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Classical Water Waves

What distinguishes the water wave problems from others in
hydrodynamics is that the unknown is the region occupied by
the fluid. It is referred to as the free surface

For today Classical means two-dimensional irrotational flow
under gravity of a heavy perfect liquid with a free surface,

There is no surface tension and there are no floating bodies

Although there has been important recent progress on the
initial-value problem for free boundaries and on fully
3-dimensional waves, that is not the concern here.

2-Dimensional Irrotational Water Waves:
In Eulerian co ordinates the velocity at a point (x , y, z) in the
fluid at time t is given by the gradient of a scalar potential φ on
R2

~v(x , y, z; t) = ∇φ(x , y; t)

which satisfy



Irrotational Water Waves

Infinite depth

Wave interior

Ω = {(x , y) : y < η(x , t)}

∆φ(x , y ; t) = 0

∇φ(x , y ; t) → 0 as y → −∞



Irrotational Water Waves

Boundary Conditions
gravity g acts vertically down

Wave Surface

S = {(x , η(x , t)) : x ∈ R}

φt + 1
2
|∇φ|2 + gy = 0

ηt + φxηx − φy = 0

}

on S
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After he discovered experimentally the solitary wave, in 1844
John Scott Russell described

the greater part of the investigations of Poisson and Cauchy
under the name of wave theory are rather to be regarded as
mathematical exercises, not physical investigations

... since no one had predicted the wave it remained for

mathematicians to give an “a priori demonstration a posteriori”

Progress was very slow throughout the 19th century with
approximation for certain scaling limits but the full equations
remained essentially unexamined for more than one hundred
years but progress had accelerated hugely in recent years

Alex Craik, a PhD student of Brooke’s, has written extensively
on the history of the water wave problem



Energetics

The total wave energy at time t is Kinetic + Potential:

1

2

∫ ∫

η(x,t)

−∞

|∇φ(x , y; t)dy|2dx +
g

2

∫

η2(x ; t)dx



Energetics

The total wave energy at time t is Kinetic + Potential:

1

2

∫ ∫

η(x,t)

−∞

|∇φ(x , y; t)dy|2dx +
g

2

∫

η2(x ; t)dx

Given periodic functions η and Φ of the single variable x let

Ω = {(x , y) : y < η(x)}



Energetics

The total wave energy at time t is Kinetic + Potential:

1

2

∫ ∫

η(x,t)

−∞

|∇φ(x , y; t)dy|2dx +
g

2

∫

η2(x ; t)dx

Given periodic functions η and Φ of the single variable x let

Ω = {(x , y) : y < η(x)}

φ the solution of the corresponding Dirichlet problem

∆φ(x , y) = 0
φ→ 0 as y → −∞

}

on Ω

φ(x , η(x)) = Φ(x)



Energetics

The total wave energy at time t is Kinetic + Potential:

1

2

∫ ∫

η(x,t)

−∞

|∇φ(x , y; t)dy|2dx +
g

2

∫

η2(x ; t)dx

Given periodic functions η and Φ of the single variable x let

Ω = {(x , y) : y < η(x)}

φ the solution of the corresponding Dirichlet problem

∆φ(x , y) = 0
φ→ 0 as y → −∞

}

on Ω

φ(x , η(x)) = Φ(x)

let

E(η,Φ) =
1

2

∫ ∫

η(x)

−∞

|∇φ(x , y)dy|2dx + gη2(x)dx



With this functional

E(η,Φ) :=
1

2

∫ ∫

η(x)

−∞

|∇φ(x , y)dy|2dx + gη2(x)dx

and with the ”variational” derivatives

∂E

∂Φ
and

∂E

∂η



With this functional
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∫ ∫

η(x)

−∞

|∇φ(x , y)dy|2dx + gη2(x)dx

and with the ”variational” derivatives

∂E

∂Φ
and

∂E
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Zakharov (1968) observed that solutions (η,Φ) of

∂η

∂t
=
∂E

∂Φ
(η,Φ);

