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Introduction to the theory

The wind-driven sea is one of the most common natural phenomena that we can
observe by our own eyes without special devices. Developing of its analytical theory
is possible due to presence of a natural small parameter: the ratio of atmospheric and
water densities. The density of air depends on temperature and the level of moisture.
It is reasonable to put

ϵ =
ρatm
ρw

∼ 1.2 · 10−3

Let η(r⃗, t), r⃗ = (x, y) be elevation. In the linear approximation

η(r, t) = ReΨ e−i ωk t+i k⃗ r⃗

Here Ψ is an arbitrary complex amplitude, ωk =
√
g k + σ k3 is the dispersion law, g

is the gravity acceleration, and σ is the surface tension. In the presence of wind

ωk → ωk +
i

2
γk, γk ∼ ϵ

– Typeset by FoilTEX – 1



The smallness of ϵ leads to the smallness of the parameter of nonlinearity, which
is an average steepness µ. It could be defined by many ways, the most ”scientific”
definition is:

µ2 = ⟨|∇η|2⟩
The oceanographers prefer another definition of µ, thereafter we denote it as µp:

µ2
p = ⟨η2⟩ k2p = ⟨η2⟩

ω4
p

g2

In the stationary sea the autocorrelation function of elevation

F̂ (τ) = F̂ (−τ) = ⟨η(t) η(t+ τ)⟩

does not depend on t.
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The cosine Fourier transform of the function of elevation

F (ω) =
1

π

∫ ∞

0

F̂ (τ) cosω τ dτ

is traditionally called the energy spectrum of the surface. The mean squared elevation
is

⟨η2⟩ = F̂ (0) =

∫ ∞

0

F (ω) dω

Spectrum F (ω) has dimension L2T . Why is it called the energy spectrum? Let us
introduce function

E(ω) = ρw g F (ω),

that has dimension M/T , the same as the spectral distribution of energy density.
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In many experiments the subject of measurements is the spatial spectrum

Ik = 2π⟨|ηk|2⟩k

As far as µ is small, one can use expansion in powers of µ as a basic analytic technique
for study of nonlinear wave interaction. Performing this expansion we realize that we
have to deal with resonant interactions of certain amount of waves that form ”a resonant
group”. For gravity waves on two-dimensional plane the most important groups are
quadruplets of waves with wave vectors k⃗1, k⃗2, k⃗3, k⃗4, satisfying resonant conditions

k⃗1 + k⃗2 = k⃗3 + k⃗4,

ωk1 + ωk2 = ωk3 + ωk4
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All these three processes can be described by a single kinetic equation, first derived
by Hasselmann in 1962 and written for the spectrum of ”wave action”, N(k⃗, r⃗, t):

∂N

∂t
+

∂ω

∂k⃗
∇N = Snl + Sin + Sdiss

In this equation ω =
√
gk is the dispersion law for gravity waves, Sin is the input from

wind, Sdiss is the dissipation due to white-capping, and Snl is the collision term that
describes four-wave resonant interaction.

The exact definition of Nk will be done below.

Ĩk =
ωk

2
(Nk +N−k) 2π|k|

Ĩk is the ”refined” spatial spectrum.
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The main message of this talk is the following:

In the most important cases, in the real sea the four-wave nonlinear interaction is
the dominating process!

It is astonishing what a large amount of information could be extracted from a
careful study of the pure conservative kinetic equation

∂N

∂t
+

∂ω

∂k
∇N = Snl

and even from the ultimately simple equation

Snl = 0
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We show that Snl is actually a kind of the nonlinear elliptic equation in the k-
plane. Thus the nonstationary kinetic equation can be treated as a nonlinear diffusion
equation.

The stationary homogenous kinetic equation has a rich family of Kolmogorov-type
solutions. Most important of them are the Kolmogorov-Zakharov spectra corresponding
to the direct cascade of energy and inverse cascade of wave function. They are widely
observed in experiments.

