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• Algorithms represented by tensor networks (“circuits ”) 
(linear transformations on 1, 2, or 3 bits at a time)

• Space of distributions on n bits is compact  
(norm-bounded; transformations have bounded singular values)

• Minute individual coefficients are not significant  
(i.e. unstructured search appears to require exponential time)
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The polynomial method

3.2 The framework of quantum networks

Our goal is to compute some Boolean function f ofX =
(x0, . . . , xN−1), where X is given as a black-box: calling
the black-box on i returns the value of xi. We want to use
as few queries as possible.
A classical algorithm that computes f by using (adap-

tive) black-box queries toX is called a decision tree, since it
can be pictured as a binary tree where each node is a query,
each node has the two outcomes of the query as children,
and the leaves give answer f(X) = 0 or f(X) = 1. The
cost of such an algorithm is the number of queries made on
the worst-case X , so the cost is the depth of the tree. The
decision tree complexityD(f) of f is the cost of the best de-
cision tree that computes f . Similarly we can define R(f)
as the expected number of queries on the worst-case X for
randomized algorithms that compute f with bounded-error.
A quantum network with T queries is the quantum ana-

logue to a classical decision tree with T queries, where
queries and other operations can now be made in quantum
superposition. Such a network can be represented as a se-
quence of unitary transformations:

U0, O1, U1, O2, . . . , UT−1, OT , UT ,

where the Ui are arbitrary unitary transformations, and the
Oj are unitary transformations which correspond to queries
toX . The computation ends with some measurement or ob-
servation of the final state. We assume each transformation
acts onm qubits and each qubit has basis states |0⟩ and |1⟩,
so there are 2m basis states for each stage of the computa-
tion. It will be convenient to represent each basis state as
a binary string of length m or as the corresponding natural
number, so we have basis states |0⟩, |1⟩, |2⟩, . . . , |2m − 1⟩.
Let K be the index set {0, 1, 2, . . . , 2m − 1}. With some
abuse of notation, we will sometimes identify a set of
numbers with the corresponding set of basis states. Ev-
ery state |φ⟩ of the network can be uniquely written as
|φ⟩ =

∑
k∈K αk|k⟩, where the αk are complex numbers

such that
∑

k∈K |αk|2 = 1. When |φ⟩ is measured in the
above basis, the probability of observing |k⟩ is |αk|2. Since
we want to compute a function of X , which is given as a
black-box, the initial state of the network is not very impor-
tant and we will disregard it hereafter (we may assume the
initial state to be |0⟩ always).
The queries are implemented using the unitary transfor-

mations Oj in the following standard way. The transfor-
mation Oj only affects the leftmost part of a basis state: it
maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩ (⊕ denotes XOR).
Here i has length ⌈log N⌉ bits, b is one bit, and z is an arbi-
trary string of m − ⌈log N⌉ − 1 bits. Note that the Oj are
all equal.
How does a quantum network compute a Boolean func-

tion f of X? Let us designate the rightmost bit of the final

state of the network as the output bit. More precisely, the
output of the computation is defined to be the value we ob-
serve if we measure the rightmost bit of the final state. If
this output equals f(X) with certainty, for every X , then
the network computes f exactly. If the output equals f(X)
with probability at least 2/3, for everyX , then the network
computes f with bounded error probability at most 1/3. To
define the zero-error setting, the output is obtained by ob-
serving the two rightmost bits of the final state. If the first
of these bits is 0, the network claims ignorance (“inconclu-
sive”), otherwise the second bit should contain f(X) with
certainty. For every X , the probability of getting “incon-
clusive” should be less than 1/2. We use QE(f), Q0(f)
and Q2(f) to denote the minimum number of queries re-
quired by a quantum network to compute f in the exact,
zero-error and bounded-error settings, respectively. Note
that Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N .

4 General lower bounds on the number of
queries

In this section we will provide some general lower
bounds on the number of queries required to compute a
Boolean function f on a quantum network, either exactly
or with zero- or bounded-error probability.

