
INDUCTION EXERCISES 1

1. Factorials are defined inductively by the rule

0! = 1 and (n+ 1)! = n!× (n+ 1).

Then binomial coefficients are defined for 0 ≤ k ≤ n byµ
n

k

¶
=

n!

k!(n− k)!
.

Prove from these definitions that µ
n

k

¶
+

µ
n

k + 1

¶
=

µ
n+ 1

k + 1

¶
,

and deduce the Binomial Theorem: that for any x and y,

(x+ y)n =
nX

k=0

µ
n

k

¶
xkyn−k.

2. Prove that
nX

r=1

1

r2
≤ 2− 1

n
.

3. Prove that for n = 1, 2, 3, . . .
√
n ≤

nX
k=1

1√
k
≤ 2
√
n− 1.

4. Let A =
µ
5 −1
4 1

¶
. Show that

An = 3n−1
µ
2n+ 3 −n
4n 3− 2n

¶
for n = 1, 2, 3, . . . Can you find a matrix B such that B2 = A?

5. Let k be a positive integer. Prove by induction on n that

nX
r=1

r(r + 1)(r + 2) · · · (r + k − 1) = n(n+ 1)(n+ 2) · · · (n+ k)

k + 1
.

Show now by induction on k that
nX

r=1

rk =
nk+1

k + 1
+Ek(n)

where Ek(n) is a polynomial in n of degree at most k.



INDUCTION EXERCISES 2.

1. Show that n lines in the plane, no two of which are parallel and no three meeting in a point, divide the plane into

n2 + n+ 2

2

regions.

2. Prove for every positive integer n, that
33n−2 + 23n+1

is divisible by 19.

3. (a) Show that if u2 − 2v2 = 1 then
(3u+ 4v)2 − 2(2u+ 3v)2 = 1.

(b) Beginning with u0 = 3, v0 = 2, show that the recursion

un+1 = 3un + 4vn and vn+1 = 2un + 3vn

generates infinitely many integer pairs (u, v) which satisfy u2 − 2v2 = 1.

(c) How can this process be used to produce better and better rational approximations to
√
2? How many times need

this process be repeated to produce a rational approximation accurate to 6 decimal places?

4. The Fibonacci numbers Fn are defined by the recurrence relation

Fn = Fn−1 + Fn−2, for n ≥ 2

and F0 = 0 and F1 = 1. Prove for every integer n ≥ 0, that

Fn =
αn − βn√

5

where

α =
1 +
√
5

2
and β =

1−
√
5

2
.

[Hint: you may find it helpful to show first that the two roots of the equation x2 = x+ 1 are α and β.]

5. The sequence of numbers x0, x1, x2, . . . begins with x0 = 1 and x1 = 1 and is then recursively determined by the
equations

xn+2 = 4xn+1 − 3xn + 3n for n ≥ 0.
(a) Find the values of x2, x3, x4 and x5.

(b) Can you find a solution of the form
xn = A+B × 3n + C × n3n

which agrees with the values of x0, . . . , x5 that you have found?

(c) Use induction to prove that this is the correct formula for xn for all n ≥ 0.



ALGEBRA EXERCISES 1

1. (a) Find the remainder when n2 + 4 is divided by 7 for 0 ≤ n < 7.

Deduce that n2 + 4 is not divisible by 7, for every positive integer n. [Hint: write n = 7k + r where 0 ≤ r < 7.]

(b) Now k is an integer such that n3 + k is not divisible by 4 for all integers n. What are the possible values of k?

2. (i) Prove that if a, b are positive real numbers then

√
ab ≤ 1

2
(a+ b).

(ii) Now let a1, a2, . . . , an be positive real numbers. Let S = a1 + a2 + · · ·+ an and P = a1a2 · · · an.

Suppose that ai and aj are distinct. Show that replacing ai and aj with (ai + aj)/2 and (ai + aj)/2 increases P
without changing S.