The nonstationary conservative kinetic equation has a rich family of self-similar
solutions describing spacial (fetch-limited case) and temporal (duration-limited case)
evolution of the wind-driven sea. They are also supported by observational data.
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The Hasselmann equation describes the most well-justified ”weak turbulent” theory
of the wind-driven sea. This theory is good for the not very short waves. It works in
the range kp < k < kf . Here kp is the wave number of the spectral peak, kf ≃ 10 kp.
For k > kf , the spectrum is defined by competition of nonlinear wave interaction and
white-capping events. This part of the spectrum is called the ”Phillips sea”.

The weak turbulent theory can be extended for description of the Phillips sea, if
the dissipation term Sdiss is chosen by a proper way.
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Kinetic Hasselmann equation

We study the weakly nonlinear waves on the surface of an ideal fluid with infinite
depth in an infinite basin. The vertical coordinate is

−∞ < z < η(r, t), r = (x, y),

the fluid is incompressible,
div V = 0,

and velocity V is a potential field

V = ∇Φ,

where potential Φ satisfies the Laplace equation under boundary conditions

∆Φ = 0, Φ|z=η = Ψ(r, t), Φz|z=−∞ = 0
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The total energy of the fluid, H = T + U , has the following terms:

T =
1

2

∫
dr⃗

∫ η

−∞
(∇Φ)2 dz =

1

2

∫
ΨΦn dS, U =

1

2
g

∫
η2 dr⃗

The Dirichlet-Neumann boundary problem is uniquely resolved, thus the flow is defined
by fixation of η and Ψ. They are canonical, thus evolution equations take the form:

∂η

∂t
=

δH

δΨ
,

∂Ψ

∂t
= −δH

δη

After non-symmetric Fourier transform, these equations read

Ψ(r) =

∫
Ψ(k) eikr dk, Ψ(k) =

1

(2π)2

∫
Ψ(r) e−ikr dr,

∂η

∂t
=

δH̃

δΨ∗
k

,
∂Ψ

∂t
= −δH̃

δη∗k
, H̃ =

1

4π2
H = H0 +H1 +H2 + · · ·

– Typeset by FoilTEX – 10



In was shown that the Hamiltonian H̃ can be expanded in Taylor series in powers
of η:

H0 =
1

2

∫ {
k|Ψk|2 + g |ηk|2

}
dk

H1 =
1

2

∫
L(1)(k1, k2)Ψk1Ψk2ηk3 δ(k⃗1 + k⃗2 + k⃗3) dk1 dk2 dk3

H2 =
1

2

∫
L(2)(k1, k2, k3, k4)Ψk1Ψk2ηk3ηk4 δ(k1 + k2 + k3 + k4) dk1dk2ηk3ηk4

Here
L(1)(k1, k2) = −(k1, k2)− |k1| |k2|

L(2)(k1, k2, k3, k4) =
1

4
|k1||k2| {−2|k1| − 2|k2|+ |k1 + k3|+ |k1 + k4|+

|k2 + k3|+ |k2 + k4|}
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Now we can introduce normal variables ak:

ηk =
1√
2

(
Ak

g

)1/4

(ak + a∗−k), Ψk =
i√
2

(
g

Ak

)1/4

(ak − a∗−k)

They obey the following Hamiltonian equations:

∂ak
∂t

+ i
δH

δa∗k
= 0

H0 =

∫
ωk|ak|2dk

H1 =
1

2

∫
V

(1,2)
kkak2

(aka
∗
k1
a∗k2 + a∗kak1ak2)δ(k − k1 − k2)dkdk1dk2+

+
1

6

∫
V

(0,3)
kkak2

(akak1ak2 + a∗ka
∗
k1
a∗k2)δ(k + k1 + k2)dkdk1dk2
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Here

V
(1,2)
kk1k2

=
g1/4

2
√
2

{(
Ak

Ak1Ak2

)1/4

L(1)(k1, k2)−
(

Ak1

AkAk2

)1/4

× L(1)(−k, k1)−
(

Ak2

AkAk1

)1/4

L(1)(−k, k2)

}

V
(0,3)
kk1k2

=
g1/4

2
√
2

{(
Ak

Ak1Ak2

)1/4

L(1)(k1, k2) +

(
Ak1

AkAk2

)1/4

× L(1)(k, k1) +

(
Ak2

AkAk1

)1/4

L(1)(k, k2)