4.1 Bounds for error-free computation

The next lemmas relate quantum networks to polynomi-
als; they are the key to most of our results.

Lemma 4.1 Let N be a quantum network that makes T
queries to a black-box X . Then there exist complex-valued
N -variate multilinear polynomials p0, . . . , p2m−1, each of
degree at most T , such that the final state of the network is
the superposition

∑

k∈K

pk(X)|k⟩,

for any black-boxX .

Proof Let |φi⟩ be the state of the network (using some
black-boxX) just before the ith query. Note that |φi+1⟩ =
UiOi|φi⟩. The amplitudes in |φ0⟩ depend on the initial state
and on U0 but not on X , so they are polynomials of X of
degree 0. A query maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩.
Hence if the amplitude of |i, 0, z⟩ in |φ0⟩ is α and the am-
plitude of |i, 1, z⟩ is β, then the amplitude of |i, 0, z⟩ after
the query becomes (1 − xi)α + xiβ and the amplitude of
|i, 1, z⟩ becomes xiα + (1 − xi)β, which are polynomials
of degree 1. (In general, if the amplitudes before a query
are polynomials of degree ≤ j, then the amplitudes after
the query will be polynomials of degree≤ j + 1.) Between
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3.2 The framework of quantum networks

Our goal is to compute some Boolean function f ofX =
(x0, . . . , xN−1), where X is given as a black-box: calling
the black-box on i returns the value of xi. We want to use
as few queries as possible.
A classical algorithm that computes f by using (adap-

tive) black-box queries toX is called a decision tree, since it
can be pictured as a binary tree where each node is a query,
each node has the two outcomes of the query as children,
and the leaves give answer f(X) = 0 or f(X) = 1. The
cost of such an algorithm is the number of queries made on
the worst-case X , so the cost is the depth of the tree. The
decision tree complexityD(f) of f is the cost of the best de-
cision tree that computes f . Similarly we can define R(f)
as the expected number of queries on the worst-case X for
randomized algorithms that compute f with bounded-error.
A quantum network with T queries is the quantum ana-

logue to a classical decision tree with T queries, where
queries and other operations can now be made in quantum
superposition. Such a network can be represented as a se-
quence of unitary transformations:

U0, O1, U1, O2, . . . , UT−1, OT , UT ,

where the Ui are arbitrary unitary transformations, and the
Oj are unitary transformations which correspond to queries
toX . The computation ends with some measurement or ob-
servation of the final state. We assume each transformation
acts onm qubits and each qubit has basis states |0⟩ and |1⟩,
so there are 2m basis states for each stage of the computa-
tion. It will be convenient to represent each basis state as
a binary string of length m or as the corresponding natural
number, so we have basis states |0⟩, |1⟩, |2⟩, . . . , |2m − 1⟩.
Let K be the index set {0, 1, 2, . . . , 2m − 1}. With some
abuse of notation, we will sometimes identify a set of
numbers with the corresponding set of basis states. Ev-
ery state |φ⟩ of the network can be uniquely written as
|φ⟩ =

∑
k∈K αk|k⟩, where the αk are complex numbers

such that
∑

k∈K |αk|2 = 1. When |φ⟩ is measured in the
above basis, the probability of observing |k⟩ is |αk|2. Since
we want to compute a function of X , which is given as a
black-box, the initial state of the network is not very impor-
tant and we will disregard it hereafter (we may assume the
initial state to be |0⟩ always).
The queries are implemented using the unitary transfor-

mations Oj in the following standard way. The transfor-
mation Oj only affects the leftmost part of a basis state: it
maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩ (⊕ denotes XOR).
Here i has length ⌈log N⌉ bits, b is one bit, and z is an arbi-
trary string of m − ⌈log N⌉ − 1 bits. Note that the Oj are
all equal.
How does a quantum network compute a Boolean func-