Deduce that
(a1a2 · · · an)1/n ≤

a1 + a2 + · · ·+ an
n

.

3. (i) Let n be a positive integer. Show that

xn − yn = (x− y)
¡
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

¢
.

(ii) Let a also be a positive integer. Show that if an − 1 is prime then a = 2 and n is prime.

Is it true that if n is prime then 2n − 1 is also prime?

4. Let a, b, r, s be rational numbers with s 6= 0. Suppose that the number r+ s
√
2 is a root of the quadratic equation

x2 + ax+ b = 0.

Show that r − s
√
2 is also a root.

5. (i) The cubic equation ax3 + bx2 + cx+ d = 0 has roots α, β, γ, and so factorises as

a (x− α) (x− β) (x− γ) .

Determine
α+ β + γ, αβ + βγ + γα, αβγ,

in terms of a, b, c, d. What does α2 + β2 + γ2 equal?

(ii) Show that cos 3θ = 4 cos3 θ − 3 cos θ.

(iii) By considering the roots of the equation 4x3 − 3x− cos 3θ = 0 deduce that

cos θ cos(θ + 2π/3) cos(θ + 4π/3) =
cos(3θ)

4
.

What do
cos θ + cos(θ + 2π/3) + cos(θ + 4π/3) and cos2 θ + cos2(θ + 2π/3) + cos2(θ + 4π/3)

equal?



ALGEBRA EXERCISES 2

1. Under what conditions on the real numbers a, b, c, d, e, f do the simultaneous equations

ax+ by = e and cx+ dy = f

have (a) a unique solution, (b) no solution, (c) infinitely many solutions in x and y.

Select values of a, b, c, d, e, f for each of these cases, and sketch on separate axes the lines ax+ by = e and cx+dy = f .

2. For what values of a do the simultaneous equations

x+ 2y + a2z = 0,

x+ ay + z = 0,

x+ ay + a2z = 0,

have a solution other than x = y = z = 0. For each such a find the general solution of the above equations.

3. Do 2× 2 matrices exist satisfying the following properties? Either find such matrices or show that no such exist.
(i) A such that A5 = I and Ai 6= I for 1 ≤ i ≤ 4,
(ii) A such that An 6= I for all positive integers n,
(iii) A and B such that AB 6= BA,
(iv) A and B such that AB is invertible and BA is singular (i.e. not invertible),
(v) A such that A5 = I and A11 = 0.

4. Let

A =

µ
a b
c d

¶
and let AT =

µ
a c
b d

¶
be a 2× 2 matrix and its transpose. Suppose that detA = 1 and

ATA =

µ
1 0
0 1

¶
.

Show that a2 + c2 = 1, and hence that a and c can be written as

a = cos θ and c = sin θ.

for some θ in the range 0 ≤ θ < 2π. Deduce that A has the form

A =

µ
cos θ − sin θ
sin θ cos θ

¶
.

5. (a) Prove that
det (AB) = det (A) det (B)

for any 2× 2 matrices A and B.

(b) Let A denote the 2× 2 matrix µ
a b
c d

¶
.

Show that
A2 − (traceA)A+ (detA)I = 0 (1)

where

• traceA = a+ d is the trace of A, that is the sum of the diagonal elements;

• detA = ad− bc is the determinant of A;

• I is the 2× 2 identity matrix.

(c) Suppose now that An = 0 for some n ≥ 2. Prove that detA = 0. Deduce using equation (1) that A2 = 0.



CALCULUS EXERCISES 1 – Curve Sketching

1. Sketch the graph of the curve

y =
x2 + 1

(x− 1) (x− 2)
carefully labelling any turning points and asymptotes.

2. The parabola x = y2 + ay + b crosses the parabola y = x2 at (1, 1) making right angles.

Calculate the values of a and b.

On the same axes, sketch the two parabolas.

3. The curve C in the xy-plane has equation
x2 + xy + y2 = 1.

By solving dy/dx = 0, show that the maximum and minimum values taken by y are ±2/
√
3.