}
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To separate resonant and slave harmonics we must perform the canonical
transformation to new variables, excluding cubic terms in the Hamiltonian. Variables
ak are presented by infinite series in new variables bk:

ak = bk + a
(1)
k + a

(2)
k + a

(3)
k

Now we present ak in the form

ak =
1√
2
(qk + ipk), q−k = q∗k, p−k = p∗k

Functions qk, pk obey equations

∂qk
∂t

=
δH

δp∗k
,

∂pk
∂t

= −δH

δq∗k

where H is the same Hamiltonian expressed through qk, pk.
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Now

H0 =
1

2

∫
ωk(|qk|2 + |pk|2)dk

H1 =
1

2

∫
Lkk1k2 qk pk1 pk2 δ(k + k1 + k2)dkdk1dk2

Lkk1k2 =
g1/4A

1/4
k

A
1/4
k1

A
1/2
k2

L
(1)
k1k2

We will perform the canonical transformation to new variablesRk, ξk using the following
generation function:

S =

∫
Rk qk dk +

1

2

∫
Akk1k2 qk qk1 Rk2 δ(k + k1 + k2) dkdk1dk2 +

+
1

3

∫
Bkk1k2 RkRk1Rk2 δ(k + k1 + k2)dkdk1dk2
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The ”old momentum” pk and the ”new coordinates” ξk are expressed as follows

pk =
δS

δq−k
= Rk +

∫
A−k,k1,k2 qk1 Rk2 δ(k − k1 − k2)dk1dk2

ξk =
δS

δR−k
= qk +

1

2

∫
Ak1,k2,−k qk1 qk2 δ(k − k1 − k∗2) dk1dk2 +

+

∫
B−k,k1,k2 Rk1 Rk2 δ(k − k1 − k − 2) dk1dk2

We find after some calculations the following nice and elegant expressions for A,B:

Akk1k2 = −1

4

(
L0 + L1 + L2

ω0 + ω1 + ω2
+

L0 + L1 − L2

ω0 + ω1 − ω2

)
+
1

4

(
L0 − L1 − L2

ω0 − ω1 − ω2
+

L1 − L0 − L2

ω1 − ω0 − ω2

)

Bkk1k2 = −1

4

(
L0 + L1 + L2

ω0 + ω1 + ω2
+

L0 − L1 − L2

ω0 − ω1 − ω2

)
−1

4

(
L1 − L0 − L2

ω1 − ω0 − ω2
+

L2 − L0 − L1

ω2 − ω0 − ω1

)
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Now we can introduce new normal complex variables bk,

ξk =
1√
2

(
k

g

)1/4

(bk + b∗−k), Rk =
i√
2

(g
k

)1/4
(bk − b∗−k)

In the new variables the Hamiltonian equation takes form

∂bk
∂t

+ i
δH̃

δb∗k
= 0

H̃ =

∫
ωk bk b

∗
k dk+

1

4

∫
Tk1k2k3k4 b

∗
k1

b∗
k2

bk3 bk4
δ(k1+k2−k3−k4) dk1 dk2 dk3 dk4

and the coupling coefficient Tk1k2,k4k3 satisfies the symmetry conditions:

Tk1k2,k3k4 = Tk2k1, k3k4 = Tk1k2, k4k3 = Tk2k4,k1k2
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The explicit expression for T is complicated:

T12,34 =
1

2

(
T̃12,34 + T̃21,34

)
,

T̃12,34 = −1

2

1

(k1k2k3k4)1/4

{
− 12k1k2k3k4 −

−2(ω1 + ω2)
2
[
ω3ω4

(
(k⃗1 · k⃗2)− k1k2

)
+ ω1ω2

(
(k⃗3 · k⃗4)− k3k4

)] 1

g2

−2(ω1 − ω3)
2
[
ω2ω4

(
(k⃗1 · k⃗3) + k1k3

)
+ ω1ω3

(
(k⃗2 · k⃗4) + k2k4

)] 1

g2

−2(ω1 − ω4)
2
[
ω2ω3

(
(k⃗1 · k⃗4) + k1k4

)
+ ω1ω4

(
(k⃗2 · k⃗3) + k2k3

)] 1

g2

+[(k⃗1 · k⃗2) + k1k2][(k⃗3 · k⃗4) + k3k4] + [−(k⃗1 · k⃗3) + k1k3][−(k⃗2 · k⃗4) + k2k4]