tion f of X? Let us designate the rightmost bit of the final

state of the network as the output bit. More precisely, the
output of the computation is defined to be the value we ob-
serve if we measure the rightmost bit of the final state. If
this output equals f(X) with certainty, for every X , then
the network computes f exactly. If the output equals f(X)
with probability at least 2/3, for everyX , then the network
computes f with bounded error probability at most 1/3. To
define the zero-error setting, the output is obtained by ob-
serving the two rightmost bits of the final state. If the first
of these bits is 0, the network claims ignorance (“inconclu-
sive”), otherwise the second bit should contain f(X) with
certainty. For every X , the probability of getting “incon-
clusive” should be less than 1/2. We use QE(f), Q0(f)
and Q2(f) to denote the minimum number of queries re-
quired by a quantum network to compute f in the exact,
zero-error and bounded-error settings, respectively. Note
that Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N .

4 General lower bounds on the number of
queries

In this section we will provide some general lower
bounds on the number of queries required to compute a
Boolean function f on a quantum network, either exactly
or with zero- or bounded-error probability.

4.1 Bounds for error-free computation

The next lemmas relate quantum networks to polynomi-
als; they are the key to most of our results.

Lemma 4.1 Let N be a quantum network that makes T
queries to a black-box X . Then there exist complex-valued
N -variate multilinear polynomials p0, . . . , p2m−1, each of
degree at most T , such that the final state of the network is
the superposition

∑

k∈K

pk(X)|k⟩,

for any black-boxX .

Proof Let |φi⟩ be the state of the network (using some
black-boxX) just before the ith query. Note that |φi+1⟩ =
UiOi|φi⟩. The amplitudes in |φ0⟩ depend on the initial state
and on U0 but not on X , so they are polynomials of X of
degree 0. A query maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩.
Hence if the amplitude of |i, 0, z⟩ in |φ0⟩ is α and the am-
plitude of |i, 1, z⟩ is β, then the amplitude of |i, 0, z⟩ after
the query becomes (1 − xi)α + xiβ and the amplitude of
|i, 1, z⟩ becomes xiα + (1 − xi)β, which are polynomials
of degree 1. (In general, if the amplitudes before a query
are polynomials of degree ≤ j, then the amplitudes after
the query will be polynomials of degree≤ j + 1.) Between
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3.2 The framework of quantum networks

Our goal is to compute some Boolean function f ofX =
(x0, . . . , xN−1), where X is given as a black-box: calling
the black-box on i returns the value of xi. We want to use
as few queries as possible.
A classical algorithm that computes f by using (adap-

tive) black-box queries toX is called a decision tree, since it
can be pictured as a binary tree where each node is a query,
each node has the two outcomes of the query as children,
and the leaves give answer f(X) = 0 or f(X) = 1. The
cost of such an algorithm is the number of queries made on
the worst-case X , so the cost is the depth of the tree. The
decision tree complexityD(f) of f is the cost of the best de-
cision tree that computes f . Similarly we can define R(f)
as the expected number of queries on the worst-case X for
randomized algorithms that compute f with bounded-error.
A quantum network with T queries is the quantum ana-

logue to a classical decision tree with T queries, where
queries and other operations can now be made in quantum
superposition. Such a network can be represented as a se-
quence of unitary transformations:

U0, O1, U1, O2, . . . , UT−1, OT , UT ,

where the Ui are arbitrary unitary transformations, and the
Oj are unitary transformations which correspond to queries
toX . The computation ends with some measurement or ob-
servation of the final state. We assume each transformation
acts onm qubits and each qubit has basis states |0⟩ and |1⟩,
so there are 2m basis states for each stage of the computa-
tion. It will be convenient to represent each basis state as
a binary string of length m or as the corresponding natural
number, so we have basis states |0⟩, |1⟩, |2⟩, . . . , |2m − 1⟩.
Let K be the index set {0, 1, 2, . . . , 2m − 1}. With some
abuse of notation, we will sometimes identify a set of
numbers with the corresponding set of basis states. Ev-
ery state |φ⟩ of the network can be uniquely written as
|φ⟩ =

