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Introduction to the theory

The wind-driven sea is one of the most common natural phenomena that we can
observe by our own eyes without special devices. Developing of its analytical theory
is possible due to presence of a natural small parameter: the ratio of atmospheric and

water densities. The density of air depends on temperature and the level of moisture.
It is reasonable to put
€ — Patm

Puw
Let n(7,t), 7= (x,y) be elevation. In the linear approximation

~1.2.1073

n(r,t) = ReWe "whit! b

Here W is an arbitrary complex amplitude, wi = \/g k + o k3 is the dispersion law, ¢
is the gravity acceleration, and o is the surface tension. In the presence of wind

)
wk%wari%, Vi ~ €
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The smallness of € leads to the smallness of the parameter of nonlinearity, which
is an average steepness (. It could be defined by many ways, the most "scientific”
definition is:

2 2
pe = (V)

The oceanographers prefer another definition of 1, thereafter we denote it as p):

In the stationary sea the autocorrelation function of elevation

A

F(r) = F(=1) = (n(t)n(t + 1))

does not depend on t.
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The cosine Fourier transform of the function of elevation
F(w) = —/ F(7) coswTdr
0

is traditionally called the energy spectrum of the surface. The mean squared elevation
5

i) = E(0) = / " F(w) dw

Spectrum F(w) has dimension L?T. Why is it called the energy spectrum? Let us
introduce function

E(w) — png(w),
that has dimension M /T, the same as the spectral distribution of energy density.
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In many experiments the subject of measurements is the spatial spectrum

I, = 2m(|nx| ")k

As far as 11 is small, one can use expansion in powers of (1 as a basic analytic technique
for study of nonlinear wave interaction. Performing this expansion we realize that we
have to deal with resonant interactions of certain amount of waves that form " a resonant
group”. For gravity waves on two-dimensional plane the most important groups are
quadruplets of waves with wave vectors kl, k‘g, kg, k4, satisfying resonant conditions

E1+E2 = E3+E47

Wiy T Wey = Wy T+ Wiy

— Typeset by FoilTEX — 4



All these three processes can be described by a single kinetic equation, first derived
by Hasselmann in 1962 and written for the spectrum of "wave action”, N(k, 7, t):

ON O
+ a—j»VN:Snl+Szn+Sdzss
ot  Hk

In this equation w = /gk is the dispersion law for gravity waves, \S;,, is the input from
wind, Sgiss Is the dissipation due to white-capping, and S,,; is the collision term that
describes four-wave resonant interaction.

The exact definition of N will be done below.

~ w
I, = 7’“ (Ny, + N_y) 2|k

I, is the "refined” spatial spectrum.
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The main message of this talk is the following:

In the most important cases, in the real sea the four-wave nonlinear interaction is
the dominating process!

It is astonishing what a large amount of information could be extracted from a
careful study of the pure conservative kinetic equation

ON Ow

and even from the ultimately simple equation

Sni =0
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We show that S,,; is actually a kind of the nonlinear elliptic equation in the k-
plane. Thus the nonstationary kinetic equation can be treated as a nonlinear diffusion
equation.

The stationary homogenous kinetic equation has a rich family of Kolmogorov-type
solutions. Most important of them are the Kolmogorov-Zakharov spectra corresponding
to the direct cascade of energy and inverse cascade of wave function. They are widely
observed in experiments.

The nonstationary conservative kinetic equation has a rich family of self-similar
solutions describing spacial (fetch-limited case) and temporal (duration-limited case)
evolution of the wind-driven sea. They are also supported by observational data.
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The Hasselmann equation describes the most well-justified " weak turbulent” theory
of the wind-driven sea. This theory is good for the not very short waves. It works in
the range k, < k < k¢. Here k,, is the wave number of the spectral peak, ks ~ 10 k).
For £ > k¢, the spectrum is defined by competition of nonlinear wave interaction and
white-capping events. This part of the spectrum is called the " Phillips sea”.