+[−(k⃗1 · k⃗4) + k1k4][−(k⃗2 · k⃗3) + k2k3]
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+4(ω1 + ω2)
2 [(k⃗1 · k⃗2)− k1k2][(k⃗3 · k⃗4)− k3k4]

ω2
1+2 − (ω1 + ω2)2

+4(ω1 − ω3)
2 [(k⃗1 · k⃗3) + k1k3][(k⃗2 · k⃗4) + k2k4]

ω2
1−3 − (ω1 − ω3)2

+ 4(ω1 − ω4)
2 [(k⃗1 · k⃗4) + k1k4][(k⃗2 · k⃗3) + k2k3]

ω2
1−4 − (ω1 − ω4)2

}

Here ωi =
√
g |ki|. Then, the new Hamiltonian equation reads:

∂bk
∂t

+ i

(
ωk bk +

1

2

∫
Tkk1k2k3 b

∗
k1

bk2bk3
δ(k + k1 − k2 − k3) dk1dk2dk3

)
= 0
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The initial Hamiltonian equation has natural formal motion constants of energy and
momentum,

H̃ = const, P̃ =

∫
k⃗ bk b

∗
k dk = const

while the new Hamiltonian equation conserves one additional constant N :

Ñ =
1

g

∫
|bk|2 dk

One can introduce the following correlation functions:

⟨η(r) η(r +R)⟩ = I(R)

⟨ηk ηk′⟩ =
Ik
2πk

δ(k + k′), ⟨bk b∗k′⟩ = g Nk δ(k − k′), ⟨ξk ξk′⟩ =
Ĩk
2πk

δ(k + k′)

I(R) =

∫
Ik
2πk

eikR dk
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The correlation functions I(k) and Ĩ(k) are close to each other. In the area of
spectral maximum

∆(k) =
Ĩ(k)− I(k)

I(k)
∼ µ2

is small, however it grows fast at k → ∞. In the first approximation

Ĩ(k) =
ω(k)

2
(Nk +N−k)2πk

Thereafter we assume that N = N(r, k, t) is also a slowly varying function on
coordinate r and accept thatN = N(r, k, t) satisfies the Hasselmann kinetic equation.
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The derivation of the resulting equation

dNk

dt
= Snl = πg2

∫
|Tkk1,k2k3|

2 δ(k + k1 − k2 − k∗3) δ(ωk + ωk1 − ωk2 − ωk3)×

×(Nk1Nk2Nk3 +NkNk2Nk3 −NkNk1Nk2 −NkNk1Nk3)dk1dk2dk3

can be done by the use of standard methods of statistical physics. Here

dNk

dt
=

∂Nk

∂t
+

∂ω

∂k
∇Nk

and Tkk1k2k3 is a homogenous function of the order of 3:

Tλk,λk1,λk2,λk3 = λ3 Tkk1k2k3

Simple calculation shows that Tk,k,k,k = T = 2k3.
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Klaus Hasselmann (25 October 1931 – )

Figure 1:
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Stationary solutions: the isotropic case

How to solve the stationery kinetic equation

Snl ≡ 0 ?

The thermodynamically equilibrium solutions of this equation are

Nk =
T

ωk + µ

Here temperature T and µ are constants. In fact this spectrum in not the real solution of
the equation. Since this moment we discuss the case of deep water only and consider
ω =

√
gk. Also we denote that k = |⃗k|. In two particular cases, µ = 0 and

T = cµ, µ → ∞, these solution take the form

N =
T

ωk
=

T
√
g
k−1/2, N =

T

µ
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The both solutions are isotropic powerlike functions

Nk = k−x

with particular values x = 1/2, 0. Let us study the general powerlike solution of the
stationary kinetic equation. The divergent terms in Snl cancel if x is located in some
”window of opportunity” x1 < x < x2. As a result,

