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Chapter 1

The Hardy-Littlewood
maximal function

In this chapter we will deal with the Hardy-Littlewood maximal function
in a rather general context and show its role in some important aspects of
Harmonic Analysis. We begin with some definitions.

1.1 Some definitions

We will denote by (X,µ), (Y, ν), . . . measure spaces, although most of the
time X = Rd equipped with Lebesgue measure. Lp(X) denotes the usual
Lebesgue spaces, and L0(X) the space of measurable functions equipped
with the notion of convergence in measure.

We denote by λf the distribution function of f ,

λf (s) = µ{|f | > s}.

If ϕ is increasing then∫
X
ϕ(|f |)dµ =

∫
X

∫ |f(x)|

0
ϕ′(s)dsdµ(x) =

∫ +∞

0
ϕ′(s)λf (s)ds.

In particular, ‖f‖pp = p
∫∞

0 sp−1λf (s) ds.
The Tchebichev’s inequality: if if f ∈ Lp(X), p < +∞, and As = {x :

|f(x)| > s}, then

spµ(As) ≤
∫
As

|fp|dµ ≤
∫
X
|fp|dµ = ‖f‖pp.

The functions f such that µ(As) = O(s−p), p <∞, are said to be weak Lp-
functions, a space that we denote by Lp,∞(X). A typical example of a weak
L1 function which is not in L1 is |x|−d is Rd.

If a mapping T : Lp(X)→ L0(Y ) , 1 ≤ p, q ≤ +∞, satisfies
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‖Tf‖q ≤ C‖f‖p
we say that it is of strong type (p, q). If T is linear, this amounts to T being
continuous from Lp(X) to Lq(Y ). If T is of strong type (p, q), q < +∞ then

sqν{|Tf | > s} ≤ ‖Tf‖qq ≤ (C‖f‖p)q.

A mapping such that

ν{|Tf | > s} ≤ (
C‖f‖p
s

)q.

and thus mapping Lp to Lq,∞ is said to be of weak type (p, q), q < +∞. By
definition, when q = +∞ weak type (p,∞) will de identified with strong
type, ‖Tf‖∞ ≤ C‖f‖p

1.2 How maximal functions arise

Suppose we have a family of linear operators Tt : Lp(X)→ L0(Y ) depending
on t > 0 and we are interested in the statement ”the limit limt→0 Ttf(x)
exists a.e. on X”; or that X = Y and we are interested in the statement ”
limt Ttf(x) = f(x) for a.e. x”. Often in analysis we know that this is the
case if f belongs to a certain class of functions E, and often this class E is
dense in Lp. For instance, consider the model case in which X = Rd and

Ttf(x) =
1

|B(x, t)|

∫
B(x,t)

f(y)dy,

is the average of f in the ball B(x, t); when f is say continuous with compact
support (a dense subspace of the Lp(X), then trivially Ttf(x) → f(x) as
t→ 0.

Coming back to the general situation, assume Y = X and that we are in-
terested in the statement limt Ttf(x) = f(x)a.e.x. We consider the maximal
operator

T ∗f(x) = sup
t
|Ttf(x)| ≤ +∞.

Note that T ∗ is not linear but sub-additive: T ∗(f + g) ≤ T ∗f + T ∗g.

Theorem 1. If T ∗ is of weak type (p, q), then the class

E = {f : lim
t
Ttf(x) = f(x)a.e.x}

is closed in Lp(X).
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Proof. Assume that fn ∈ E approach f . To show that f ∈ E, we will show
that for fixed s > 0, the set {x : lim supt |Ttf(x) − f(x)| > s} has zero
measure. Now, from

