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Chapter 2

Interpolation theory

In this chapter we will review the main tools in interpolation theory used
in Harmonic Analysis, namely the Riesz-Thorin convexity theorem, and the
Marcinkiewicz theorem. The later will be presented in the context of Lorentz
spaces, that will appear later as well in the context of regularity for Sobolev
spaces.

2.1 The Riesz-Thorin interpolation theorem

We are assuming that T is a linear operator acting on a domain D ⊂
L0(X) :→ L0(Y ), and we assume that D contains the simple functions
and is closed by truncation. Recall that we say that T is of strong-type
(p, q), 1 ≤ p, q ≤ +∞, with constant C if

‖Tf‖Lq(Y ) ≤ C‖f‖Lp(X), f ∈ D.

Theorem 1. Assume that T is of strong-type (pi, qi), i = 0, 1, 1 ≤ pi, qi ≤
+∞ with norm ki, i = 0, 1. For 0 < t < 1 define pt, qt by inverse convex
combination

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
.

Then T is of type (pt, qt) with constant less than or equal to k1−t0 kt1. That
is, log ‖T‖t is convex in t.

We begin with the so-called three lines lemma, a strip version of the
well-known three circles-lemma.

Lemma 1. Let Π denote the vertical strip Π = {z = t + is : 0 < t < 1}.
Let F be a bounded holomorphic function in Π, continuous on Π. Assume
that

|F (is)| ≤M0, |F (1 + is)| ≤M1.

Then |F (t+ is)| ≤M1−t
0 M t

1.
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Proof. We may assume that M0,M1 > 0. Then we consider the holomorphic
function

G(z) = M1−z
0 M z

1 = e(1− z) logM0 + z logM1.

Notice that this function is up to multiplicative constants the only bounded
non vanishing holomorphic function on Π, continuous on Π having modu-
lus M0 on iR and modulus M1 in 1 + iR. This amounts to saying that
(1 − t) logM0 + t logM1 is the only bounded harmonic function in Π and
continuous on Π which equals logM0 on iR and logM1 on 1 + iR.

By replacing F by F/G we may then assume that M0 = M1 = 1, and
want to see that |F (z)| ≤ 1. If we knew that lim|s|→+∞ |F (t + is)| = 0
uniformly in t, then this is a consequence of the maximum modulus principle.
In general we consider Fn(z) = F (z)e(z

2−1)/n and notice that

|Fn(z)| = |F (z)|e
1
n
(t2−s2−1) ≤ |F (z)|e−

s2

n ,

so that |Fn| ≤ 1 on the boundary and lim|y|→+∞ |Fn(t+ is)| = 0 uniformly
in t. Hence |Fn(z)| ≤ 1 and making n→∞ we conclude.

Proof. To prove the theorem, we consider

α(z) = (1− z) 1

p0
+ z

1

p1
, β(z) = (1− z) 1

q0
+ z

1

q1
,

and fix t, p = pt, q = qt. It is enough to prove that for f, g simple functions

f =
∑
j

aj1Ej , g =
∑
k

bk1Fk
,

and ‖f‖p = ‖g‖q′ = 1, one has

|I| = |
∫
Y

(Tf)gdν| ≤ k1−t0 kt1.

Assume first that p < +∞, q > 1; we consider now functions fz, gz defined
as follows: if f(x) = |f(x)|ω, g(x) = |g(x)|η, |ω| = |η| = 1, set

fz(x) = |f(x)|pα(z)ω, gz(x) = |g(x)|q′(1−β(z)).

Notice that ft = f, gt = g and that

|fis| = |f |
p<((1−is) 1

p0
+is 1

p1
)

= |f |
p
p0 , |gis| = |g|

q′
q′0 ,

and similarly

|f1+is| = |f |
p
p1 , |g1+is| = |g|

q′
q′1 .

Then,

I(z) =

∫
Y

(Tfz)gzdν,
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satisfies the hypothesis of the lemma with

|I(is)| ≤ k0‖fis‖po‖gis‖q′0 ≤ k0(
∫
X
|f |pdµ)

1
p0 (

∫
Y
|g(y)|q′dν)

1
q′0 = k0,

and similarly |I(1 + is)| ≤ k1. Hence |I| = |I(t)| is bounded by k1−t0 kt1 as
claimed.