Snl = g3/2 k−3x+19/2F (x)

Here F (x) is a dimensionless function, defined inside interval x1 < x < x2. Outside
the ”window of opportunity”, at x < x1 and x > x2, F (x) = ∞.
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Let the quadruplet of waves be formed by wave vectors satisfying resonant conditions

k⃗1 + k⃗2 = k⃗3 + k⃗4, ωk1 + ωk2 = ωk3 + ωk4

Suppose that |k1| ≪ |k|. One of vectors k⃗2, k⃗3 must be small. If |k3| ≪ |k2|, then

k⃗2 = k⃗ + k⃗1 − k⃗3, ω(k2) =
√

gk

(
1 +

1

2

(k, k⃗1 − k⃗3)

k2
+ · · ·

)

In the first approximation by small parameter |k1|/|k| we can put

ω(k2) = ω(k), ω(k1) = ω(k3), |k3| ≃ |k1|

In other words, vectors k⃗1, k⃗3 are small and have approximately the same length k1.
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If vector k is directed along axis x, the coupling coefficient Tkk1k2k3 depends on four

parameters k, k1, θ1, θ3. Here θ1, θ3 are angles between k⃗1, k⃗3 and k⃗. Remembering
that k1 ≪ k, we calculate the coupling coefficient in this asymptotic domain.

Tkk1k2k3 ≃ 1

2
k k21 Tθ1,θ3,

Tθ1,θ2 = 2(cos θ1 + cos θ3)− sin(θ1 − θ3)(sin θ1 − sin θ3)

On the diagonal k3 = k1, θ3 = θ1 we get a very simple expression:

Tkk1 ≃ 2k21k cos θ1
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Suppose, the spectrum is separated to the low-frequency component N0(k) and the
high-frequency component N1(k). We assume that N1 ≪ N0 and take into account
the interaction between N0 and N1 only. N1 satisfies the linear diffusion equation

∂

∂t
N1 =

∂

∂ki
Dij k

2 ∂

∂kj
N1,

where Dij is the tensor of diffusion coefficients,

Dij = 2πg3/2
∫ ∞

0

dq q17/2
∫ 2π

0

dθ1

∫ 2π

0

dθ3|T (θ1, θ3)|2 pipjN(θ, q)N(θ3, q)

p1 = cos θ1 − cos θ3, p2 = sin θ1 − sin θ3
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The isotropic spectrum does not depend on angle θ. We get the further
simplification:

Dij = D δij, D =
5

8
π3 g3/2

∫ ∞

0

q17/2N2(q)dq

The diffusion coefficient D diverges at k → 0, if x > 19/4. Thus x2 = 19/4.

In the isotopic case the diffusion equation reads

∂N1

∂t
=

D

k

∂

∂k
k3

∂

∂k
N1

If k → 19/4, we get the following estimate:

F (x) =
19

4
· 11
4

· 5π
3

16

1

19/4− x
≃ 126.4

19/4− x
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To find x1, the lower end of the window, we should study the influence of short
waves to the long ones.

In the isotropic case we get:

∂Nk

∂t
= q k7Nk

∂N

∂k
,

q =
25

16
π3 g3/2E =

25

8
π3 g3/2

∫ ∞

0

k3/2Nk dk

Here E is the total energy. Thus, x1 = 5/2 and we get for the function F (x) the
following estimate:

F =
5

2

25

8
π3 1

5/2− x
=

241.86

5/2− x
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Figure 2: Plot of function F (x)

In figure 2 is presented a plot of the function F (x) for the isotropic case, which
we calculated numerically. In the interval x1 < x < x2, the function F (x) has exactly
two zeros at x = y1 = 4, x = y2 =

23
6
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To prove this result, let us present the conservation laws of energy and wave action
in the differential form:

∂Ik
∂t

= 2πkωk
∂Nk

∂t
= −∂P

∂k
, P = 2π

∫ k

0

kωk Snl dk

2πk
∂Nk

∂t
=

∂Q

∂k
, Q = 2π

∫ k

0

k Snl dk

Here, P is the flux of energy directed to high wave numbers, while Q is the flux of
wave action directed to small wave numbers. The equations