The weak turbulent theory can be extended for description of the Phillips sea, if
the dissipation term Sy, is chosen by a proper way.
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Kinetic Hasselmann equation

We study the weakly nonlinear waves on the surface of an ideal fluid with infinite
depth in an infinite basin. The vertical coordinate is

—oo <z <n(rt), r=(z,y),

the fluid is incompressible,

divV =0,
and velocity V' is a potential field

V=Vo,
where potential ® satisfies the Laplace equation under boundary conditions

AP = 0, (I)|z:77 — \IJ(Ta t), (I)z|z:—oo =0
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The total energy of the fluid, H =T + U, has the following terms:

1
/dr/ (V ®)? /\IJCD ds, U:§g/n2d77

The Dirichlet-Neumann boundary problem is uniquely resolved, thus the flow is defined
by fixation of n and W. They are canonical, thus evolution equations take the form:

on 6H 0V H

ot o¥ 9t on

After non-symmetric Fourier transform, these equations read

\I/(T) _ /\I/(k) otk dk, \If(k) = (231_)2/\1/(7“) etk dr,

on 0H ov SH -1
= = H=-—H=Hy+H +Hy+
ot ov:r ot on e o Mt e
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In was shown that the Hamiltonian H can be expanded in Taylor series in powers
of n:

1
H, — 5/ (R + g ) di

1 L.
H, = 5 / L(l)(kl, kg)\llkl\lfk277k3 5(]431 + ko + k’g) dky dko dks
1
Hy = / L® (K, o, kg, ka) Wiy Wiy iy S (K1 + ez + ki + ka) dkadkatiig i,

Here
LY (ky, ko) = — (K, k2) — [k [kl

1
L) (ky, ko, ks, ka) = T k| |Feo| {—=2k1| — 2|ka| + |k1 + k3| + |k1 + ka|+
ko + k3| + | ko + k4 }
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Now we can introduce normal variables ay:

1 /A, 1/4 . g 1/4
_ * U, — ok
Mk NG ( p ) (ax +a’y), k (Ak> (ax —a’y)

They obey the following Hamiltonian equations:

Oay , OH _
ot oay N

0

HO = /wk\ak|2dk
1
H1 — 5 / Vk(;ﬁl(akazla% —+ CLZCLklak2)5(k — kl — kg)dkdkldk2+

1
+6 / V,_C(,S;?;f)z(akakla@ + arpay,ay,)0(k + k1 + ko)dkdkidkso
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Here
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To separate resonant and slave harmonics we must perform the canonical
transformation to new variables, excluding cubic terms in the Hamiltonian. Variables
aj. are presented by infinite series in new variables by:

ap = by, + a,,il) + a,g) + a,<€3>

Now we present aj in the form

1 . k *k
ar = ——=\qr + Pk ), —k = (G, k=
ﬂ(q Pk), ¢ a5, P Dy,

Functions q, p; obey equations

g, 0H  JOpy 0H

ot~ opr’ ot g

where H is the same Hamiltonian expressed through qr, pi.
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Now

1
Hy = i/wk(‘QkF + o)) dk
1
H, = 5 / Lickyky Qi Py Py 0(k + k1 + ko)dkdk 1 dks
1/4A1/4
9 k (1)
Likiks = 17173 Lok
Ak{ Aké 1~2

We will perform the canonical transformation to new variables R, &i. using the following
generation function:

1
S = /Rk qr dk + 5 / Ak/ﬂkz gk Gk, Rk, 5(]€ + k1 + k2) dkdkidko +

1
—|—§/ kkiko Rk Rkleg 5(16 + ]fl + kQ)dkdklde
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The "old momentum” p;. and the "new coordinates” &;. are expressed as follows

0S
P = Rt / A s o Qs Ry (5 — iy — ) dler s
59 1 *
§k = SR_. = gk T+ 5 Akl,kz,—k kq ks 5(7<? — k1 — kz) dk1dkg +

+ / B_k iy ko Riy Ry, 0(k — k1 — k — 2) dkydko

We find after some calculations the following nice and elegant expressions for A, B:

1 (Lo+Li1+Ly Lo+Li—Lo\ 1(Lo—Li—La Li—Lo— Lo
Akkiky = — + +— +

4 \wo+w; +w2  wo+w—ws 4 \wop—w1 —wa2 W1 —wy— wa

1 (Lo+Ly+Ly Lo—Li— Lo 1 /(Ly—Lo— Ly Lo—Lyg— 1y
Brkiky = — + —= +

4 w0+w1—|—w2 Wwo — W1 — WwWo 4 W1 — Wy — W2 Wy —Wyp — W
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Now we can introduce new normal complex variables by,