|Ttf(x)− f(x)| ≤ |Ttf(x)− Ttfn(x)|+ |Ttfn(x)− fn(x)|+ |fn(x)− f(x)|,

and the fact that fn ∈ E, we see that

lim sup
t
|Ttf(x)− f(x)| ≤ lim sup

t
|Ttf(x)− Ttfn(x)|+ |fn(x)− f(x)| ≤

≤ T ∗(f − fn)(x) + |fn(x)− f(x)|,

hence

{x : lim sup
t
|Ttf(x)−f(x)| > s} ⊂ {x : T ∗(f−fn)(x) >

s

2
}∪{|fn(x)−f(x)| > s

2
}

Then the hypothesis and Tchebychev’s inequality imply

µ{x : lim sup
t
|Ttf(x)− f(x)| > s} ≤ (

C

s
‖f − fn‖p)q + (

C

s
‖f − fn‖p)p,

and so making n→ +∞ we are done.

Note that we can deal in an analogous way with the statement ”the limit
limt→0 Ttf(x) exists a.e. onX”, for which we would work with lim supt Ttf(x)−
lim inft Ttf(x), bounded by 2T ∗f .

All this gives the basic recipe to prove a.e. convergence results: find a
good dense class and prove a weak estimate for the maximal associated func-
tion. This is somehow similar to the situation in the uniform boundedness
principle for families of operators defined in Banach spaces.

1.3 The general setting for the Hardy-Littlewood
maximal function

The standard setting is Rd where we consider the means

Ttf(x) =
1

|B(x, t)|

∫
B(x,t)

f(y)dy,

that make sense for f ∈ L1
loc(R

d), and ask about their a.e. limit.
Having this in mind we will consider however a more general situation

of potential interest. We suppose that we are still in X = Rd and we are
given the balls B(x, δ) in some way, satisfying

• They increase in δ.

• For fixed x, their intersection is x and their union is Rd.
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• There exists c1 > 1 such that whenever B(x, δ) ∩ B(y, δ) 6= ∅, then
B(y, δ) ⊂ B(x, c1δ) ( and so also B(x, δ) ⊂ B(y, c1δ), engulfing prop-
erty). We denote by B∗ the ball obtained from B dilating by c1 its
radious. In particular x ∈ B(y, δ) does not imply y ∈ B(x, δ), but it
does imply y ∈ B(x, c1δ).

and that the regular Borel measure satisfies

• The map x 7→ µ(U ∩B(x, δ)) is continuous in x. This implies that the
means of f ∈ L1

loc are continuous in x too.

• There exists c2 > 1 such that µ(B(x, c1δ)) ≤ c2µ(B(x, δ) (doubling
condition)

Note that we do not require that the measures of balls just depend on the
radious, they might depend on x too.

We then define the centered Hardy-Littlewood maximal function by

Mf(x) = sup
δ

1

µ(B(x, δ))

∫
B(x,δ)

|f(y)|dµ(y). (1.1)

The uncentered maximal function Mf is defined using all balls containing
x, so trivially Mf ≤ Mf . But if x ∈ B(y, δ), then B(y, δ) is included
in B(x, c1δ), and B(x, δ) in B(y, c1δ), so that all these balls have the same
measure up to constants; it then follows that Mf ≤ CMf for some constant
C.

The following are examples of this general setting, besides the standard
Euclidean balls.

• Fix a star-shaped domain U with respect the origin in Rd, for instance
a convex set containing the origin, and put B(x, δ) = x+ δU , so that
U is the ”unit ball”.

• A quasi-distance ρ(x, y) satisfies the three basic properties:

1. ρ(x, y) = 0 only if x = y.

2. ρ(x, y) ≤ cρ(y, x)

3. ρ(x, y) ≤ C(ρ(x, z) + ρ(z, y))

If we then set B(x, δ) = {y : ρ(x, y) < δ} we get a system of balls with
the above requirements. Conversely we can define a quasidistance from
the balls by defining ρ(x, y) = inf{δ : y ∈ B(x, δ)}.

• These quasi-distances may be non isotropic. For instance, fixed posi-
tive exponents α1, . . . , αd set ρ(x, y) = max |xi − yi|1/αi .