P = P0 = const, Q = Q0 = const

apparently are solutions of stationary equation Snl = 0. We will look for the solution
in the powerlike form N = λ k−x.
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Figure 3: Plot of function F (x): A zoom in the vertical direction

In Figure 3 is presented a zoom of the function F (x) in the vertical coordinate.
The numerics gives F ′(4) = 45.2 and F ′(23/6) = −40.4.
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The described spectra exhaust all powerlike isotropic solutions of the stationary
kinetic equation Snl = 0. This fact can be proved by the use of different methods.
Thermodynamical solutions N = const and N = c/k1/2 are not the solutions of this
equation, because their exponents x = 0 and x = 1/2 are far below the lower end of
the ”window of possibility” x1 = 5/2.

The general isotropic solution describes the situation when both the energy source
at small wave numbers and the wave action source exist simultaneously and have the
following form:

N
(3)
k = cp

(
P

g2

)1/3
1

k4
L

(
g1/2Qk1/2

P

)
Here L is an unknown function of one variable,

L → 1 at k → 0, L(ξ) → cq
cp

ξ1/3 at k → ∞

These spectra are realized if we have a source of energy at large scales and a source of
wave action at small scales.

– Typeset by FoilTEX – 34



In a real sea the external force (input from wind) is distributed smoothly along
all scales. Thus the KZ-spectra are observed as asymptotics in the energy-containing
area. The flux-action spectrum Ik ≃ k−11/3 is realized in area of small wave numbers,
while the KZ-spectrum is the high-frequency asymptotics. The typical picture is the
following:

Figure 4: Experimental spatial spectra
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The same scenario is routinely observed in experiments on numerical simulation of
the kinetic equation

Figure 5: Numerical simulation
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Stationary solutions: the anisotropic case

We introduce polar coordinates on the k-plane and put k2 = ω/g. Thereafter, we
will use the notation

N(ω, ϕ) dωdϕ = N(k⃗) dk⃗,

N(ω, ϕ) =
2ω3

g2
N(k⃗)

In the spatially homogenous case, N(ω, ϕ) satisfies the equation

δN(ω, ϕ)

∂t
= Snl(ω, ϕ)
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In new variables:

Snl(ω, ϕ) = 2πg2
∫

|Tω,ω1,ω2,ω3|
2 δ(ω + ω1 − ω2 − ω3)×

×δ(ω2 cosϕ+ ω2
1 cosϕ1 − ω2

2 cosϕ2 − ω2
3 cosϕ3)×

×δ(ω2 sinϕ+ ω2
1 sinϕ1 − ω2

2 sinϕ2 − ω2
3 sinϕ2)×

×
{
ω3N(ω1, ϕ1)N(ω2, ϕ2)N(ω3, ϕ3) + ω3

1 N(ω, ϕ)N(ω2, ϕ2)N(ω3, ϕ3)−

−ω2
2 N(ω, ϕ)N(ω1, ϕ1)N(ω3, ϕ3)− ω2

3 N(ω, ϕ)N(ω1, ϕ1)N(ω2, ϕ2)
}

dω1 dω2 dω3 dϕ1 dϕ2 dϕ3

Exactly this form of Snl is used for numerical simulation of the Hasselmann equation.

– Typeset by FoilTEX – 38



Suppose that N(ω, ϕ) = ω−z is the isotropic spectrum. Then,

Snl =
ω−3z+13

4g4
F

(
z + 3

2

)
=

G(z)

g4
ω−3z+13,

where F (x) was defined before. Now the ”window of opportunity” is 2 < z < 13/2.
Zeros of G(z) are posed at z1 = 5 and z2 = 14/3, and near these zeros G(z) can be
presented as parabola,

G(z) ≃ 16.05(z − 5)(z − 14/3)

To make the motion constants more conspicuous, we introduce the elliptic differential
operator