1 k 1/4 ; 1/4
Sk = —= (§> (b + 0% ;), Ry = % <g> (bx — b 4)

In the new variables the Hamiltonian equation takes form

~

ob, .0H
+1

o e Y

~

. 1
H = /wk br. by, dk+1/Tk1k2k3k4bzl b, b bk45(k1+k2_k3_k4) dk1 dks dks dky

and the coupling coefficient T}, x, 1k, Satisfies the symmetry conditions:

Tk1k2,k3k4 — Tkzkl, kaks — Tk1k2, kaks — Tk2k4,k1k2
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The explicit expression for T" is complicated:

1
Ti234 = 5 (T12 54 + Ta1 34)
T _ ! — 12k koksky —
12,34 = 75 (exeglialia) /3 1R2k3ky
1
—2(&)1 +w2)2 w3w4 klkg) +w1w2< ]433 k4 k3k4> ?
1
—2(&)1 —w3)2 wgw ( k3 + kq 3) +w1w3( kg k4 —|—]€2k4) ?
1
—2(&)1 —w4)2 wgw ( ]{4 —|—]€1]€4> + WiWw4g ( kg ]{3 —|—]€2]€3> ?
+[(k1 kz) + kﬂfz][(]g k 1) + kskq] + [— (E k 3) + k1ks||— ( ) + koky]
= (k1 - ka) + kika][— (K2 - k3) + koks)]

— Typeset by FoilTEX — 18



o [(k1 - ko) — Kako[(Ks - ka) — Kska]
Wiy g — (W1 + w2)?
(Ky - ks3) + kiks][(ks - k) + koka]

+4(wy — wa)?
n =) wi_g — (w1 —w3)?

(k1 - Ka) + kika][(B2 - Bs) + Koks] }

wi_y — (w1 — wy)?

+4 (w1 + wo)

+ 4(wy — cu4)2

Here w; = v/ ¢g|k;|. Then, the new Hamiltonian equation reads:

ot 2
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The initial Hamiltonian equation has natural formal motion constants of energy and
momentum,

~ ~

H = const, P = /Ebk b;. dk = const

while the new Hamiltonian equation conserves one additional constant /V:

-1
N:—/|bk|2dk
g

One can introduce the following correlation functions:

(n(r)n(r + R)) = I(R)

~

I . I
(M) = 570k + k), (Brbi) = g Nio(k = k), (Enw) = 5 0(k + K)
_ Iy kg
I(R) = e dk
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The correlation functions I(k) and I(k) are close to each other. In the area of
spectral maximum

~

Ik~ 1)
I(k)
is small, however it grows fast at & — 00. In the first approximation

A(k) =

j(k) = @ (Nk + N_k)Qﬂ'k

Thereafter we assume that N = N(r, k,t) is also a slowly varying function on
coordinate r and accept that N = N(r, k, t) satisfies the Hasselmann kinetic equation.
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The derivation of the resulting equation

dN, «
d—tk = S =7g" / [ Teky kokes|” 0 (k + Ky — ko — K3) 0(wi + wiy — Wiy — wiy) X

X(Nklngng + Nka2Nk3 — NkalNk:g — Nka;lNkS)dkldedkg

can be done by the use of standard methods of statistical physics. Here

de_aNk ow
o ot ok Vv

and Tk, kyks i1s @ homogenous function of the order of 3:

3
Tk My Moo Akes = A Tk koks
Simple calculation shows that Ty k. =1 = 2k3.
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Stationary solutions: the isotropic case

How to solve the stationery kinetic equation
Snl =07

The thermodynamically equilibrium solutions of this equation are

T

Ny, =
Wi +

Here temperature 1" and 4 are constants. In fact this spectrum in not the real solution of
the equation. Since this moment we discuss the case of deep water only and consider
w = \/gk. Also we denote that k = |k|. In two particular cases, = 0 and
T = cu, p — o0, these solution take the form