4



• An interesting case arises in connection with the following fact in
Riemanian geometry. Suppose we are given a family of vector fields
D1, · · · , Dk, k < d in Rd. If at each point these vectors, together with
their commutators, span the whole of Rd it can be proved that for
sufficiently close points x, y there exists a curve γ : [0, 1]→ Rd joining
these two points, γ(0) = x, γ(1) = y and such that at each point γ(t)
the tangent vector lies in the span of D1, · · · , Dk. It makes sense then
to define ρ(x, y) as the infimum of the lengths of all such curves. This
is a quasidistance. This situation appears in particular in function
theory in several complex variables.

1.4 Estimates for the Hardy-Littlewood maximal
function

Our purpose is to prove

Theorem 2. In the setting described above, with Mf defined as in (1.1),
one has

1. For f ∈ Lp(µ), 1 ≤ p ≤ +∞, Mf is finite µ- almost everywhere.

2. For f ∈ L1(µ), Mf satisfies a weak L1-estimate

µ{Mf > s} ≤ C

s
‖f‖1

3. For f ∈ Lp(µ), 1 < p ≤ +∞, Mf is also in Lp and ‖Mf‖p ≤ Ap‖f‖p.

Note that the first statement follow from the others, than the last state-
ment is trivial for p = +∞ and that in the standard case, euclidian balls
and Lebesgue measure, then the first statement holds for all f ∈ L1

loc(R
d).

We need the following Vitali-type covering lemma.

Lemma 1. Assume that E is the union of a finite number of ballsB1, . . . , BN .
Then we can extract a subcollection B̂1, · · · , B̂k of mutually disjoint balls
such that µ(∪kj=1B̂j) =

∑
j µ(B̂j) ≥ cµ(E), the constant c depending just

on c1, c2.

Proof. We first chose B̂1 the ball with biggest radious, then B̂2 is chosen as
the biggest among the remaining not meeting B̂1, and so on till we have no
more balls. If Bi has not been selected it must meet some of the B̂j . If B̂j
is the first one meeting Bi, since when choosing the j-th ball it has not been
selected, Bi has radious not bigger than that of B̂j , whence Bi ⊂ B̂j

∗
. Thus

E ⊂ ∪jB̂j
∗
, therefore µ(E) ≤

∑
j µ(B̂j

∗
) ≤ C

∑
j µ(B̂j).
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We give now the proof of the theorem. We work with the equivalent
uncentered version Mf and consider As = {Mf > s}, which is open. Every
x ∈ As is the center of some ball Bx such that

1

µ(Bx)

∫
Bx

|f(y)|dµ(y) > s.

A fixed compact set K of As will be covered by a finite number of these
balls to which we apply the lemma, to get disjoint balls Bj such that

µ(K) ≤ C
∑
j

µ(Bj) ≤
C

s

∑
j

∫
Bj

|f(y)|dµ(y) =
C

s

∫
∪Bj

|f(y)|dµ(y) ≤ C

s
‖f‖1.

Since K is arbitrary this proves the second statement. Now assume that
f ∈ Lp(µ), 1 < p and consider again As. Let f1(x) be equal to f(x) if
|f(x)| > s

2 and zero otherwise (so that f1 ∈ L1(µ)), and put f = f1 + f2,
with f2 bounded by s

2 . Then Mf ≤ Mf1 + Mf2 ≤ Mf1 + s
2 , whence

As ⊂ {Mf1 >
s
2}. By the estimate we just proved for L1,

µ(As) ≤
C

s
‖f1‖1 =

C

s

∫
|f |> s

2

|f(y)|dµ(y).

