A landscape sketch of
Quantum Complexity

Niel de Beaudrap
Dept. Computer Science, Oxford

Oxford Cryptography Day

Cryptography and Quantum Computing
17 March 2016



A view of
Randomised Computation

Distributions are data,
and transform linearly



A view of
Randomised Computation

Distributions are data, ) out )
and transform linearly x€10,1} G = yed0.1}
p(X1,...,Xk) POy, yr)



A view of
Randomised Computation

Distributions are data, L in . ou r

and transform linearly xe 0.1 =6 = yeil.1;

« Computations on random bits p(X1,...,Xk) P'O1seeesyr)
= linear (stochastic) transformations p’ = Gp

of probability distributions



A view of
Randomised Computation

Distributions are data, i )
and transform linearly xe0.1 =6 = yeil.l)
e Computations on random bits p(x1,...,X0) PV, yr)
= linear (stochastic) transformations p = Gp
of probability distributions
NOT P —{>o—p' [(1) (1)] lgﬂ = H

Po




A view of
Randomised Computation

Distributions are data, L out )
and transform linearly xe0.1 =6 = yeil.l)
e Computations on random bits p(xt,...,xx) p(yi,...,r)

= linear (stochastic) transformations p = Gp
of probability distributions

NOT o [2 é]




A view of
Randomised Computation

Distributions are data, L in . ou r

and transform linearly xe 0.1 =6 = yeil.1;

« Computations on random bits p(X1,...,Xk) P'O1seeesyr)
= linear (stochastic) transformations p’ = Gp

of probability distributions

0 1
NOT 4><F [1 0]
_Poo_
_D I 1 1 Of [po1| _ |Poo+Po1t+pio
AND  — [O 0 O 1] D10 _[ D11 ]
| P11 |




A view of
Randomised Computation

Distributions are data, i )
and transform linearly xe0.1 =6 = yeil.l)
e Computations on random bits P15, X0)
= linear (stochastic) transformations p’ = Gp
of probability distributions




A view of
Randomised Computation

Distributions are data, i )
and transform linearly xe0.1 =6 = yeil.l)
e Computations on random bits p(xt,...,xx) p(yi,...,r)
= linear (stochastic) transformations p’ = Gp
of probability distributions

0 1

NOT —|>o— [10]
| 1 1 1 O]
AND = - 0 0 0 1
1 0 0 O]
ORD_0111_




A view of
Randomised Computation

Distributions are data, i )
and transform linearly xe0.1 =6 = yeil.l)
e Computations on random bits p(xt,...,xx) p(yi,...,r)
= linear (stochastic) transformations p’ = Gp
of probability distributions

NOT >0 [(1) é] FRASE —ir [1 1]
| 1 1 1 O]

AND = - 0 0 0 1
1 0 0 O]

OR = >- 01 1 1




A view of
Randomised Computation

Distributions are data, L ot )
and transform linearly xe 0.1 =6 = yeil.1;
e Computations on random bits p(xt,...,xk) p(yi,....)r)

= linear (stochastic) transformations p’ = Gp
of probability distributions

1 _
NOT — —>o— [2 0] ERASE —in |
| 1 1 1 0]
AND _} 000 1 FANOUT 4()(
(1 0 0 O]
OR 3 > 01 1 1

o O O = =
Ir—lcoolp—k




A view of
Randomised Computation

Distributions are data, L ot )
and transform linearly xe 0.1 =6 = yeil.1;
e Computations on random bits p(xt,...,xk) p(yi,....)r)

= linear (stochastic) transformations p’ = Gp
of probability distributions

1 _

NOT >0 [2 0] ERASE  —|I |
| 1 1 1 0

AND _} 000 1 FANOUT 4()(

(1 0 0 O] - 2/3 1/3

OR 3 > 01 1 1 MIX () [1/3 2/3]




A view of
Randomised Computation

Distributions are data, L out )
and transform linearly xe 0.1 =6 = yeil.1;
e Computations on random bits p(xt,...,xk) p(yi,....)r)

= linear (stochastic) transformations p’ = Gp
of probability distributions

1 _

NOT >0 [2 0] ERASE  —|I |
N 1 1 1 0

AND _} 000 1 FANOUT 4C><

(1 0 0 O] - 2/3 1/3

OR {> 0 1 1 1] MIX O [1/3 2/3]

* Polynomial-size randomised circuits
= efficiently describable (stochastic) tensor networks



A view of
Randomised Computation

out

Distributions are data,

. k % — r
and transform linearly xe0.1 =6 = yeil.l)
« Computations on random bits p(X1,...,Xk) P'O1seees¥r)

= linear (stochastic) transformations p’ = Gp
of probability distributions
NOT —{>o— [ﬁ’ (1)] FRASE —ir [1 1
1 0
| 1 1 1 0 00 Exponentially long
AND _} 0o 0 0 1 FANOUT {( 8 (1) real-valued vectors?

Exponentially small

(1 0 0 O] - 2/3 1/3 |
OR D 011 1 MIX — - [1/3 2/3] amplitudes?

* Polynomial-size randomised circuits
= efficiently describable (stochastic) tensor networks




A view of
Randomised Computation

out

Distributions are data,

H k % — r
and transform linearly xe0.1 =6 = yeil.l)
« Computations on random bits p(X1,...,Xk) P'O1seees¥r)

= linear (stochastic) transformations p’ = Gp
of probability distributions
NOT  —[>o- [ﬁ’ (1)] FRASE —1i [1 1
1 0
| 1 1 1 0 00 Exponentially long
AND _} 0o 0 0 1 FANOUT {( 8 (1) real-valued vectors?