∂Φ

∂t
= −

∂E

∂η
(η,Φ)

yields a water wave



Benjamin & Olver (1982) studied

∂η

∂t
=
∂E

∂Φ
(η,Φ);

∂Φ

∂t
= −

∂E

∂η
(η,Φ)

as a Hamiltonian system of classical type

ẋ = J∇E(x), x = (η,Φ), J =

(

0, I
−I, 0

)

,

η, φ being the infinite dimensional canonical variables which
they referred to as ”coordinates” and ”momentum” and in an
Appendix gives the Hamiltonian formulation independent of
coordinates.

Both Zakharov and Benjamin was conscious of the implications
of the Hamiltonian formulation for stability
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ẇ(1 + Cw ′)− Cϕ′ − w ′Cẇ = 0

C
(
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2
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Dyachenko, Kuznetsov, Spector & Zakharov (1996) used
complex function theory in a deep and beautiful way to
reduce
Zakharov’s awkward system to the following ”simple” system:

ẇ(1 + Cw ′)− Cϕ′ − w ′Cẇ = 0

C
(

w ′ϕ̇− ẇϕ′ + λww ′
)

+ (ϕ̇+ λw)(1 + Cw ′)− ϕ′Cẇ = 0

˙ = ∂/∂t, ′ = ∂/∂x
w = wave height ϕ = potential at surface:

0 < λ = gravity after normalisating the wavelength as 2π

But it does not look like a Hamiltonian system any more!
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$ϕ,w(ŵ , ϕ̂) =

∫

π

−π

{

ϕ(1 + Cw ′) + C
(

ϕw ′
)}
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Hence ω is exact (and so closed)

From Riemann-Hilbert theory it is non-degenerate
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involving a PDE with nonlinear boundary conditions on an unknown domain:

S = {(x , η(x , t)) : x ∈ R}

η(x + 2π) = η(x , t) = η(x , t + 2π)

φt + 1
2
|∇φ|2 + λy = 0;

φt + φxηx − φyηy = 0

}

on S

For (x , y; t) with y < η(x , t)

∆φ(x , y; t) = 0

∇φ(x , y; t) → 0 as y → −∞

φ(x , y; t) = φ(x + 2π, y; t)

is equivalent to:
two equations each with quadratic nonlinearities for two
real-valued functions of one space and one time variable

on a fixed domain:



The Hamiltonian System

defined by

E(w , ϕ) =
1

2

∫

π

−π

ϕ̂Cϕ′ + λw2(1 + Cw ′)dξ

with the skew form

ω(w,ϕ)

(

(w1, ϕ1), (w2, ϕ2)
)

=

∫

π

−π

(1 + Cw ′)(ϕ2w1 − ϕ1w2)

+ w ′
(

ϕ1Cw2 − ϕ2Cw1

)

− ϕ′
(

w1Cw2 − w2Cw1

)

dξ

for x-periodic functions (φ(x , t),w(x , t)) of real variables leads
to the equations

ẇ(1 + Cw ′)− Cϕ′ − w ′Cẇ = 0

C
(

w ′ϕ̇− ẇϕ′ + λww ′
)

+ (ϕ̇+ λw)(1 + Cw ′)− ϕ′Cẇ = 0

a tidy version of the water-wave problem!!
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The first person to consider the initial-value problem for water
waves was Siméon Denis Poisson (1781–1840)

In the process he considered the standing waves – ”le clapotis”
he called them

– which offer a good example of how the Hamiltonian
approach helps organise a fiendishly difficult problem
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Linearized Standing Wave Problem
Standing Waves have normalised spatial period 2π and
temporal period T

The velocity potential φ on the lower half plane
{(x , t) :∈ R2 : y < 0}:

∂2φ

∂x2
+
∂2φ

∂y2
= 0, x , t ∈ R, y < 0,

Boundary Conditions

φ(x + 2π, y; t) = φ(x , y; t) = φ(x , y; t + T ), x , t ∈ R, y < 0,

∂2φ

∂t2
+ g

∂φ

∂y
= 0, y = 0

φ(−x , y; t) = φ(x , y; t) = −φ(x , y;−t), x , t ∈ R, y < 0

∇φ(x , y; t) → (0, 0), y → −∞

The wave Elevation η:

gη(x , t) = −
∂φ

∂t
(x , 0, t)
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In 1818 Poisson observed that when λ := gT 2/2πΛ is irrational
there are no non-constant solutions

However, when λ ∈ Q, for every m, n with n2

m
= λ

φ(x , y, t) = sin
(2nπt

T

)

cos

(2mπx

Λ

)

exp

(2mπy

Λ

)

is a solution

The eigenvalues λ of the linearized problem are Q ∩ [0,∞)
which is dense and each eigenspace is infinite-dimensional

This is called complete resonance. It is a huge nightmare
because inversion of the linearised problem involves
small-divisor problems when attacking the nonlinear problem.

However following work by Amick and others, in the past
decade this Hamiltonian formulation combined with the
Nash-Moser approach (from differential geometry) has

led to non-trivial solutions of the full nonlinear problem for a

measurable set of λ which is dense at 1 (Plotnikov & Iooss)
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With φ(x , t) = φ(x − ct) and w(x , t) = w(x − ct) the system
simplifies dramatically to φ′ = cw ′ and an equation for w only:

Cw ′ = λ
(

w + wCw ′ + C(ww ′)
)

(∗)

here the wave speed c has been absorbed in λ

Note that w 7→ Cw ′ is first-order, non-negative-definite,
self-adjoint which is densely defined on L2

2π by

C(eik)′ = |k |eik , k ∈ Z

Therefore

Cw ′ =

√

−
∂2w

∂ξ2

behaves like an elliptic differential operator
but significantly it lacks a maximum principle

Note also that (∗) is the Euler-Lagrange equation of
∫

π

−π

wCw ′ − λ
(

w2(1 + Cw ′)
)

dξ,
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Equation (∗) is quadratic in w and has beautiful structure:

apart from being variational it can be re-written

(1 − 2λw)Cw ′ = λ(w + C(ww ′)− wCw ′)

where miraculously C(ww ′)− wCw ′ is always negative and
always smoother than w ′.

When 1 − 2λw > 0 it becomes

Cw ′ = λ

(

w + C(ww ′)− wCw ′

1 − 2λw

)

and an elementary application of bifurcation theory yields
small amplitude waves with λ close to 1

This problem vexed Lord Rayleigh and was finally settled by Nekrasov and Levi Civita in the 1920s

The only difficulty arises when 1 − 2λw has zeros

This corresponds to Stokes wave of extreme form
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Plotnikov introduced Morse index calculations in his brilliant
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Buffoni & Séré and Dancer added a great deal to existence
theory using this variational structure. However there remain
many open questions.

In the last ten years the theory has been extended to a very
general class of free boundary problems Shargorodsky

Remarkably, despite its very special form nothing has emerged
that makes Stokes Waves special in that much wider class of
free-boundary problems
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Stokes Wave of Extreme Form (1880)

Moreover:
energy oscillates
maximum slope oscillates
number of inflection points increases without bound

as the extreme wave ((1 − 2λw = 0) is approached



Morse Index M(w)

The Morse index M(w) of a critical point w is the number of
eigenvalues µ < 0 of D2J (w):

D2J (w)φ = µφ, µ < 0

where D2J [w] is the linearisation of (∗) at (λ,w):

D2J (w)φ = Cφ′ − λ
(

φ+ φCw ′ + wCφ′ + C(wφ)′
)



Morse Index M(w)

The Morse index M(w) of a critical point w is the number of
eigenvalues µ < 0 of D2J (w):

D2J (w)φ = µφ, µ < 0

where D2J [w] is the linearisation of (∗) at (λ,w):

D2J (w)φ = Cφ′ − λ
(

φ+ φCw ′ + wCφ′ + C(wφ)′
)