N =

T _ T, i

T
N=—— | =
N %
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The both solutions are isotropic powerlike functions
Ny =k—"

with particular values x = 1/2, 0. Let us study the general powerlike solution of the
stationary kinetic equation. The divergent terms in S,,; cancel if x is located in some
"window of opportunity” 1 < x < x5. As a result,

Snl _ g3/2 k—3x—i—19/2 F(CIJ)

Here F'(x) is a dimensionless function, defined inside interval 1 < & < x5. Outside
the "window of opportunity”, at z < x1 and = > x9, F(z) = oc.
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Let the quadruplet of waves be formed by wave vectors satisfying resonant conditions
k1 + ko = k3 + ku, Wiy T Why = Wiy + Wiy

Suppose that |k1| < |k|. One of vectors ko, k3 must be small. If |ks| < |k2, then

A 1(k,ky — k
ko =k + k1 — ks, w(kg)_\/gk(l—FQ( 22 3)_|_...>

In the first approximation by small parameter |k1|/|k| we can put
wkz) =w(k),  w(ki) =w(ks),  |ks| = |k

In other words, vectors k1, k3 are small and have approximately the same length k;.
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If vector k is directed along axis x, the coupling coefficient Tkk1k2k3 depends on four

parameters k, k1,61, 603. Here 61,603 are angles between kl, kg and k. Remembering
that k1 < k, we calculate the coupling coefficient in this asymptotic domain.

2
Thkikoks =~ =kk{Th, 6,
2

Ty, 0, = 2(cosb;+ cosbs)—sin(f; — 63)(sinfy — sinbs)
On the diagonal k3 = k1, 03 = 01 we get a very simple expression:

Tk, = 2/4;%/43 cos 64
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Suppose, the spectrum is separated to the low-frequency component Ny (k) and the
high-frequency component Ny (k). We assume that N; < Ny and take into account
the interaction between Ny and N7 only. N; satisfies the linear diffusion equation

o )
5 1= ok,

)
— D k* — Ny,
77 Ok;

where D;; is the tensor of diffusion coefficients,

o0 2T 27
D, :27r93/2/ dqq17/2/ d91/ dOs|T (61, 03)|° pip; N (0, q)N (03, q)
0 0 0

p1 = cosf; —cosfs, pg =sinf; —sinb;
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The isotropic spectrum does not depend on angle 6. We get the further
simplification:

5 xO
D;; = D6, D=§7T393/2/0 ¢'"/? N?(q)dq

The diffusion coefficient D diverges at k — 0, if x > 19/4. Thus x5 = 19/4.

In the isotopic case the diffusion equation reads

ONi_D 9 49

ot kok Ok

Ny

If kK — 19/4, we get the following estimate:

19 11 570 1 1264
4 4 16 19/4—x 19/4 -2z

F(x)
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To find x1, the lower end of the window, we should study the influence of short
waves to the long ones.

In the isotropic case we get:

ON,, ON
—F kTN,
ot T
q = §7T393/2E:%ngB/z/ookB/szdk
16 8 .

Here F is the total energy. Thus, 1 = 5/2 and we get for the function F'(x) the

following estimate:

525 . 1 241.86
F:——ﬂ' —=
28 b5/2—x b5/2—x
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Figure 2: Plot of function F'(x)

In figure 2 is presented a plot of the function F'(x) for the isotropic case, which

we calculated numerically. In the interval 1 < x < x5, the function F'(x) has exactly
23

two zerosat x =y1 =4, T=ys =%
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To prove this result, let us present the conservation laws of energy and wave action
in the differential form:

o1, ON, OP &
5 = 2mhw T W/O kwy Sy dk
ON,  9Q

k
ok —or | kS, dk
L T TR 7T/O Oni

Here, P is the flux of energy directed to high wave numbers, while () is the flux of
wave action directed to small wave numbers. The equations

P =Py =const, @Q = Qg = const

apparently are solutions of stationary equation S,,;; = 0. We will look for the solution
in the powerlike form N = A k™7,
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Figure 3: Plot of function F'(x): A zoom in the vertical direction

In Figure 3 is presented a zoom of the function F'(x) in the vertical coordinate.
The numerics gives F'(4) = 45.2 and F’'(23/6) = —40.4.
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The described spectra exhaust all powerlike isotropic solutions of the stationary
kinetic equation S;,; = 0. This fact can be proved by the use of different methods.
Thermodynamical solutions N = const and N = ¢/k'/? are not the solutions of this
equation, because their exponents x = 0 and x = 1/2 are far below the lower end of
the "window of possibility” 1 = 5/2.

