

Total 157 100 115 100 42 100

C. Detailed numbers on candidates’ performance in each part of the exam

Table 6 (and continued in Tables 7 and 8) give the detailed performance of candidates’ on
each question of the exam.

Table 6: Analysis by question

Paper Question rawAvg Avg Std Used Unused
Number Used Dev

AC1 Q1 5.85 5.85 2.29 157 0
AC1 Q2 5.35 5.35 2.42 155 0
AC1 Q3 5.35 5.35 2.68 155 0
AC1 Q4 7.76 7.76 1.63 156 0
AC1 Q5 6.57 6.57 2.24 156 0
AC1 Q6 7.26 7.26 1.95 156 0
AC1 Q7 7.46 7.46 2.03 155 0
AC1 Q8 3.75 3.75 2.09 154 0
AC1 Q9 5.06 5.06 2.80 155 0

6



Table 7: Analysis by question

Paper Question rawAvg Avg Std Used Unused
Number Used Dev

AC2 Q1 14.94 15.60 5.94 117 7
AC2 Q2 15.26 18.53 8.48 17 6
AC2 Q3 15.63 16.07 6.06 59 6
AC2 Q4 16.55 18.24 5.07 17 5
AC2 Q5 17.43 17.60 4.25 101 3
AC2 Q6 16.30 17.85 5.84 48 9
AC2 Q7 7.43 9.5 4.73 18 22
AC2 Q8 18.67 18.77 4.47 149 1
AC2 Q9 15.63 16.91 7.06 102 11

AO1 A1 5.47 5.58 2.27 64 4
AO1 B1 8.03 8.03 1.39 39 0
AO1 C1 6.72 6.98 2.95 91 5
AO1 D1 7.09 7.18 2.10 89 2
AO1 D2 6.68 6.71 2.06 84 1
AO1 E1 5.73 5.78 1.90 83 2
AO1 E2 6.08 6.56 3.11 54 8
AO1 F1 7.87 7.87 2.50 15 0
AO1 G1 6.35 6.46 2.56 113 5
AO1 H1 5.64 5.64 2.60 61 0
AO1 J1 7.32 7.44 2.01 88 2
AO1 K1 5.81 5.81 1.60 72 1
AO1 K2 5.73 5.88 2.92 40 4
AO1 M1 6.96 7.01 2.27 116 2
AO1 M2 4.82 5.28 3.19 88 12
AO1 O1 7.74 7.74 2.17 80 0
AO1 O2 7.14 7.27 2.38 75 2
AO1 P1 9.14 9.14 1.43 74 0
AO1 P2 8.31 8.31 1.72 77 0
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Table 8: Analysis by question, continued

Paper Question rawAvg Avg Std Used Unused
Number Used Dev

AO2 A2 14.65 15.5 4.61 18 2
AO2 B2 13.52 14.79 6.00 19 4
AO2 C2 19.18 19.75 4.86 63 4
AO2 D3 15.73 17.11 6.21 27 6
AO2 D4 17.83 18.09 4.09 22 1
AO2 E3 15.23 17.03 5.39 32 7
AO2 E4 17.87 18.22 5.48 36 2
AO2 F2 21.00 21.00 5.23 4 0
AO2 G2 11.24 13.75 6.05 24 10
AO2 H2 12.75 12.75 3.86 4 0
AO2 J2 11.06 13.09 5.11 11 5
AO2 K3 18.08 18.10 4.10 60 1
AO2 K4 17.74 18.44 5.43 39 3
AO2 M4 12.63 13.74 5.39 43 9
AO2 M5 17.14 18.48 5.69 61 8
AO2 O4 20.35 20.86 5.00 59 3
AO2 O5 19.22 19.53 4.28 36 1
AO2 P3 14.47 16.22 6.14 41 8
AO2 P4 20.93 21.17 4.25 29 1

D. Recommendations for Next Year’s Examiners and Teaching Committee

None.
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E. Comments on sections and on individual questions

The following comments were submitted by the assessors.

AC1

Algebra

Question 1: [Dual spaces] In part (a), many candidates omitted to comment on why V ′ is
a vector space. Generally, the question seemed reasonable.