By changing to polar co-ordinates, (x = r cos θ, y = r sin θ),sketch the curve C.

What is the greatest distance of a point on C from the origin?

4. Sketch the curve y = x3 + ax+ b for a selection of values of a and b.

Suppose now that a is negative. Find the co-ordinates of the turning points of the graph and deduce that y = 0 has
exactly two roots when

b = ±2a
3

r
−a
3

For what values of b does the equation y = 0 have three distinct real roots?

5. On separate xu- and yu-axes sketch the curves u = 8(x3 − x) and u = ey/y labelling all turning points.

[Harder] Hence sketch the curve ey = 8y(x3 − x).

1



CALCULUS EXERCISES 2 – Numerical Methods and Estimation

1. Use calculus, or trigonometric identities, to prove the following inequalities for θ in the range 0 < θ < π
2 :

• sin θ < θ;

• θ < tan θ;

• cos 2θ < cos2 θ.

Hence, without directly calculating the following integrals, rank them in order of size.

(a)
Z 1

0

x3 cosx dx, (b)
Z 1

0

x3 cos2 x dx, (c)
Z 1

0

x2 sinx cosx dx, (d)
Z 1

0

x3 cos 2x dx.

2. Show that the equation

sinx =
1

2
x

has three roots. Using Newton-Raphson, or a similar numerical method, find the positive root to 6 d.p.

The equation sinx = λx has three real roots when λ = α or when β < λ < 1 for two real numbers α < 0 < β. Plot,
on the same axes, the curves

y = sinx, y = αx, y = βx.

3. Let S denote the circle in the xy-plane with centre (0,0) and radius 1. A regular m-sided polygon Im is inscribed
in S and a regular n-sided polygon Cn is circumscribed about S.

(a) By considering the perimeter of Im and the area bounded by Cn, prove that:

m sin
³ π
m

´
< π < n tan

³π
n

´
,

for all natural numbers m,n ≥ 3.

(b) Archimedes showed (using this method) that 31071 < π < 317 . What are the smallest values of m and n needed to
verify Archimedes’ inequality?

4. Find the coefficients of 1, x, x2, x3, x4 in the power series expansion (Taylor’s series expansion) for f (x) = secx.

Use this approximation to make an estimate for sec 1
10 . With the aid of a calculator, find to how many decimal places

the approximation is accurate.

5. Show that
R
ln xdx = x lnx− x+constant

Sketch the graph of the equation y = ln x. By consideration of areas on your graph, show that

n lnn− n+ 1 <
nX
1

ln r < (n+ 1) ln(n+ 1)− n.

Let Gn =
n
√
n! denote the geometric mean of 1, 2, . . . , n. Show that Gn/n approaches 1/e as n becomes large

1



CALCULUS EXERCISES 3 – Techniques of Integration

1. Evaluate Z
lnx

x
dx,

Z
x sec2 x dx,

Z ∞
3

dx
(x− 1)(x− 2) ,

Z 1

0

tan−1 x dx,
Z 1

0

dx
ex + 1

.

2. Evaluate, using trigonometric and/or hyperbolic substitutions,Z
dx

x2 + 1
,

Z 2

1

dx√
x2 − 1

,

Z
dx√
4− x2

,

Z ∞
2

dx

(x2 − 1)3/2

3. By completing the square in the denominator, and using the substitution

x =

√
2

3
tan θ − 1

3

evaluate Z
dx

3x2 + 2x+ 1
..

By similarly completing the square in the following denominators, and making appropriate trigonometric and/or
hyperbolic substitutions, evaluate the following integralsZ

dx√
x2 + 2x+ 5

,

Z ∞
0

dx
4x2 + 4x+ 5

.

4. Let t = tan 12θ. Show that

sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2
, tan θ =

2t

1− t2

and that

dθ =
2 dt
1 + t2

.