The general isotropic solution describes the situation when both the energy source
at small wave numbers and the wave action source exist simultaneously and have the

following form:
N(S) . 5 1/3 iL gl/Qle/Q
k p 92 k4 P

Here L is an unknown function of one variable,

L1 at k=0, LE) =923 at k- oo
Cp

These spectra are realized if we have a source of energy at large scales and a source of
wave action at small scales.
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In a real sea the external force (input from wind) is distributed smoothly along
all scales. Thus the KZ-spectra are observed as asymptotics in the energy-containing
area. The flux-action spectrum I, ~ k~11/3 s realized in area of small wave numbers,

while the KZ-spectrum is the high-frequency asymptotics. The typical picture is the
following:

cwag. ¢ b, sATM Decmizg. o micy. xak
10 T s o IR U AR
I i J
i 1
1 |
I
ry I
i ]
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= 1 [ g ¥
= | | = ]
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Figure 4: Experimental spatial spectra
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The same scenario is routinely observed in experiments on numerical simulation of
the kinetic equation

E(o,0) at =0

[—
<.

Figure 5: Numerical simulation
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Stationary solutions: the anisotropic case

We introduce polar coordinates on the k-plane and put k% = w/g. Thereafter, we

will use the notation

In the spatially homogenous case, N (w, ¢) satisfies the equation

ON(w, @)
ot

— Snl(wa ¢)
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In new variables:

Snl(wa gb) — 27’(’92 / |Tw,w1,w2,w3|2 5<W + w1 —wg — w3> X

x §(w? cos ¢ + w cos 1 — w3 COS g — w§ COS (3) X

X d(w?sin @ + w? sin ¢1 — w3 sin Py — w3 sin ¢g) X

x {w” N (w1, ¢1) N(wa, ¢2) N (w3, ¢3) + wi N(w, §) N(wa, d2) N(ws, ¢3)—

—w3 N(w, @) N (w1, ¢1) N(ws, ¢3) — w3 N(w, ¢) N(wi, 1) N(wa, ¢2) }
dwy dws dws dpy do2 dps

Exactly this form of S,,; is used for numerical simulation of the Hasselmann equation.
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Suppose that N(w, ¢) = w™* is the isotropic spectrum. Then,

Snl _ w—3z—|—13 F z —|— 3 _ G(z) w_3Z+13
4g4 2 g

4 Y

where F(z) was defined before. Now the "window of opportunity” is 2 < z < 13/2.
Zeros of G(z) are posed at z; = 5 and 2o = 14/3, and near these zeros G(z) can be
presented as parabola,

G(z) ~ 16.05(z — 5)(z — 14/3)

To make the motion constants more conspicuous, we introduce the elliptic differential
operator

0? N 2 0?
Ow?  w? 0¢?

Lf(w,qb):( )f(w,qb), 0<w<oo, 0<¢<2m
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Then, the equation

with boundary conditions

LG =0(w—w)d(¢—¢)

can be resolved as

G(w,w'’

where A, = 1/2v/1 + 8n?
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Now we present S,,; in the form:

o0 27
Alw, §) = /0 . /O 06 G, — &) Sl &)

z

Note that A(w, ¢) is a regular integral operator and suppose that N(w,¢) = w™?>.
Then

G(z)
9(z — 5)(z — 14/3)

H(z) =

The function H(z) is positive and has no zeros. If G(z) is presented by parabola, then:

H(min) = Hy = 16.05/9 = 1.83
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The fact that H(z) is just a constant, leads to a bold idea. If we assume that

Hy

15 A73
A=—w?’N",
g

the nonlinear term .S,,; turns to the elliptic operator:

2 2
Snl:Ho(é? 2 0

15 73
74\ 0w? T3 3¢2) W N

This is the so-called " diffusion approximation”. Being very simple, it grasps the basic
features of the wind-driven sea theory.
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The stationary kinetic equation is now simplified to the linear equation

0 2 5
((%12 i w? 8(/52) A=0

It has the anisotropic KZ solution

1 R,
A:—{P+wQ+— cosgb},

2T W
where P and R, are fluxes of energy and momentum at w — oo and (@ is the flux of

wave action directed to small wave numbers. In the general case, this is the nonlinear
integral equation but in the diffusion approximation the KZ solution can be found in

the explicit form:

1 94/3

N(Waqb) — (27TH0)1/3 Cd5

R 1/3
(P+wQ+—x Cosgb>
W
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In this case

1
2(27’(’ Ho)l/S

—0.223, Hy=1.83

This is exactly the arithmetic mean between the values of Kolmogorov constants.

Multiplying the explicit form by 27w, we get the general KZ spectrum in the
diffusion approximation:

gi/3 R 1/3
F(w) = 2.78 = <P—|—wQ + = cosqﬁ)
W W
We must be sure that in the isotropic case R, = 0, the expression

4/3
Fw) = 2.78 gw—4 (P+wQ)"/?

approximates the generic isotropic KZ spectrum with accuracy up to a few percent.
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Damping due to nonlinear interaction

In the presence of wind input and dissipation the stationary Hasselmann equation,
or the balance equation, reads

Snl + Szn + Sdiss =0

We can assume

|f
W(k) — ’Vzn(k) - /Vdis(k)

the balance kinetic equation reads

Sni+7(k) N =0
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We can present the S,,; term as
Sni = Fj, — L' Ni,

The definition of I'y and F}. are given as follow:

Fk = 7Tg2 / ‘Tkk1k2k3‘2 5(l€+k1—]€2—]€3) 5(wk+wk1—wk2—wk3) Nklngng dkldkgdkg

'y, = 7Tg2 / |Tkk1,k2k3’2 5(]€ + k1 — ko — kg) 5(wk + Wy — Wy — ka) X

X(NklekQ + Nklekzg — NkQNkzg) dk1dkodks

The solution of the balance equation is the following:

Fy.

N =
L'y — vk
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The positive solution exists if I'y > . The term I'y can be treated as the
nonlinear damping that appears due to four-wave interaction. This damping has a
very powerful effect. The main source of I'; is the interaction between long and short
waves. To estimate it, we assume that the spectrum of long waves is narrow in angle,
N(k1,01) = N(k1)8(61). Long waves propagate along the axis = and k is the wave
vector of the short wave propagating in direction 6. For the coupling coefficient we

must put Ty, ko.ks = 2kik cosf. Then
Ty = 87g°/? k? cos® 6 / k32 N2 (ky) dky
0

Even for the most mildly decaying KZ spectrum, Ny ~ k~23/6, the integrand behaves
like k1_7/6 and the integral diverges. For steeper KZ spectra, the divergence is stronger.
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Let us estimate I';. for the case of a " mature sea”, when the spectrum can be taken

in the form

3 F k3?2
Ny~ 22 g(k — k)

29 k*

Here E' is the total energy. For this case we get the equation

3
', =367w (i) ,uf‘; cos? 0,

Wp

which includes a huge enhancing factor: 36 ~ 113.04. For the very modest value of
steepness, u, ~ 0.05, we get

3
T, ~7.06- 10w (i> cos? 0

Wp
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These results show that the four-wave nonlinear interaction is a very strong effect.
The strong turbulence of the near-surface air boundary layer makes the development of
a reliable theory of air-water interaction, including a well-justified analytical calculation
of v, an extremely difficult task. making field and laboratory measurements of ~; is
also difficult, and the scatter in determination of ~; is itself of the order of ;. Anyway,
a comparison of the above calculated I'; with experimental data on ~; shows that I';
surpasses 7y at least by an order of magnitude. This fact is demonstrated in figure 6.
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Figure 6: Comparison

for the narrow in angle spectrum at p ~ 0.05 (dashed line)
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of experimental data for the wind-induced growth rate
27 Yin(w)/w and the damping due to four-wave interactions 27 I'(w)/w, calculated
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As a result, we can make the conclusion that S,,; is the leading term in the balance
equation and that the rear face of the spectrum is describes by solution of the stationary
kinetic equation, which has a rich family of solutions. In particulary, this equation
describes the angular spreading.