∑
k∈K αk|k⟩, where the αk are complex numbers

such that
∑

k∈K |αk|2 = 1. When |φ⟩ is measured in the
above basis, the probability of observing |k⟩ is |αk|2. Since
we want to compute a function of X , which is given as a
black-box, the initial state of the network is not very impor-
tant and we will disregard it hereafter (we may assume the
initial state to be |0⟩ always).
The queries are implemented using the unitary transfor-

mations Oj in the following standard way. The transfor-
mation Oj only affects the leftmost part of a basis state: it
maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩ (⊕ denotes XOR).
Here i has length ⌈log N⌉ bits, b is one bit, and z is an arbi-
trary string of m − ⌈log N⌉ − 1 bits. Note that the Oj are
all equal.
How does a quantum network compute a Boolean func-

tion f of X? Let us designate the rightmost bit of the final

state of the network as the output bit. More precisely, the
output of the computation is defined to be the value we ob-
serve if we measure the rightmost bit of the final state. If
this output equals f(X) with certainty, for every X , then
the network computes f exactly. If the output equals f(X)
with probability at least 2/3, for everyX , then the network
computes f with bounded error probability at most 1/3. To
define the zero-error setting, the output is obtained by ob-
serving the two rightmost bits of the final state. If the first
of these bits is 0, the network claims ignorance (“inconclu-
sive”), otherwise the second bit should contain f(X) with
certainty. For every X , the probability of getting “incon-
clusive” should be less than 1/2. We use QE(f), Q0(f)
and Q2(f) to denote the minimum number of queries re-
quired by a quantum network to compute f in the exact,
zero-error and bounded-error settings, respectively. Note
that Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N .

4 General lower bounds on the number of
queries

In this section we will provide some general lower
bounds on the number of queries required to compute a
Boolean function f on a quantum network, either exactly
or with zero- or bounded-error probability.

4.1 Bounds for error-free computation

The next lemmas relate quantum networks to polynomi-
als; they are the key to most of our results.

Lemma 4.1 Let N be a quantum network that makes T
queries to a black-box X . Then there exist complex-valued
N -variate multilinear polynomials p0, . . . , p2m−1, each of
degree at most T , such that the final state of the network is
the superposition

∑

k∈K

pk(X)|k⟩,

for any black-boxX .

Proof Let |φi⟩ be the state of the network (using some
black-boxX) just before the ith query. Note that |φi+1⟩ =
UiOi|φi⟩. The amplitudes in |φ0⟩ depend on the initial state
and on U0 but not on X , so they are polynomials of X of
degree 0. A query maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩.
Hence if the amplitude of |i, 0, z⟩ in |φ0⟩ is α and the am-
plitude of |i, 1, z⟩ is β, then the amplitude of |i, 0, z⟩ after
the query becomes (1 − xi)α + xiβ and the amplitude of
|i, 1, z⟩ becomes xiα + (1 − xi)β, which are polynomials
of degree 1. (In general, if the amplitudes before a query
are polynomials of degree ≤ j, then the amplitudes after
the query will be polynomials of degree≤ j + 1.) Between
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3.2 The framework of quantum networks

Our goal is to compute some Boolean function f ofX =
(x0, . . . , xN−1), where X is given as a black-box: calling
the black-box on i returns the value of xi. We want to use
as few queries as possible.
A classical algorithm that computes f by using (adap-

tive) black-box queries toX is called a decision tree, since it
can be pictured as a binary tree where each node is a query,
each node has the two outcomes of the query as children,
and the leaves give answer f(X) = 0 or f(X) = 1. The
cost of such an algorithm is the number of queries made on
the worst-case X , so the cost is the depth of the tree. The
decision tree complexityD(f) of f is the cost of the best de-
cision tree that computes f . Similarly we can define R(f)
as the expected number of queries on the worst-case X for
randomized algorithms that compute f with bounded-error.
A quantum network with T queries is the quantum ana-

logue to a classical decision tree with T queries, where
queries and other operations can now be made in quantum
superposition. Such a network can be represented as a se-
quence of unitary transformations:

U0, O1, U1, O2, . . . , UT−1, OT , UT ,

where the Ui are arbitrary unitary transformations, and the
Oj are unitary transformations which correspond to queries
toX . The computation ends with some measurement or ob-
servation of the final state. We assume each transformation
acts onm qubits and each qubit has basis states |0⟩ and |1⟩,
so there are 2m basis states for each stage of the computa-
tion. It will be convenient to represent each basis state as
a binary string of length m or as the corresponding natural
number, so we have basis states |0⟩, |1⟩, |2⟩, . . . , |2m − 1⟩.
Let K be the index set {0, 1, 2, . . . , 2m − 1}. With some
abuse of notation, we will sometimes identify a set of
numbers with the corresponding set of basis states. Ev-
ery state |φ⟩ of the network can be uniquely written as
|φ⟩ =

∑
k∈K αk|k⟩, where the αk are complex numbers

such that
∑

k∈K |αk|2 = 1. When |φ⟩ is measured in the
above basis, the probability of observing |k⟩ is |αk|2. Since
we want to compute a function of X , which is given as a
black-box, the initial state of the network is not very impor-
tant and we will disregard it hereafter (we may assume the
initial state to be |0⟩ always).
The queries are implemented using the unitary transfor-

mations Oj in the following standard way. The transfor-
mation Oj only affects the leftmost part of a basis state: it
maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩ (⊕ denotes XOR).
Here i has length ⌈log N⌉ bits, b is one bit, and z is an arbi-
trary string of m − ⌈log N⌉ − 1 bits. Note that the Oj are
all equal.
How does a quantum network compute a Boolean func-

tion f of X? Let us designate the rightmost bit of the final

state of the network as the output bit. More precisely, the
output of the computation is defined to be the value we ob-
serve if we measure the rightmost bit of the final state. If
this output equals f(X) with certainty, for every X , then
the network computes f exactly. If the output equals f(X)
with probability at least 2/3, for everyX , then the network
computes f with bounded error probability at most 1/3. To
define the zero-error setting, the output is obtained by ob-
serving the two rightmost bits of the final state. If the first
of these bits is 0, the network claims ignorance (“inconclu-
sive”), otherwise the second bit should contain f(X) with
certainty. For every X , the probability of getting “incon-
clusive” should be less than 1/2. We use QE(f), Q0(f)
and Q2(f) to denote the minimum number of queries re-
quired by a quantum network to compute f in the exact,
zero-error and bounded-error settings, respectively. Note
that Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N .

4 General lower bounds on the number of
queries

In this section we will provide some general lower
bounds on the number of queries required to compute a
Boolean function f on a quantum network, either exactly
or with zero- or bounded-error probability.

4.1 Bounds for error-free computation

The next lemmas relate quantum networks to polynomi-
als; they are the key to most of our results.

Lemma 4.1 Let N be a quantum network that makes T
queries to a black-box X . Then there exist complex-valued
N -variate multilinear polynomials p0, . . . , p2m−1, each of
degree at most T , such that the final state of the network is
the superposition

∑

k∈K

pk(X)|k⟩,

for any black-boxX .