The Morse Index may be infinite if 1 − 2λw has zeros
(corresponding to an extreme wave)



Morse Index M(w)

The Morse index M(w) of a critical point w is the number of
eigenvalues µ < 0 of D2J (w):

D2J (w)φ = µφ, µ < 0

where D2J [w] is the linearisation of (∗) at (λ,w):

D2J (w)φ = Cφ′ − λ
(

φ+ φCw ′ + wCφ′ + C(wφ)′
)

The Morse Index may be infinite if 1 − 2λw has zeros
(corresponding to an extreme wave)

Plotnikov showed that this is equivalent to a simpler eigenvalue
problem

Cψ′ − q[λ,w]ψ = µψ



Morse Index M(w)

The Morse index M(w) of a critical point w is the number of
eigenvalues µ < 0 of D2J (w):

D2J (w)φ = µφ, µ < 0

where D2J [w] is the linearisation of (∗) at (λ,w):

D2J (w)φ = Cφ′ − λ
(

φ+ φCw ′ + wCφ′ + C(wφ)′
)

The Morse Index may be infinite if 1 − 2λw has zeros
(corresponding to an extreme wave)

Plotnikov showed that this is equivalent to a simpler eigenvalue
problem

Cψ′ − q[λ,w]ψ = µψ

Moreover the ”Plotnikov potential” q[λ,w] becomes singular as
min{1 − 2λw} ↘ 0
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Plotnikov’s Theorem

Suppose that a sequence {(λk ,wk)} of solutions of (∗) has
1 − 2λkwk 6= 0 and the Morse indices {M(wk)} are bounded.

Then for some α > 0

1 − 2λk wk > α, k ∈ N

None of these solutions is close to being an extreme wave.

As the extreme Stokes wave is approached it becomes more
and more unstable in the sense of Morse indices

Recently Shargorodsky has quantified the relation between the
size of the Morse index and the size of α
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Stokes Wave of Extreme Form (1880)

Moreover:
energy oscillates
maximum slope oscillates
number of inflection points increases without bound

Morse index grows without bound as the extreme wave is

approached



Open Question

By methods of topological degree theory the global
branch of Stokes waves ”terminates” at Stokes extreme
wave. So Plotnikov’s result implies that there are solutions
arbitrarily large Morse index

Despite this and the attractive form of J , a global variational
theory of existence remains undiscovered

The question is:

For all large n ∈ N does there exist a solution
with Morse index n?
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where
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}
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and it can be proved that there is a curve of solutions
{(λs,ws) : s ∈ [0,∞)} with M(ws) → ∞ as s → ∞.

Moreover the parametrisation s 7→ (λs ,ws) is real-analytic.

Suppose that the Morse Index changes as s passes through s∗

I The variational structure of (‡)

I The fact that λ is a multiplier on the right

I The Morse Index changes as s passes through s∗

means that
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at least one of two things happens

(λs∗ , ws∗ )
*

turning point

(λs∗ , ws∗ )
*

crossing

The numerical evidence is that the first happens each time the
Morse index changes

We do not have a proof

This seems to be a very hard problem

But there’s more we can say ...
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The solutions {(λs ,ws) : s ∈ [0,∞)} with M(ws) → ∞ as
s → ∞ are 2π-periodic.

So they are also 2nπ-periodic for any n

Let Mn(w) denote their Morse index in that new setting

For p sufficiently large prime Mp(ws) changes as s passes
through s∗p 6= s∗ close to s∗

Thus near s∗ there is a bifurcation from the primary branch
of solution with minimal period 2pπ

(λs∗ , ws∗ )
*

s = s∗p1

s = s∗p2
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That period-multiplying (sub-harmonic) bifurcation occurs
near the turning points on the primary branch was
observed numerically by Chen & Saffman (1980)

Brooke knew their result and would I think have loved this
subtle proof

but alas once again the mathematicians had discovered
an a priori proof a postiori

I think I had better stop here
Thank You