Lf(ω, ϕ) =

(
∂2

∂ω2
+

2

ω2

∂2

∂ϕ2

)
f(ω, ϕ), 0 < ω < ∞, 0 < ϕ < 2π
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Then, the equation
LG = δ(ω − ω′) δ(ϕ− ϕ′)

with boundary conditions

G|ω→0 = 0, Gω→∞ < ∞, G(2π) = G(0)

can be resolved as

G(ω, ω′, ϕ− ϕ′) =
1

4π

√
ωω′

∞∑
n=−∞

ein(ϕ−ϕ′) ×

×

[(ω
ω′

)∆n

Θ(ω′ − ω) +

(
ω′

ω

)∆n

Θ(ω − ω′)

]

where ∆n = 1/2
√
1 + 8n2
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Now we present Snl in the form:

A(ω, ϕ) =

∫ ∞

0

dω′
∫ 2π

0

dϕ′G(ω, ω′, ϕ− ϕ′)Snl(ω
′, ϕ′)

Note that A(ω, ϕ) is a regular integral operator and suppose that N(ω, ϕ) = ω−z.
Then

A[ω−z] =
ω−3z+15

g4
H(z),

H(z) =
G(z)

9(z − 5)(z − 14/3)

The function H(z) is positive and has no zeros. If G(z) is presented by parabola, then:

H(min) = H0 = 16.05/9 = 1.83
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The fact that H(z) is just a constant, leads to a bold idea. If we assume that

A =
H0

g4
ω15N3,

the nonlinear term Snl turns to the elliptic operator:

Snl =
H0

g4

(
∂2

∂ω2
+

2

ω2

∂2

∂ϕ2

)
ω15N3

This is the so-called ”diffusion approximation”. Being very simple, it grasps the basic
features of the wind-driven sea theory.
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The stationary kinetic equation is now simplified to the linear equation(
∂2

∂ω2
+

2

ω2

∂2

∂ϕ2

)
A = 0

It has the anisotropic KZ solution

A =
1

2π

{
P + ωQ+

Rx

ω
cosϕ

}
,

where P and Rx are fluxes of energy and momentum at ω → ∞ and Q is the flux of
wave action directed to small wave numbers. In the general case, this is the nonlinear
integral equation but in the diffusion approximation the KZ solution can be found in
the explicit form:

N(ω, ϕ) =
1

(2πH0)1/3
g4/3

ω5

(
P + ωQ+

Rx

ω
cosϕ

)1/3
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In this case

cp = cq =
1

2(2πH0)1/3
= 0.223, H0 = 1.83

This is exactly the arithmetic mean between the values of Kolmogorov constants.

Multiplying the explicit form by 2πω, we get the general KZ spectrum in the
diffusion approximation:

F (ω) = 2.78
g4/3

ω4

(
P + ωQ+

Rx

ω
cosϕ

)1/3

We must be sure that in the isotropic case Rx = 0, the expression

F (ω) = 2.78
g4/3

ω4
(P + ωQ)

1/3

approximates the generic isotropic KZ spectrum with accuracy up to a few percent.
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Damping due to nonlinear interaction

In the presence of wind input and dissipation the stationary Hasselmann equation,
or the balance equation, reads

Snl + Sin + Sdiss = 0

We can assume

Sin = γin(k)N(k), Sdis = −γdis(k)N(k)

If
γ(k) = γin(k)− γdis(k)

the balance kinetic equation reads

Snl + γ(k)Nk = 0
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We can present the Snl term as

Snl = Fk − ΓkNk

The definition of Γk and Fk are given as follow:

Fk = πg2
∫

|Tkk1k2k3|
2 δ(k+k1−k2−k3) δ(ωk+ωk1−ωk2−ωk3)Nk1Nk2Nk3 dk1dk2dk3

Γk = πg2
∫

|Tkk1,k2k3|
2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3)×

×(Nk1Nk2 +Nk1Nk3 −Nk2Nk3) dk1dk2dk3

The solution of the balance equation is the following:

Nk =
Fk

Γk − γk
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The positive solution exists if Γk > γk. The term Γk can be treated as the
nonlinear damping that appears due to four-wave interaction. This damping has a
very powerful effect. The main source of Γk is the interaction between long and short
waves. To estimate it, we assume that the spectrum of long waves is narrow in angle,
N(k1, θ1) = Ñ(k1) δ(θ1). Long waves propagate along the axis x and k⃗ is the wave
vector of the short wave propagating in direction θ. For the coupling coefficient we
must put Tkk1,k2,k3 ≃ 2k21k cos θ. Then