In Figure 7, we demonstrate that for the nonlinear interaction term S,,; = Fj —
I';. Ni, the magnitudes of constituents F} and I'i. N essentially exceed their difference.
They are one order higher than the magnitude of S,;!
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0.5 1 1.5 2 2.5 3 35 4 4.5
oo/oop

Figure 7: Split of the nonlinear interaction term S,,; (central curve) into F} (upper
curve) and I'y Ny (lower curve)
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Compare nonlinear damping decrement
and wind input increment

[Donclan

[sicms & Slhermdin
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Spr surpasses Sip and Sgjss in order of magnitude !

Figure 8:
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KE solutions with EXACT S,

E (0,0) at O=0

10

0 * 1

10 0 10

Look at spectral slopes

Figure 9: Numerical solutions with the wind input
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The approximation procedure splits wave balance into
two parts when S_, dominates

{dﬂ/ .
ﬁf{ﬂk/ { dm)

« We donotignore input and dissipation, we put them into
appropriate place |

« zelf-similar solutions (duration-limited) can be found for (%) for
power-law dependence of net wawve input on time

N =at®U ;(bkt”),
when{(n }~t; r=a—-2p0
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We have two-parametric family of self-similar solutions
where relationships between parameters are determined
by property of homogeneity of collision integral = ;

198-2
A

and function of selt-similar variable UgfE) obeys
inte gro-differential equation

allg+ PV U g =85,[Ug(s)] ()

mtationary Eolmogorow-Zakharow solutions appear to be particular
cases of the family of non-stationary (or spatially non-homogeneous)
self-similar solutions when left-hand and right-hand sides of (%)

1974
a=b". a=

vatish simmultaneously 111
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Self-similar solutions for wave swell (no input and
dizzipation)
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Quast-univerzality of wind-wave spectra

apatial down-wind spectra m—spectta
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Numerical solutions tor duration-limited case vy
non-dimensional frequency @ =mile
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Figure 14:
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In this case
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Time-fetch-) independent spectra grow as power-law functions of
tirme (fetch) but expertmental wind speed scaling
Eg* . al
g . g

F-fe
Uk"" fod

13 not consistent with our “spectral tlux approach”™
1. Duration-limited growth F = EDT‘E; o) = Eﬁﬂf_q

L

2. Fetch-limited growth E=Fx Y@= a, X -

Expertmental dependencies use 4 parameters. Our two-patrameternic self-
sttnilar solutions dictate two relationships between these 4 parameters

]
For case 2 ZES(,%D

=

O

10g, -1
Py=—
P,

. . 61
. — self-sunilarity parameter
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Experimental power-law fits of wind-wawve growth, ~— Thanks toPaul Hwang

momething more than an idealization?
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Exponents f2 p (energy growth) vs &f p (trequency downshift) for 24 fetch-
limited experimental dependencies. Hard line — theoretical dependence

P =(10q ~1)/2

1. “Cleanest” fetch-
- limited

E 1l 2. Fetch-limited

composite data sets

*

| 4. Laboratory data
included

125 {I.i

T _'“ I : Ii :
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To the theory of Phillips sea

Owen Martin Phillips
1930-2010

Figure 18:
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Modified kinetic equation
Phillips’ idea: Clavus clavo pellitur (Like cures like)

dE aP 3
E——a—‘b(’pw /&° )

Dissipation is governed by spectral flux P(w) = fn Spi(w)dw

P

Dimensional consideration: spectral flux to wave steepness

P [E)®\®
— Y T — ‘uw
reconcile two opposite (at the first glance) approaches

@ weakly turbulent "flux” approach;

@ O. Phillips dissipative approach
(for the case ®(u® )=const)

Figure 19:
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Solutions for the stationary case. Phillips’ spectrum w™