Proof Let |φi⟩ be the state of the network (using some
black-boxX) just before the ith query. Note that |φi+1⟩ =
UiOi|φi⟩. The amplitudes in |φ0⟩ depend on the initial state
and on U0 but not on X , so they are polynomials of X of
degree 0. A query maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩.
Hence if the amplitude of |i, 0, z⟩ in |φ0⟩ is α and the am-
plitude of |i, 1, z⟩ is β, then the amplitude of |i, 0, z⟩ after
the query becomes (1 − xi)α + xiβ and the amplitude of
|i, 1, z⟩ becomes xiα + (1 − xi)β, which are polynomials
of degree 1. (In general, if the amplitudes before a query
are polynomials of degree ≤ j, then the amplitudes after
the query will be polynomials of degree≤ j + 1.) Between
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3.2 The framework of quantum networks

Our goal is to compute some Boolean function f ofX =
(x0, . . . , xN−1), where X is given as a black-box: calling
the black-box on i returns the value of xi. We want to use
as few queries as possible.
A classical algorithm that computes f by using (adap-

tive) black-box queries toX is called a decision tree, since it
can be pictured as a binary tree where each node is a query,
each node has the two outcomes of the query as children,
and the leaves give answer f(X) = 0 or f(X) = 1. The
cost of such an algorithm is the number of queries made on
the worst-case X , so the cost is the depth of the tree. The
decision tree complexityD(f) of f is the cost of the best de-
cision tree that computes f . Similarly we can define R(f)
as the expected number of queries on the worst-case X for
randomized algorithms that compute f with bounded-error.
A quantum network with T queries is the quantum ana-

logue to a classical decision tree with T queries, where
queries and other operations can now be made in quantum
superposition. Such a network can be represented as a se-
quence of unitary transformations:

U0, O1, U1, O2, . . . , UT−1, OT , UT ,

where the Ui are arbitrary unitary transformations, and the
Oj are unitary transformations which correspond to queries
toX . The computation ends with some measurement or ob-
servation of the final state. We assume each transformation
acts onm qubits and each qubit has basis states |0⟩ and |1⟩,
so there are 2m basis states for each stage of the computa-
tion. It will be convenient to represent each basis state as
a binary string of length m or as the corresponding natural
number, so we have basis states |0⟩, |1⟩, |2⟩, . . . , |2m − 1⟩.
Let K be the index set {0, 1, 2, . . . , 2m − 1}. With some
abuse of notation, we will sometimes identify a set of
numbers with the corresponding set of basis states. Ev-
ery state |φ⟩ of the network can be uniquely written as
|φ⟩ =

∑
k∈K αk|k⟩, where the αk are complex numbers

such that
∑

k∈K |αk|2 = 1. When |φ⟩ is measured in the
above basis, the probability of observing |k⟩ is |αk|2. Since
we want to compute a function of X , which is given as a
black-box, the initial state of the network is not very impor-
tant and we will disregard it hereafter (we may assume the
initial state to be |0⟩ always).
The queries are implemented using the unitary transfor-

mations Oj in the following standard way. The transfor-
mation Oj only affects the leftmost part of a basis state: it
maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩ (⊕ denotes XOR).
Here i has length ⌈log N⌉ bits, b is one bit, and z is an arbi-
trary string of m − ⌈log N⌉ − 1 bits. Note that the Oj are
all equal.
How does a quantum network compute a Boolean func-

tion f of X? Let us designate the rightmost bit of the final

state of the network as the output bit. More precisely, the
output of the computation is defined to be the value we ob-
serve if we measure the rightmost bit of the final state. If
this output equals f(X) with certainty, for every X , then
the network computes f exactly. If the output equals f(X)
with probability at least 2/3, for everyX , then the network
computes f with bounded error probability at most 1/3. To
define the zero-error setting, the output is obtained by ob-
serving the two rightmost bits of the final state. If the first
of these bits is 0, the network claims ignorance (“inconclu-
sive”), otherwise the second bit should contain f(X) with
certainty. For every X , the probability of getting “incon-
clusive” should be less than 1/2. We use QE(f), Q0(f)
and Q2(f) to denote the minimum number of queries re-
quired by a quantum network to compute f in the exact,
zero-error and bounded-error settings, respectively. Note
that Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N .

4 General lower bounds on the number of
queries

In this section we will provide some general lower
bounds on the number of queries required to compute a
Boolean function f on a quantum network, either exactly
or with zero- or bounded-error probability.