Use the substitution t = tan 12θ to evaluate Z π/2

0

dθ

(1 + sin θ)
2 .

5. Let

In =

Z π/2

0

xn sinx dx.

Evaluate I0 and I1.

Show, using integration by parts, that

In = n
³π
2

´n−1
− n (n− 1) In−2.

Hence, evaluate I5 and I6.

1



CALCULUS EXERCISES 4 – Differential Equations

1. Find the general solutions of the following separable differential equations.

dy
dx

=
x2

y
,

dy
dx

=
cos2 x

cos2 2y
,

dy
dx

= ex+2y.

2. Find the solution of the following initial value problems. On separate axes sketch the solution to each problem.

dy
dx

=
1− 2x

y
, y (1) = −2,

dy
dx

=
x
¡
x2 + 1

¢
4y3

, y (0) =
−1√
2
,

dy
dx

=
1 + y2

1 + x2
where y (0) = 1.

3. The equation for Simple Harmonic Motion, with constant frequency ω, is

d2x
dt2

= −ω2x.

Show that
d2x
dt2

= v
dv
dx

where v =dx/dt denotes velocity. Find and solve a separable differential equation in v and x given that x = a when
v = 0.

Hence show that
x (t) = a sin (ωt+ ε)

for some constant ε.

4. Find the most general solution of the following homogeneous constant coefficient differential equations:

d2y
dx2
− y = 0,

d2y
dx2

+ 4y = 0, where y (0) = y0 (0) = 1,

d2y
dx2

+ 3
dy
dx
+ 2y = 0,

d2y
dx2
− 4dy

dx
+ 4y = 0, where y (0) = y0 (0) = 1.

5. Write the left hand side of the differential equation

(2x+ y) + (x+ 2y)
dy
dx

= 0,

in the form
d
dx
(F (x, y)) = 0,

where F (x, y) is a polynomial in x and y. Hence find the general solution of the equation.

Use this method to find the general solution of

(y cosx+ 2xey) +
¡
sinx+ x2ey − 1

¢ dy
dx

= 0.



CALCULUS EXERCISES 5 – Further Differential Equations

1. Find all solutions of the following separable differential equations:

dy
dx

=
y − xy

xy − x
,

dy
dx

=
sin−1 x

y2
√
1− x2

, y (0) = 0.

d2y
dx2

=
¡
1 + 3x2

¢µdy
dx

¶2
where y (1) = 0 and y0 (1) =

−1
2
.

2. Use the method of integrating factors to solve the following equations with initial conditions

dy
dx
+ xy = x where y (0) = 0,

2x3
dy
dx
− 3x2y = 1 where y (1) = 0,

dy
dx
− y tanx = 1 where y (0) = 1.

3. Find the most general solution of the following inhomogeneous constant coefficient differential equations:

d2y
dx2

+ 3
dy
dx
+ 2y = x,

d2y
dx2

+ 3
dy
dx
+ 2y = sinx,

d2y
dx2

+ 3
dy
dx
+ 2y = ex,

d2y
dx2

+ 3
dy
dx
+ 2y = e−x.

4. (a) By making the substitution y (x) = xv (x) in the following homogeneous polar equations, convert them into
separable differential equations involving v and x, which you should then solve

dy
dx

=
x2 + y2

xy
,

x
dy
dx

= y +
p
x2 + y2.

(b) Make substitutions of the form x = X + a, y = Y + b, to turn the differential equation

dy
dx

=
x+ y − 3
x− y − 1

into a homogeneous polar differential equation in X and Y . Hence find the general solution of the above equation.

5. A particle P moves in the xy-plane. Its co-ordinates x (t) and y (t) satisfy the equations

dy
dt
= x+ y and

dx
dt
= x− y,

and at time t = 0 the particle is at (1, 0) . Find, and solve, a homogeneous polar equation relating x and y.

By changing to polar co-ordinates
¡
r2 = x2 + y2, tan θ = y/x

¢
, sketch the particle’s journey for t ≥ 0.