For power-like functions ®(Pw?/g?) ~ (Pw?/g?)R one can get
stationary solutions

P.3 P2
= —CONST; &(—-)=3 for any R }
g g

Using homogeneity properties of the collision integral S, one
has the Phillips spectrum

E(w) ~w™® J

Figure 20:
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For R = 0 one can adjust the Kolmogorov-Zakharov and
dissipative (Phillips) solutions — both are self-similar 1!l

In E

KZ-solution

Phillips solution

In m

Sdiss = —Aphillipsw©(w /wp — q)pi, E(w), where p2 = Ew®/g? J

q ~ 3 + 4 — dissipation cut-off

Figure 21: From the " purely-nonlinear” KZ-spectrum to " nonlinear-dissipative” Phillips’

SpEEERIm " - o



A minor contribution to Phillips finding

Dissipation term

Sdiss = —phillipsw©(w/wp — q) g, E(w)
has the same homogeneity properties as the collision integral

Sm-(aE? b‘w) — ﬂabllsnI(E:w)

For power-like spectra £ ~ w™~

Snt = C(2)wO(w/wp — gy E(w)

Spectral slope —5 fixes the
dissipation rate

)\th'//r'ps — (5) =2.19

Figure 22:

— Typeset by FoilTEX —

68



The essential of minor contribution

Arbitrary Phillips rate Appjips
can give any spectral slope
(except w™* when S, is plain zero);

The dissipation rate should be fixed as

Aphilips = 2.19 to provide the Phillips spectrum
E(w) ~w™

Figure 23:
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Setup of numerical experiments. Isotropic swell under the
new dissipation

Frequency scaling
o fy = 0.02 Hz — low frequency limit;
@ fp = 0.079 Hz — initial spectral peak frequency (approx.
240 meters wavelength);

@ fgiss = 0.318 Hz — low frequency dissipation cutoff (~ 4
peak frequencies), or no dissipation cutoff;

o f, = 2 Hz — the high frequency limit.

Phillips” dissipation R = 0 — dissipation linear in spectral flux of
energy (self-similar solutions);

Figure 24:
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Domains of constant and decaying fluxes are co-existing. The

Phillips tail close to w™

5

i

is realized for ~ 10 days of evolution

10
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Phillips” spectra and fluxes for Cppjjips = 1.22 a little bit lower
than theoretically perfect Cppifips = 2.2

Left — dashed line extreme Phillips’ constants a, = 0.0081 and
ap = 0.018 (see Dynamics and Modelling of Ocean Waves by

Komen et al. 1994); Right — straight line w=>

31 /33

Figure 25: Cth'llz’ps = 1.22
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Domains of constant and decaying fluxes are co-existing. The

Phillips tail close to w™ is realized for ~ 10 days of evolution
: ,;.%\ : . ) 0 e T
1 CoMN : ———1ITH2id e === XTE2EA []
1071 TNy | - - -osBzed | : . . 098284
R : 4 5L
g E e
T A SUN -
10 [
| owl "
10° 1’ 1%

g
P

Phillips’ spectra and fluxes for Cppjyjps = 2.75 a little bit higher
than theoretically perfect Cppifips = 2.2

Left — dashed line extreme Phillips’ constants a, = 0.0081 and
ap = 0.018 (see Dynamics and Modelling of Ocean Waves by
Komen et al. 1994); Right — straight line w™>

32 f 33

Figure 26: Cppilnips = 2.75
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Summary

1. Both analytic and computation arguments show that S,,;, the four-wave nonlinear
interaction, is the dominating process in the wind-driven sea physics. This fact makes
possible to develop the semianalytical weak-turbulent theory of the wind-driven sea,
based on the conservative Hasselmann equation.

2. This theory describes pretty well the wind-driven sea in the energy-containing

range of scales
kp <k <10k,

Sin, the wind-input term has to be found by comparison with observation data.

3. The proper choice of the dissipation function S ;s makes possible to extent the
weak-turbulent theory for much broader range of scales.
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What is missed in this talk?

| did not discuss the numerous deterministic numerical experiments, which try to
describe the wind-driven sea from the " first principle”, i.e. without use of the statistical
approach. This is a subject for another lecture. The results obtained so far, basically
support the weak-turbulent theory.
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