4.1 Bounds for error-free computation

The next lemmas relate quantum networks to polynomi-
als; they are the key to most of our results.

Lemma 4.1 Let N be a quantum network that makes T
queries to a black-box X . Then there exist complex-valued
N -variate multilinear polynomials p0, . . . , p2m−1, each of
degree at most T , such that the final state of the network is
the superposition

∑

k∈K

pk(X)|k⟩,

for any black-boxX .

Proof Let |φi⟩ be the state of the network (using some
black-boxX) just before the ith query. Note that |φi+1⟩ =
UiOi|φi⟩. The amplitudes in |φ0⟩ depend on the initial state
and on U0 but not on X , so they are polynomials of X of
degree 0. A query maps basis state |i, b, z⟩ to |i, b ⊕ xi, z⟩.
Hence if the amplitude of |i, 0, z⟩ in |φ0⟩ is α and the am-
plitude of |i, 1, z⟩ is β, then the amplitude of |i, 0, z⟩ after
the query becomes (1 − xi)α + xiβ and the amplitude of
|i, 1, z⟩ becomes xiα + (1 − xi)β, which are polynomials
of degree 1. (In general, if the amplitudes before a query
are polynomials of degree ≤ j, then the amplitudes after
the query will be polynomials of degree≤ j + 1.) Between
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witness for B from a witness for A. ① [HLŠ07] ② [AMRR11] ③ [Rei11, LMR+11] ④
[This article] ⑤ The original additive and the polynomial methods are incomparable
[Zha05, ŠS06, AS04, Amb06]
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Both the “negative” and 
“multiplicative” adversary 
methods characterise 
quantum query complexity 
[arXiv:0904.2759]
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What is “the source” of the 
quantum advantage?

Why do we suspect a speed-up?  
(Why is there not a randomised factoring algorithm?)

q

a The barrier is not the number of queries, but  
the sort of information you can get with those queries

What resources provide the “quantum advantage”?q
What computational tricks provide the  
“ quantum advantage ” ?

eg. the “eigenspace trick” (as one may call it)
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                        some group action A is performed on  
an input state

3. Perform an inverse-Fourier transform on the probe, to obtain  
a distribution on (estimates of) eigenvalues of A
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(e.g. obtain a rational estimate, and find the order of A)

A quick description of
#1(   )

reduce the problem  
to the eigenspaces of  

a related group action



The “eigenspace trick”?
A quick description of

#2(   )
reduce the problem  

to the eigenspaces of  
a related group action



The “eigenspace trick”?
Fourier decomposition

A quick description of
#2(   )

Take a ‘Fourier’ decomposition of a group action:
• Decompose as a series of commuting operators
• Constraint: individual operators are efficient to perform 
• Truncate so that the error is bounded on eigenvalues of interest

reduce the problem  
to the eigenspaces of  

a related group action



The “eigenspace trick”?
Fourier decomposition

1. Prepare a “control” system in a distribution,  
proportional to the Fourier decomposition of the group action

A quick description of
#2(   )

Take a ‘Fourier’ decomposition of a group action:
• Decompose as a series of commuting operators
• Constraint: individual operators are efficient to perform 
• Truncate so that the error is bounded on eigenvalues of interest

reduce the problem  
to the eigenspaces of  

a related group action



The “eigenspace trick”?
Fourier decomposition

1. Prepare a “control” system in a distribution,  
proportional to the Fourier decomposition of the group action

2. Use the control to (coherently) perform operations from  
the family of commuting operators

A quick description of
#2(   )

Take a ‘Fourier’ decomposition of a group action:
• Decompose as a series of commuting operators
• Constraint: individual operators are efficient to perform 
• Truncate so that the error is bounded on eigenvalues of interest

reduce the problem  
to the eigenspaces of  

a related group action



The “eigenspace trick”?
Fourier decomposition

1. Prepare a “control” system in a distribution,  
proportional to the Fourier decomposition of the group action

2. Use the control to (coherently) perform operations from  
the family of commuting operators

A quick description of
#2(   )