Question 2: [Adjoints/ projections] In part (b), many solutions showed only one inclusion
for U = W⊥. Otherwise, it seemed OK.

Question 3: [Euclidean domains] In part (b), many solutions were incomplete: sometimes
the existence of such d was not explained, and some solutions did not say why the remainder
term was in I. But again, the question seemed reasonable.

Analysis

Question 4: Parts (a)-(c) of this short question were very straightforward and were mostly
answered well. Most used the Cauchy–Riemann equations for (b) (sometimes losing marks
by forgetting to check continuity of the partial derivatives); some used the definition of a
holomorphic map, which was faster. Those who realised that they could use (b) as well as
(c) to answer (d) finished the question very easily; others gave more complicated answers to
(d), only some of which were correct. Many looked for a Möbius transformation taking three
points on the line bounding U1 to three points on the circle bounding U2, without noticing
that 0 should also be sent to ∞.

Question 5: This question was very similar to one on a problem sheet. It was mostly
quite well done, although lots of candidates used a contour with an unnecessary indentation
around the origin, which made the question longer than it should have been. Many also did
not spot the relationship between the final integral and the real part of the preceding integral.

Question 6: Many candidates found the bookwork part of this question more taxing than
the straightforward application, but on the whole it was well answered.

Differential Equations

While there were 10s scored on all of these problems, with one candidate scoring 30 on the
three, these were evidently lower-scoring than in recent years.

Question 7: A question built around Picard’s Theorem, this was generally well-done; the
definition of the norm made difficulties for some candidates but most candidates seemed to
get the idea quite rapidly.
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Question 8: A question on the classification of second-order linear PDEs, this was the least
well-done of the three. Quite a few candidates could not do the classification correctly; most
did not find that the solution from y < 0 vanishes on the axis and so could not find the
solution in y > 0.

Question 9: A question on Laplace transforms; a very common error was to confuse ‘the
derivative of the Laplace transform’ with ‘the Laplace transform of the derivative’.

AC2

Algebra

Question 1: [Primary Decomposition Theorem] This was the most popular question, the
large majority of candidates chose it. Part (d) seemed to be the most difficult part (fortu-
nately the typo did not cause confusion). Generally, there were many good solutions.

Question 2: [Inner products, Bessel Inequality] Very few candidates did this question.

Question 3: [Chinese Remainder Theorem and applications ] This also was a popular
question, and there were many good solutions. Though, in part (b) several candidates first
proved that the kernel of the relevant map defined on R was I ∩ J , and subsequently tried to
prove that the map was one-to-one.
The second half of part (d) was probably the most difficult part.

Analysis

Question 4: This question was not popular; part (d) looked off-putting, although in fact
with the hint it was very straightforward. Only a few candidates successfully completed (e)
by subdividing an arbitrary triangle in U into triangles completely contained in either the
closed upper half plane or the closed lower half plane, approximating these by triangles in U+

or U− and using (b), (d) and (c).

Question 5: This was the most popular of the AC2 Analysis questions. Some candidates
gave very good and complete answers though most were able to answer some parts well but
not others. Many got bogged down in estimates in (d), and with hindsight it might have been
helpful to ask for g(z) to be rewritten as π(e2πiz + 1)/(e2πiz − 1) and to ask for a bound valid
where Im(z) ≥ 1, as well as stressing the periodicity of g(z) and the fact that g(−z) = −g(z).

Question 6: This question was less popular than Question 5 but was well answered by
many candidates. It was however disturbing to see how many believed that in order to show
that a function f is constant, it is enough to prove that g◦f is constant where g is not constant.
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Differential Equations

Question 7 on characteristics, was attempted by relatively few students, less than four
dozen. The first part of the question was done quite well by most of the students. The core of
the question was devoted to the determination of the domain of definition (located between
y1(x) = |lnx| and y2(x) =

√
1 + ln2x), obtained in several steps. Many students found the

upper bound, and some part of the lower bound, either for x < 1 or for x > 1, but none of
them put all elements together to obtain the full answer. Overall, answers were satisfactory.
The most common error was to forget that along characteristics all three coordinates are
functions, thus the anti-derivative of sz(s, t) isn’t s2z(s, t)/2 + c for example, but this wasn’t
that frequent.