Then, by Fubini’s theorem

‖Mf‖pp =

∫ +∞

0
psp−1µ(As)ds ≤ C

∫ +∞

0
sp−2

∫
|f(y)|> s

2

|f(y)|dµ(y) =

= C

∫
Rd

|f(y)|
∫ 2|f(y)|

0
sp−2ds = Ap

∫
Rd

|f(y)|pdµ(y),

as claimed.
One may check that the constant Ap behaves like 1

p−1 and explodes at 1.
In fact, in the standard case, unless f = 0, Mf is never integrable. Indeed,
consider a ball B where |f | has a non-zero mass m; for big enough |x| the
ball B(x, k|x|) will include B and so Mf(x) ≥ c|x|−d, which is not integrable
at infinity.

However, if f satisfies an additional condition, Mf is integrable over sets
of finite measure:

Proposition 1. If A has finite measure, then∫
A
Mfdµ ≤ Cµ(A) +

∫
Rd

|f(x)| log+ |f(x)|dµ(x).

This follows from the same proof as above, where now∫
A
|Mf |dµ =

∫ +∞

0
µ{x ∈ A, |Mf(x)| > s}.

For s < 1 we bound simply by µ(A), while for s > 1 we use the weak
inequality as before.
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1.5 Some consequences

Of course the first consequence is Lebesgue’s differentiation theorem

Theorem 3. For f ∈ L1
loc(R

d), one has

lim
δ→0

1

|B(x, δ)|

∫
B(x,δ)

f(y)dy = f(x), a.e.x.

In fact,

lim
δ→0

1

|B(x, δ)|

∫
B(x,δ)

|f(y)− f(x)|dy = 0, a.e.x.

We already proved the first statement; now this gives trivially that
|f | ≤Mf whence the maximal function associated to the second statement
is bounded by 2Mf ; since this second statement is also trivially true for
continuous functions, we are done. The points above are called the Lebesgue
points of f .

In dimension d = 1, the Lebesgue theorem becomes the fundamental
theorem of calculus: for f ∈ L1(R), the indefinite integral

F (x) =

∫ x

0
f(t) dt,

has a.e. a derivative equal to f(x). As it is well known, the functions F of
this form are exactly the absolutely continuous functions, meaning that for
each ε > 0 there is δ > 0 such that the variation

∑
j |F (bj)− F (aj)| is less

than ε for all consecutive intervals (aj , bj) with total length
∑

j(bj−aj) < δ.
We now turn to another application of Mf in the standard setting,

regarding approximations of the identity. Recall that an approximation of
the identity is a family (ϕt) of the form ϕt(x) = t−dϕ(x/t), with a fixed
ϕ ∈ L1(Rd) with integral one. The term ”approximation of the identity”
comes from the fact that in a certain sense, one has that limt ϕt = δ0, the
unit for convolution. The precise statement is that

• If f ∈ Lp(Rd),1 ≤ p < +∞, then ϕt ∗ f → f in Lp(Rd)

• If f is continuous at x0 then ϕt ∗ f(x0)→ f(x0).

Approximate identities are related with summation methods for the
Fourier integral and with classical PDE’s as follows. For f ∈ L1(Rd) or
f ∈ L2(Rd) the inverse Fourier transform

f(x) =

∫
Rd

f̂(ξ)e2πix·ξ dξ,

does not makes sense as an absolutely convergent integral and so alterna-
tive summation methods are proposed. A general scheme is as follows: we
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consider a continuous integrable function h such that h(0) = 1 and the mean∫
Rd

f̂(ξ)e2πix·ξh(tξ)dξ.

Now, Fubini’s theorem implies that∫
Rd

f̂(ξ)g(ξ)dξ =

∫
Rd

f(y)ĝ(y)dy, f, g ∈ L1(Rd).

If ĥ = Φ, the Fourier transform of h(tξ) is t−dΦ(yt ) = Φt(y), whence the
Fourier transform of e2πix·ξh(tξ) is Φt(y − x) and so∫

Rd

f̂(ξ)e2πix·ξh(tξ)dξ = (f ∗ Φt)(x).