Γk = 8πg3/2 k2 cos2 θ

∫ ∞

0

k
13/2
1 Ñ2(k1) dk1

Even for the most mildly decaying KZ spectrum, Nk ≃ k−23/6, the integrand behaves

like k
−7/6
1 and the integral diverges. For steeper KZ spectra, the divergence is stronger.
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Let us estimate Γk for the case of a ”mature sea”, when the spectrum can be taken
in the form

Nk ≃ 3

2

E
√
g

k
3/2
p

k4
θ(k − kp)

Here E is the total energy. For this case we get the equation

Γω = 36πω

(
ω

ωp

)3

µ4
p cos2 θ,

which includes a huge enhancing factor: 36π ≃ 113.04. For the very modest value of
steepness, µp ≃ 0.05, we get

Γω ≃ 7.06 · 10−4ω

(
ω

ωp

)3

cos2 θ
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These results show that the four-wave nonlinear interaction is a very strong effect.
The strong turbulence of the near-surface air boundary layer makes the development of
a reliable theory of air-water interaction, including a well-justified analytical calculation
of γk, an extremely difficult task. making field and laboratory measurements of γk is
also difficult, and the scatter in determination of γk is itself of the order of γk. Anyway,
a comparison of the above calculated Γk with experimental data on γk shows that Γk

surpasses γk at least by an order of magnitude. This fact is demonstrated in figure 6.
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Figure 6: Comparison of experimental data for the wind-induced growth rate
2π γin(ω)/ω and the damping due to four-wave interactions 2π Γ(ω)/ω, calculated
for the narrow in angle spectrum at µ ≃ 0.05 (dashed line)
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As a result, we can make the conclusion that Snl is the leading term in the balance
equation and that the rear face of the spectrum is describes by solution of the stationary
kinetic equation, which has a rich family of solutions. In particulary, this equation
describes the angular spreading.

In Figure 7, we demonstrate that for the nonlinear interaction term Snl = Fk −
ΓkNk the magnitudes of constituents Fk and ΓkNk essentially exceed their difference.
They are one order higher than the magnitude of Snl!
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Figure 7: Split of the nonlinear interaction term Snl (central curve) into Fk (upper
curve) and ΓkNk (lower curve)
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Figure 8:
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Figure 9: Numerical solutions with the wind input
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Figure 10:
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Figure 11:
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Figure 12:
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Figure 13:
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Figure 14:
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In this case

β =
6

11
, α =

23

11

r = 1, < n >≃ t

– Typeset by FoilTEX – 60



Figure 15:
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Figure 16:
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Figure 17:
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To the theory of Phillips sea

Figure 18:
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Figure 19:
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Solutions for the stationary case. Phillips’ spectrum ω−5

Figure 20:
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Figure 21: From the ”purely-nonlinear” KZ-spectrum to ”nonlinear-dissipative” Phillips’
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A minor contribution to Phillips finding

Figure 22:
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The essential of minor contribution

Figure 23:
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Setup of numerical experiments. Isotropic swell under the
new dissipation

Figure 24:
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Figure 25: CPhillips = 1.22
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Figure 26: CPhillips = 2.75
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Summary

1. Both analytic and computation arguments show that Snl, the four-wave nonlinear
interaction, is the dominating process in the wind-driven sea physics. This fact makes
possible to develop the semianalytical weak-turbulent theory of the wind-driven sea,
based on the conservative Hasselmann equation.

2. This theory describes pretty well the wind-driven sea in the energy-containing
range of scales

kp < k < 10 kp

Sin, the wind-input term has to be found by comparison with observation data.

3. The proper choice of the dissipation function Sdiss makes possible to extent the
weak-turbulent theory for much broader range of scales.
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What is missed in this talk?

I did not discuss the numerous deterministic numerical experiments, which try to
describe the wind-driven sea from the ”first principle”, i.e. without use of the statistical
approach. This is a subject for another lecture. The results obtained so far, basically
support the weak-turbulent theory.
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