Question 8 on phase planes, was taken by many students, more than 80% of the cohort. It
turned out that it posed very little difficulty to most of the students who took it, and a lot of
them obtained high marks. The bulk of the work was to classify the various critical points.
Apart from calculations mistakes, and confusions between the definitions of the various types
of nodes, this was done well. The last question was rarely done very well: in particular a
small number of students drew sketches compatible with the null-clines : this was far more
relevant for a sketch than the precise evaluations of the asymptotes of to the trajectories near
saddles.

Question 9 on Green functions, was also quite popular, and chosen by a large proportion of
the cohort, and done well by most of them. It was difficult to do the question well if it was
not started correctly, and the computation of the Green function sabotaged by silly mistakes
(typically, exp(x2) × exp(x2) 6= exp(x2)). The proof of the weak and strong maximum prin-
ciple (to call the positivity property by its name) was often done well for the weak part, and
less well for the strong part. It was an easy question as well, as the marks were relatively
high on average.

AO1 and AO2

A: Introduction to Fields

A1: Across the various Honour Schools there were approximately 95 attempts at this ques-
tion. Almost all candidates earned full marks for the definitions in Part (a). In Part (b)
however a small number of candidates failed to read the question properly and sought to
prove the Tower Theorem; a not so small number lost marks by failing to do the relevant
elementary linear algebra from Mods correctly.
In Part (c) candidates who failed to include the converse of (b) (that if |K : F | and |L : F |
are finite then so is |L : F |) forfeited a mark. What was expected in the last part was some-
thing reasonably clear along the lines: the construction of a new point using ruler & compass
involves finding the point of intersection of two lines, of a line and a circle, or of two circles; if
the coordinates of known points or lengths of lines already constructed lie in a field F then the
coordinates of a new point are obtained by solving linear or quadratic equations and therefore
lie in an extension E of F of degree at most 2; consequently coordinates of constructible points
lie in iterated quadratic extensions of Q contained in R; by the Tower Theorem the degree
of such a field extension of Q is 2m for some natural number m and therefore (by the Tower
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Theorem again) the coordinates of any constructible point are algebraic numbers of degree a
power of 2; to double a cube one would need to construct a line of length 3

√
2, of which the

degree over Q is 3, and since 3 does not divide any power of 2 this is not possible by ruler &
compass methods. Disappointingly few candidates related the geometry to the algebra. Very
few realised that the word ‘coordinates’ must be relevant and spoke of adjoining points to a
field, a category error that could have been avoided. There were, however, a few excellent
answers.

A2: There were 26 answers to this question. The first part was generally well done, though
a few candidates used unnecessarily sophisticated machinery to show that there must be just
three irreducible monic polynomials of degree 2 over F3 before identifying those three. The
second part was also well done. Most, but not quite all, candidates came to grief on the third
part, however. One candidate, but fortunately only one, thought that e2πi/5 is a primitive
+ fifth root of unity in F81. Only three candidates saw that it would be a good idea to
investigate a16; unfortunately, two of these made the unwarranted assumption that a must be
a generator of the multiplicative group F×81. One candidate came very close with an element
whose 5th power turned out to be −1, so that it was a primitive 10th of unity.

B: Group Theory

B1/B2: The short question was attempted by 51 candidates, who generally did very well on
this easy question, scoring an average of 7.9 points. One standard way to drop a point was in
the last part, giving insufficient argument for why there were only two possible configurations.
By contrast, the long question was found surprisingly hard, with 27 attempts at an average
of only 13.3 marks (53%). There were several candidates who attempted the easy bookwork
part and gave up when the going got rough, but even among those candidates who stayed
with the question, there was a wide range of levels of understanding of the orbit structure of
a group action.

C: Number Theory

I would like to make one general remark. I think it would be very helpful for the students to
know how many marks each section of the question receives. There were some scripts that
wasted a lot of time and effort to parts of the question that were only going to attract 1 or 2
marks. It would have been clear to them if they would have known what the total mark for
that particular part was.