COMPLEX NUMBERS EXERCISES

1. By writing ω = a+ ib (where a and b are real), solve the equation

ω2 = −5− 12i.

Hence find the two roots of the quadratic equation

z2 − (4 + i) z + (5 + 5i) = 0.

2. By substituting z = x+ iy or z = reiθ into the following equations and inequalities, sketch the following regions of
the complex plane on separate Argand diagrams:

• |z − 3− 4i| < 5,

• arg(z) = π/3

• 0 ≤ Re((iz + 3)/2) < 2,

• ez = 1,

• Im(z2) < 0.

3. Find the image of the point z = 2 + it under each of the following transformations.

• z 7→ iz,

• z 7→ z2,

• z 7→ ez,

• z 7→ 1/z.

By letting t vary over all real values find the image of the line Re z = 2 under the same transformations.

4. (a) Given that eiθ = cos θ + i sin θ, prove that

cos(α+ β) = cosα cosβ − sinα sinβ.

(b) Use De Moivre’s Theorem to show that

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.

5. (a) Let z = cos θ + i sin θ and let n be an integer. Show that

2 cos θ = z +
1

z
and that 2i sin θ = z − 1

z
.

Find expressions for cosnθ and sinnθ in terms of z.

(b) Show that

cos5 θ =
1

16
(cos 5θ + 5 cos 3θ + 10 cos θ)

and hence find
R π/2
0

cos5 θ dθ.



GEOMETRY EXERCISES

1. Describe the regions of space given by the following vector equations. In each, r denotes the vector xi + yj+ zk;
‘·’ and ∧ denote the scalar (dot) and vector (cross) product:

• r∧ (i+ j) = (i− j) ,

• r · i = 1,

• |r− i| = |r− j| ,

• |r− i| = 1,

• r · i = r · j = r · k,

• r ∧ i = i.

2. Find the shortest distance between the lines

x− 1
2

=
y − 3
3

=
z

2
and x = 2,

y − 1
2

= z.

[Hint: parametrise the lines and write down the vector between two arbitrary points on the lines; then determine when
this vector is normal to both lines.]

3. Let Lθ denote the line through (a, b) making an angle θ with the x-axis. Show that Lθ is a tangent of the parabola
y = x2 if and only if

tan2 θ − 4a tan θ + 4b = 0.
[Hint: parametrise Lθ as x = a+λ cos θ and y = b+λ sin θ and determine when Lθ meets the parabola precisely once.]

Show that the tangents from (a, b) to the parabola subtend an angle π/4 if and only if

1 + 24b+ 16b2 = 16a2.

[Hint: use the formula tan(θ1 − θ2) = (tan θ1 − tan θ2)/(1 + tan θ1 tan θ2).]

Sketch the curve 1 + 24y + 16y2 = 16x2 and the original parabola on the same axes.

4. What transformations of the xy-plane do the following matrices represent:

i)

µ
x
y

¶
7→
µ
1 0
0 −1

¶µ
x
y

¶
, ii)

µ
x
y

¶
7→
µ
2 0
0 1

¶µ
x
y

¶
,

iii)

µ
x
y

¶
7→
µ
1/2 1/2
1/2 1/2

¶µ
x
y

¶
, iv)

µ
x
y

¶
7→
µ
cos θ − sin θ
sin θ cos θ

¶µ
x
y

¶
.

Which, if any, of these transformations are invertible?

5. The cycloid is the curve given parametrically by the equations

x (t) = t− sin t, and y (t) = 1− cos t for 0 ≤ t ≤ 2π.

(a) Sketch the cycloid.

(b) Find the arc-length of the cycloid.

(c) Find the area bounded by the cycloid and the x-axis.

(d) Find the area of the surface of revolution generated by rotating the cycloid around the x-axis.

(e) Find the volume enclosed by the surface of revolution generated by rotating the cycloid around the x-axis.