Exponentially small

(1 0 0 O] - 2/3 1/3 |
OR D 011 1 MIX — - [1/3 2/3] amplitudes?

Not a problem!
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* Polynomial-size randomised circuits of algorithms, not

products of them)

= efficiently describable (stochastic) tensor networks
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between randomised and quantum algorithms

e Algorithms represented by tensor networks (“circuits”)
(linear transformations on 1, 2, or 3 bits at a time)

e Space of distributions on n bits is compact
(norm-bounded; transformations have bounded singular values)

* Minute individual coefficients are not significant
(i.e. unstructured search appears to require exponential time)
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demonstrate an Q(2"/?)-time lower bound for
search on n-bit strings via quantum algorithms

1996 Grover demonstrates an O(2"/?)-time
gquantum algorithm for search among n-bit strings

Proof idea: Bound the effect of cumulative “oracle” queries on
distributions, in a protocol with a generic input state

— quantum “parallelism” cannot directly
simulate nondeterministic “parallelism”
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The polynomial methoo

arXiv:quant-ph/9802049

« Each query increases
. Lemma 4.1 Let N be a quantum network that makes T
the polynomial degrees queries to a black-box X . Then there exist complex-valued
of the state-vector's N -variate multilinear polynomials p, . .., pom _1, each of
coefficients by < 1 degree at most 'I', such that the final state of the network is
the superposition

e Probabilities are a

guadratic polynomial

IN the state coefficients
(factor of 2 in the degree)

ke K

for any black-box X .

* Queries of bounded-error

algorithms scale with the
degree of a bounded-error — similar results hold for randomised algorithms as well
approximating polynomial
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What computational tricks provide the
“quantum advantage” ?

the “"eigenspace trick” (as one may call it)
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Factori ng Order Elgenvalue a related group action
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Pell’s Equation /
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reduce the problem

Eigenvalue estimation fo the eigenspaces of

a related group action

1. Prepare a “probe” system in a
uniform distribution over strings {0,1}"

2. Use the probe to (coherently) control how many times
0 <t <log(m)some group action A is performed on
an input state

3. Perform an inverse-Fourier transform on the probe, to obtain
a distribution on (estimates of) eigenvalues of A

(4. Perform further operations conditioned on eigenvalue estimates)
(e.g. obtain a rational estimate, and find the order of A)
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o A quick description of . y
I'he “elgenspace trick (-2}

reduce the problem

Fourier decomposition ‘o the eigenspaces of

a related group action

Take a ‘Fourier’ decomposition of a group action:
Decompose as a series of commuting operators
Constraint: individual operators are efficient to perform
Truncate so that the error is bounded on eigenvalues of interest

1. Prepare a “control” system in a distribution,
oroportional to the Fourier decomposition of the group action

2. Use the control to (coherently) pertorm operations from
the family of commuting operators

3. Perform a transformation to ‘erase’ the control (with high probability)

(4. Condition on success of erasure)



The crux of
the elgenspace trick



The crux of
the elgenspace trick

* Permutations, etc. can have many stationary distributions
(though many of them may not be probability distributions)



The crux of
the elgenspace trick

* Permutations, etc. can have many stationary distributions
(though many of them may not be probability distributions)

e Ability of guantum computers to access eigenvectors
— greater versatility



The crux of
the elgenspace trick

* Permutations, etc. can have many stationary distributions
(though many of them may not be probability distributions)

e Ability of guantum computers to access eigenvectors
— greater versatility

Caveat scriptor

It problem X has more convenient structure than problem Y,
useful group actions for X may be easier to access
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Quantum resistant

Approach:

Lattice-based.:

Code-based.:

Multivariate
equations:

oroblems”?

consider variants of NP-hard problems,
which seem likely not to be susceptible
to the eigenspace trick — for example:

derived from NP-hard problems about lattices

based on the difficulty of decoding linear
error-correcting codes

based on the difficulty of solving systems of
polynomial equations in many variables
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| attice-based problems

Lattice: finitely generated subgroup of R"
given by a minimal set of generators

SVP: does the shortest vector In the lattice have

length at most 1, or greater than 1 (¢5-norm)?
— NP-hard

SVPy: does the shortest vector in the lattice have
length at most 1, or greater than vy € w(1) ?
— basis of NTRU, Ring-LWE

Post-quantum for a given v, are “useful” group actions
question: hard to access for guantum computers?
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Linear code: finitely generated subgroup of Z%5 ~ {0,1}"
given by a minimal set of generators

Decoding: what is the nearest "codeword” to a given
n bit string”? — NP-hard

eg. McEliece given acyphertext z € {0,1}", and a (public) generator
problem: G = PGS of some efficiently decodable linear code
(for some private obfuscating operations P and S), find the
codeword or plaintext which corresponds to x .

Post-quamum Does restricting to efficiently decodable linear codes
question; make “useful” group actions accessible to a quantum
attacker?
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Problems based on
multivariate polynomials

Polynomial Find a solution to a system of poly(n) equations
eqn. system: in » unknowns over a finite field ~ — NP-hard

UOV Compute a [signature] for a given [message],

problem: such that [message] = F([signature]), where
F is a (public) system of multivariate polynomials

(and E is related to an easily solved private system,
by a privately held linear transformation of [signature])

Post-quantum Does the privately held similarity transform suffice,
question; to hide the privately held system of equations”
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Overview / Outlook

* What cryptographic technigues can be motivated by
similarities between randomised and guantum computation?

— eg. lower bounds on query complexity

 What trapdoor problems can we devise which are immune
against the eigenspace trick, and yet efficient to perform?

— eg. Involving non-abelian group actions

* \WWhat other strategies (beyond the eigenspace trick) may form
the basis of useful guantum algorithms®?