C1: There were 131 scripts. 36 of these attracted marks of 4 and below; 76 attracted marks
of 7 and above.
The exam consisted entirely of material that had been seen before. Some students had not
properly revised the material or assumed that the material of the last lecture (RSA) was not
important for the exam. Many proofs of Euler’s Theorem were unnecessary lengthy.

C2: There were 91 scripts. 9 of these attracted marks of 10 and below; 53 attracted marks
of 20 and above; 67 marks of 18 and above.
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Part (a) was generally well-done but some candidates did not remember the formula for the
Legendre symbol (2/p). All in all 9 marks were assigned to this part. Part (b) was the most
challenging one though it only attracted 6 marks. Some students missed the point of the
question that the QRL was to be extended to non-primes. The proof needs to use the QRL
for primes and the fact that modulo 2 (ab− 1)/4 = (a− 1)(b− 1)/4. Part (c) was generally
done well with candidates being pleasingly fluent in the different rules and tricks when cal-
culating the Legendre and Jacobi symbols. This part attracted 10 marks.

D: Integration

The standard was generally very respectable. Most candidates were prepared to try to justify
their arguments according to the spirit of the course. Only a few appeared to be really weak,
and here were some excellent ones.

D1/D2: Solutions to D1 and D2 were quite strictly marked. In D1, a few candidates tried
to use the definition of integrals from the Etheridge notes; in principle this was acceptable,
but it was much easier to use the simpler definition given in lectures. The most common
loss of marks was for failing to specify that the integral of the absolute value, or the positive
and negative parts, of g must be finite. In both questions, calculations were mostly correct;
measurability was mentioned in more solutions than usual, although many still lost a mark
for ignoring it.

D3/D4: D3 and D4 were not very popular. This was surprising for D3 which was a question
of a standard form, although the very last part required candidates to treat the cases β < 1/2
and β > 1/2 separately (a few did so). D4 was a non-standard question, involving topics
which were close to some lectures near the beginning of the course and some near the end.
The Lebesgue space L1 appeared for the first time in an examination at this level. A few
candidates saw that Fatou’s lemma should be invoked to justify the very final part.

E: Topology

E1: This question successfully assessed the students’ understanding of the product topology
and of the notion of a basis for a topology. The majority of students were able to answer
parts (a), (b)(i) and (b)(ii). Fortunately, only very few students asserted in these parts that
every open set in the product topology is of the form U ×V , which has been a common error
in previous years. But many found (b)(iii) challenging, and there were many attempts at
counter-examples, whereas the question has a positive answer.

E2: Many students find the quotient topology rather challenging, and so this question was
comparatively difficult. In part (b), the goal is clearly to find a continuous surjection from S2

to Y , but unfortunately, many students found this difficult. When students found the correct
equivalence relation but without fully accurate reasoning, I gave considerable partial credit.

E3: This question has a more analytic flavour than most questions on this course. The first
parts were fairly straightforward bookwork, and were generally very well done. But these were
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counterbalanced by some more challenging later questions. The final one is quite difficult. It
is best attempted by using the observation that a real-valued sequence is convergent iff it is
Cauchy. There were a few really outstanding solutions.

E4: This question was comparatively long, but it was very popular, possibly because it had
inviting and accessible parts throughout it. Unsurprisingly, (c)(iii) was found to be the most
challenging. Its solution required the use of both (c)(ii) and (b). I was particularly impressed
by the large number of high quality attempts at this question.

F: Multivariable Calculus

F1: A straightforward question on total derivative, but with quite a few parts, leading up to
a question on the Inverse Function Theorem, this was generally well-done. The most common
error was in finding the constant in (b)(ii) but this only carried one mark so there were a lot
of 9’s.

F2: A question on total derivative and Lagrange Multipliers this attracted only four attempts;
however three of these were impressively sophisticated.