The most simple choice is h(x) = e−π|x|
2

(Gauss means), for which it is
easy to compute that Φ(ξ) = e−π|ξ|

2
, that is ĥ = h. For this choice we then

have ∫
Rd

f̂(ξ)e−tπ|ξ|
2
e2πix·ξ dξ = (f ∗ Φ√t)(x).

The Gauss means are connected with the heath diffusion problem: indeed
one can check that u(t, x) = (f ∗Φ√t)(x) is a solution of the heath equation

∂u

∂t
=

1

4
∆xu(x, t).

Another choice is h(x) = e−2π|x| leading to the Abel means. One can
check that in this case

Φ(ξ) = cd
1

(1 + |ξ|2)(d+1)/2
, cd =

Γ[d+1
2 ]

π(d+1)/2
.

and that in this case u(t, x) = f ∗ Φt(x) satisfies

∂2u

∂t2
+ ∆xu(t, x) = 0.

that is, it is harmonic in the half-space. This function Φ is called the Poisson
kernel P .

In both cases, the pointwise limit limt Φt∗f(x) becomes the vertical limit
limt u(x, t). We expect that in both cases the initial boundary condition at
t = 0 is f , meaning limt u(x, t) = f(x). We know that this limit takes
place in Lp(Rd) if f ∈ Lp(Rd), and now we would like to know about the
pointwise behaviour. So we are led to consider the maximal function

(Φ)∗(f)(x) = sup
t
|(Φt ∗ f)(x)|.

We will see next that in most cases this maximal function is dominated
by Mf .
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Lemma 2. If Ψ ∈ L1(Rd) is positive and radial then |(Ψ ∗ f)(x)| ≤
‖Ψ‖1Mf(x).

Proof. It is enough to prove it for Ψ simple, that is, of the form Ψ =∑
j ajχBj where χBj denotes the characteristic function of a ball Bj cen-

tered at zero and aj ≥ 0. In this case, noticing that 1
|Bj |χBj ∗ f(x) is the

mean of f over Bj , we have

|(Ψ ∗ f)(x)| ≤
∑
j

aj |(χBj ∗ f)(x)| ≤
∑
j

aj |Bj |Mf(x) =

= Mf(x)
∑
j

aj |Bj | = ‖Ψ‖1Mf(x).

It follows from the lemma that if Φt is an approximation of the identity
with Φ radial then (Φ)∗(f)(x) ≤ Mf(x) and so it satisfies a weak estimate
implying that limt(f ∗ Φt)(x) = f(x)a.e. . This will hold as well if the least
radially decreasing majorant of Φ,

Ψ(x) = sup
|y|≥|x|

|Φ(x)|,

is in L1(Rd).
This fact applies to both Gauss and Abel means and hence we get that

the above solutions of the heath and Laplace equation have vertical bound-
ary values equal to f a.e. It is not hard to see, for the Poisson kernel P ,
that not only the vertical maximal function

sup
t
|u(x, t)| = sup

t
|(f ∗ Pt)(x)|,

is controlled by Mf , but also the non-tangentail maximal function. This is
defined by associating to each point x ∈ Rd the cone in the upper half-space

Γ(x) = {(y, t) : |x− y| ≤ ct}.

The corresponding maximal function

N∗f(x) = sup
(y,t)∈Γ(x)

|u(y, t)|,

is called the non-tangential maximal function. It can be proved by easy
modification of the argument above that also it is controlled by Mf , that
is, N∗f(x) ≤ CMf(x) for some constant C, and therefore it satisfies as well
a weak L1- estimate. Since obviously pointwise non-tangential convergence
occurs for continuous functions with compact support one gets

Theorem 4. (Fatou’s theorem). If f ∈ Lp(Rd),1 ≤ p ≤ +∞, the harmonic
function in the upper half-space u(x, t) = (f ∗Pt)(x) has non-tangential limit
f(x) at almost all x.
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