3. Perform a transformation to ‘erase’ the control (with high probability)

Take a ‘Fourier’ decomposition of a group action:
• Decompose as a series of commuting operators
• Constraint: individual operators are efficient to perform 
• Truncate so that the error is bounded on eigenvalues of interest

reduce the problem  
to the eigenspaces of  

a related group action



The “eigenspace trick”?
Fourier decomposition

1. Prepare a “control” system in a distribution,  
proportional to the Fourier decomposition of the group action

2. Use the control to (coherently) perform operations from  
the family of commuting operators

A quick description of
#2(   )

3. Perform a transformation to ‘erase’ the control (with high probability)

4. Condition on success of erasure(                                                   )

Take a ‘Fourier’ decomposition of a group action:
• Decompose as a series of commuting operators
• Constraint: individual operators are efficient to perform 
• Truncate so that the error is bounded on eigenvalues of interest

reduce the problem  
to the eigenspaces of  

a related group action
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The crux of 
the eigenspace trick

• Permutations, etc. can have many stationary distributions  
(though many of them may not be probability distributions)

• Ability of quantum computers to access eigenvectors  
       greater versatility=)

If problem X has more convenient structure than problem Y, 
useful group actions for X may be easier to access

Caveat scriptor
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Quantum resistant 
problems?

Lattice-based: derived from NP-hard problems about lattices

Approach: consider variants of NP-hard problems,  
which seem likely not to be susceptible  
to the eigenspace trick — for example:

based on the difficulty of decoding linear  
error-correcting codes

Code-based:

based on the difficulty of solving systems of  
polynomial equations in many variables

Multivariate
equations:
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Lattice-based problems
Lattice: finitely generated subgroup of       

given by a minimal set of generators
Rn

SVP: does the shortest vector in the lattice have  
length at most 1, or greater than 1 (   -norm)?  
— NP-hard

`2

SVPγ : does the shortest vector in the lattice have  
length at most 1, or greater than γ             ? 
— basis of NTRU, Ring-LWE

2 !(1)

Post-quantum  
question:

for a given γ, are “useful” group actions 
hard to access for quantum computers?
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Linear code: finitely generated subgroup of       ~ {0,1}n 

given by a minimal set of generators

Decoding: what is the nearest “codeword” to a given  
n bit string?                              — NP-hard

Zn
2

eg. McEliece
problem:

Post-quantum  
question:

Does restricting to efficiently decodable linear codes  
make “useful” group actions accessible to a quantum  
attacker?

given a cyphertext                   , and a (public) generator  
                of some efficiently decodable linear code  
(for some private obfuscating operations     and    ), find the  
codeword or plaintext which corresponds to    .

Ĝ = PGS
x 2 {0, 1}n

x

P S
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Problems based on 
multivariate polynomials

Compute a [signature] for a given [message], 
such that [message] = F([signature]), where 
F is a (public) system of multivariate polynomials  
 

(and F is related to an easily solved private system,  
by a privately held linear transformation of [signature])

Find a solution to a system of poly(n) equations 
in n unknowns over a finite field       — NP-hard

Polynomial
eqn. system:

UOV
problem:

Post-quantum  
question:

Does the privately held similarity transform suffice,  
to hide the privately held system of equations?
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similarities between randomised and quantum computation?
• What cryptographic techniques can be motivated by  

similarities between randomised and quantum computation?  
 

— eg. lower bounds on query complexity 

• What other strategies (beyond the eigenspace trick) may form 
the basis of useful quantum algorithms?

• What trapdoor problems can we devise which are immune  
against the eigenspace trick, and yet efficient to perform? 
 

— eg. involving non-abelian group actions

• What trapdoor problems can we devise which are immune  
against the eigenspace trick, and yet efficient to perform?