G: Calculus of Variations

G1: This question was a popular choice. Almost all candidates showed good understanding
of the basic steps involved in deriving the Euler-Lagrange equations. However, many were
confused about applying them to the case of two independent variables, many using a single
parameter α to govern variation in both y and z, and some a single test function η for both
y and z. The concept of natural boundary conditions was generally understood and applied
satisfactorily.
Almost all candidates had the right idea about how to obtain the Euler-Lagrange equations
for the problem. Those who were at home with constant-coefficient equations could easily
write down the solution, and they typically obtained full marks for the question. Too many,
however, made elementary errors of sign which gave rise to the wrong differential equations.
Many also made very heavy weather of solving the equations.

G2: Virtually all candidates could start with correct Euler-Lagrange equations, and most
could see the constancy of L from the Beltrami identity. Explaining why

√
L generates the

same equations was skipped by most candidates. When addressing the geodesics on the
surface of revolution, many candidates went back to the formulation with the parameter t,
instead of realising that the point of the preceding work had been to eliminate t. This would
have been all right if they had checked the two equations that then arise, and realised that
this method was providing extra information about η(t), ζ(t) (i.e. constant speed on the sur-
face). Instead, they got lost. Very few simply wrote down the Euler-Lagrange equation (for
ζ(η), η(ζ) in the two cases), and checked that it was satisfied by the stated solutions.
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H: Classical Mechanics

H1: A surprising number of candidates started with a K.E. calculation which ignored the
nature of the rod and treated it as a point mass. However, the concept of the Lagrangian
method was well understood. Virtually all candidates showed a clear understanding that
the constancy of T + V had to be properly derived from the form of the Lagrangian, and
everyone saw the role of the ignorable coordinate φ. Very few candidates, however, were able
to describe the motion with constant θ.

H2: Only four candidates attempted this question. The bookwork was reasonably well learnt
and reproduced, but the rigid body in the last part of the question defeated them all. There
was no attempt to break the problem down by using the Parallel Axes theorem.

J: Quantum Theory

J1: This question required candidates to show that the given Gaussian wave packet satisfies
the free Schrodinger equation. A similar question appears on the “Additional questions”
problem sheet. Most candidates correctly wrote down the time-dependent Schrodinger equa-
tion, and gave a correct definition of stationary state, although a common error was to give
the wrong explanation for the Gaussian wave packet not being a stationary state. Many
candidates correctly computed the partial derivatives to conclude that the potential is zero,
although factors often went missing.

J2: Many attempts at this question were somewhat disappointing. The question essentially
combines two questions from the problem sheets, involving a 3d harmonic oscillator potential,
with a constant background electric field also present. Part (a) of the question requires both
separation of variables and completing the square, which then allows one to use the given
one-dimensional result. This part of the question was on the whole very well done, although
only a small number of candidates computed the correct degeneracy (despite this being on a
problem sheet). Part (b) was only well-answered by one candidate. I think many candidates
simply got a bit lost, not realizing that they had to return to the one-dimensional oscillator
to determine the form of the first few (non-normalized) Hermite polynomials (which should
at least be familiar from lectures). Part (c), when attempted, was generally answered well.

K: Fluid Dynamics and Waves

K1: The first part was mostly done well by all candidates, though some left the RHS of the
equation giving dc/dt for two general points c1 and c2 instead of specialising to c and −c.
Only a handful of candidates thought to introduce polar coodinates for the second part. One
otherwise perfect solution was sadly marred by a (very rare) confusion over the sign of the
point source. I gave substantial partial credit for candidates who formulated equations for
dy/dx by eliminating t, especially if they knew that y = xv(x) was then the right substi-
tution. One candidate successfully computed an algebraic relation between y and x for the
trajectories, aptly commenting that it was “not very nice”.
Some candidates, perhaps confused by the letter c, though I used this notation in lectures,
treated the RHS of dc/dt as constant and obtained straight line trajectories. Others for-
mulated equations for dx/dt and dy/dt that held only when c was real. I gave substantial
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partial credit to candidates who obtained the correct expression for r(t) even if they thought
they had found x(t), and to one candidate who drew qualitatively correct sketches in lieu of
calculations.
Many candidates could guess/intuit the correct answer to the final part without finding the
trajectories.

K2: This was generally well done, though one candidate had the phase and group velocities
the wrong way round. I was overly generous in assigning 4 marks to computing the group
velocity. Almost all candidates gave a bare formula with little attempt to intepret or simplify
it as preparation for the next part.
Most candidates verified that the stationary point was a minimum, either by computing the
second derivative or by global arguments (as I expected) so I only gave partial credit to those
who only solved for dc/dk=0.
I was generous to candidates with overly complicated (but correct) expressions for the group
velocity at the critical wavenumber. Many did not collect powers of the different variables,
and some lost one of the two nested square roots.
In the last part, a number of candidates had the two cases the wrong way round, possibly
through guessing the likely answer in lieu of calculation, and some thought the wave packet
expanded or contracted in the two cases.

K3: The proof of Blasius’ theorem was done well by almost all candidates, though quite
a few had trouble with the overall sign, and some had the sign for the pressure wrong in
Bernoulli’s equation. A few proved the latter, although this was not expected (perhaps this
should have been stated, as it was in question K4). Some candidates asserted that dw = dw
on ∂B without explanation, for which I deducted a mark. Most at least wrote that Imw = ψ
was the streamfunction, and so constant on ∂B.
For the second part, most candidates wrote down w = (U − iV )z − iΓ/(2π) log z without
realising that this was just the far-field asymptotic behaviour. Some assumed the body was a
circle and used the Milne-Thompson circle theorem. Only a minority produced an argument
equivalent to the proof of the Kutta–Joukowski theorem given in lectures, deforming the
original contour ∂B to a large circle and using the above asymptotic form of w for large z.
I gave roughly half marks (out of 7 available for this part) to candidates who correctly
evaluated Blasius’ integral for w = (U − iV )z − iΓ/(2π) log z around ∂B.
A few candidates had serious difficulty with evaluating the contour integral using residues.
A few candidates wrote down correct formulae for the lift and drag without calculation.
A substantial minority did not realise that “lift” and “drag” are defined relative to the on-
coming flow. Some ended their answer with expressions for Fx and Fy, or calculated the
forces parallel and perpendicular to the body instead.

K4: There was regrettably a mistake in the question. The T should have been T/ρ in the
third boundary condition. One candidate correctly pointed out the dimensional inconsistency
of the given expression, and a few gave the correct expression with T/ρ without comment.
The majority arrived at the expression in the question, with some noting that they had set
ρ = 1 to achieve it.
I was looking for some mention of curvature for the “geometrical intepretation” in the first
part.
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Most candidates derived the linearised boundary conditions correctly. My original mark
scheme assigned 2 marks to each step, making 12 in total. Where applicable I gave 12 marks
overall, rather than 2 marks at each intermediate stage. Some candidates ignored the U2 term
when linearising Bernoulli’s equation without choosing a suitable F (t) to cancel it. A few
candidates asserted that the pressure must be continuous across the interface despite having
been given information to the contrary in the question.
Most candidates wrote down correct functional forms for φ±, but many made calculational
errors with minus signs and powers of k when combining the three boundary conditions into
a dispersion relation. A few candidates left e−ky expressions in their boundary conditions,
forgetting that they were applied on y = 0.
Some candidates found ω but did not write down an expression for the phase speed c = ω/k.
Many candidates correctly observed that the flow became unstable when U2 > 2(T/ρ)k, but
few commented on the mean of the two phase speeds being U/2, the same as the mean of the
background fluid velocities.

M: Probability

M1: Reasonable answers on the whole. In part (c), too many candidates took the probability
of the union of two events to be the sum of the two probabilities, even though the events
are not disjoint. Units (variously chosen to be minute/5 minutes/15 minutes/hour) caused
confusion at times; for full credit in (d), units should be specified somewhere.

M2: This question caused more difficulty than intended. Parts (a) and (b) were question 4 of
the first problem sheet (on the problem sheet, the distribution in part (b) was given). In (b),
a fair few candidates argued along the lines that from (a), 1−Mn converges in probability to
0, hence 1−Mn converges in distribution to 0, hence n(1−Mn) converges in distribution to
n× 0 = 0.
For part (c), the central limit theorem says that the distribution of Sn concentrates around
its mean, and that the typical deviations of Sn are of order

√
n. The presentation here was

unfamiliar though, and many candidates did not succeed. Many gave the central limit theo-
rem more or less correctly, but couldn’t go from the fact that Sn−n/2

cn1/2 converges in distribution

to seeing that P
(
Sn < n/2 + n1/2

)
has a non-degenerate limit.

M4: This question was not well answered on the whole. In part (d), many candidates arrived
correctly at answer

∑
kαk <∞, but when asked to interpret this, didn’t observe that

∑
kαk

is simply the mean of the distribution (αk).
The calculation in part (e) was generally done well.
Good answers to part (f) were rare. The mean return time m1 is twice the mean of a
geometric(1/2), giving m1 = 4, so in the stationary distribution π1 = 1/4. The result that

p
(n)
11 → π1 applies only for aperiodic chains. Quite a few candidates asserted that the chain

was aperiodic, even though this contradicted their own answer to (c); here p
(n)
11 is 0 whenever

n is odd, so that 0 is one limit point of the sequence. For the other, consider the two-step
chain X0, X2, X4, . . . . This chain is aperiodic, and state 1 has stationary probability 1/2.

M5: This question posed few problems for well-prepared candidates. The general stan-
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dard of answers was high. In (b)(i), too many candidates still can’t reliably arrive at
Var(Sn) = nVar(Xi). In (b)(ii), writing down the first few terms and comparing them
numerically was not convincing enough; it’s not hard to write the general term. Part (b)(iii)
involved assembling a few different steps, but the ideas were familiar from an example in
lectures and many succeeded well.

O: Statistics

O1: Some answers gave the “expected information” as something that depended on (X1, . . . , Xn)
or (x1, . . . , xn) – both of these are errors. However, most candidates made good attempts at
the whole question and got good marks.

O2: This was a question on material that was new in the course this year (Bayesian infer-
ence). Most candidates were comfortable with this material and did the question well. Some
lost marks in (a) by finding the posterior for a sample of size 1, rather than for a sample of
size n.

O4: Many candidates did this question accurately and well, and scored high marks. The
most common place to lose marks was when sketching the power function in (e).

O5: Most candidates did (a) and (b) well. In (c) a common error was to get the degrees of
freedom wrong for the modified χ2-test. Part (d) is to test whether or not a Poisson model
is a good fit to the data given. Some candidates ended by saying things like “we do (or do
not) want to reject H0,” but did not make it clear what they meant by this – i.e. is a Poisson
model an acceptable fit, or not? (It is.) It is better to finish by saying something like “the
fit of a Poisson model is fine” (and if talking about an H0, to say what that H0 means). In
some answers it was unclear whether the p-value had been identified as 0.82 or as 0.18.

P: Numerical Analysis

These two short problems proved quite manageable for the students, with 25 out of 103 get-
ting full points of 10+10.

P1: (a) Almost all students knew the formula. (b) Most could prove uniqueness. (c) Many
could write down the correct formula for the weights

P2: (a) Almost all students found the upper-triangular factor correctly. (b) Most found
the lower-triangular factor correctly. (c) Most wrote down a correct counterexample, though
usually more complicated than necessary. In a fair nuber of cases they had some difficulty
producing a good *proof* that that there could be no LU factorization of this matrix.

These two longer problems provided a good range of scores. Overall, P3 proved a bit harder
than P4, though more students attempted it.
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P3: (a) Many defined orthogonality without mentioning anything about pk being a polyno-
mial of degree k; these got 2/5 points. (b) Many people got the right answer on this calculation
(sometimes after many pages of figuring). (c) A good number got this right, though just a
minority set up the induction argument with real clarity. It was startling, however, how many
people utilized one or the other of two elementary falsehoods: (1) if a function f is not even,
then f must be odd; if the integral of a function f is zero, then f must be odd.

P4: (a) Everybody got this. (b) Almost everybody got this. (c) Many got this, though quite
a few confused matrices Q and vectors qj. (d) Many got this too, the hardest part of the
problem. (e) People did well on this.
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