In case p =∞, q = 1 then p0 = p1 =∞, q0 = q1 = 1 and there is nothing
to prove. If p < +∞ and q = 1 the same argument works with gz = g, while
if p =∞, q > 1 take fz = f .

An application is Young’s inequality for integral operators Tf(y) =∫
X K(x, y)f(x)dµ(x) given by a kernel K satisfying∫

X
|K(x, y)|rdµ(x) ≤ Cr,

∫
Y
|K(x, y)|rdν(y) ≤ Cr.

The first one implies that T is of strong type (r′,∞) simply by Holder’s
inequality, while the second one implies that T is of strong type (1, r) using
the continuous Minkowski’s inequality. It then follows T is of strong type
(p, q) with1

q = 1
p + 1

r − 1.
Another application concerns the Fourier transform, which is of strong

types (1,∞) ( by just a question of size) and (2, 2) (by a matter of can-
cellation). In this situation, the Fourier transform is also defined for f ∈
Lp(Rd),1 < p < 2 by writing f = f1 + f2, f1 ∈  L1(Rd), f2 ∈ L2(Rd) (sim-
ply define f1 = f if |f1| > 1 and zero elsewhere) and setting f̂ = f̂1 + f̂2, a
definition that is obviously independent of the chosen decomposition. This
definition agrees with the definition of f̂ as a tempered distribution.

The Riesz-Thorin theorem implies the Haussdorf-Young theorem:

Theorem 2. ‖f̂‖p′ ≤ ‖f‖p, 1 ≤ p ≤ 2

Notice that the definition is in terms of Lp-convergence:

f̂(ξ) = lim
r→+∞

∫
|x|≤r

f(x)e2πiξ·xdx.

For 1 < p < 2, it can be proved the a.e. existence of this limit in
reasonable terms but for p = 2 is a very deep and hard result by L. Carleson
and Hunt.

Also notice that if f ∈ Lp(Rd),g ∈ Lr(Rd),1 ≤ p, r ≤ 2 and 1
p + 1

r ≥
3
2 ,

then f ∗ g ∈  Lq(Rd) with 1
q = 1

p + 1
r − 1, 1 ≤ q ≤ 2, by Young’s inequality,

then f̂ ∗ g makes sense, is in Lq
′
(Rd), with 1

q′ = 1
p′ + 1

q′ , and equals f̂ ĝ.
One might ask if there are other pairs (p, q) such that the Fourier trans-

form is of strong type (p, q), say

‖ϕ̂‖q ≤ C‖ϕ‖p, ϕ ∈ S(Rd).
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Applying this to the dilate ϕλ(x) = λ−dϕ(xλ), for which ϕ̂λ(ξ) = ϕ̂(λξ), we
get that

λ
− d

q ‖ϕ̂‖q ≤ Cλ
d
p
−d‖ϕ‖p.

Making λ→ 0 and λ→∞ we see that necessarily q = p′.
The Haussdorf-Young theorem says that this holds if 1 ≤ p ≤ 2. Now we

will see that it does not hold if p > 2. Indeed, let us consider the gaussian
g(x) = e−π|x|

2
for which ĝ = g and consider a linear combination of the type

ϕ(x) =
N∑
n=1

e2πix·vng(x− un).

This function is called a translate of g in the time-frequency plane. In-
troducing the notation Mxf(ξ) = e2πix·ξf(ξ) for the multiplication opera-

tor by ex, recall that τ̂af = M−af̂ and conversely, M̂bf = τb(f̂), that is

M̂bτaf = τbMaf̂ . This means that

ϕ̂(ξ) =

N∑
n=1

e−2πix·ung(x− vn),

so choosing un = vn we have that ϕ̂ = ϕ. Now, as |vn| → +∞ the N -terms

of ϕ behave like if they had disjoint supports, and ‖ϕ‖p is about N
1
p . So, if

there is a strong type (p, q) inequality we would have N
1
q ≤ CN

1
p for all N ,

whence p′ = q ≥ p.

2.2 Lorentz spaces

If we have a discrete function, that is, a finite number of values a1, · · · , aN ,
it is clear the meaning of a ”reordering” of these numbers. We would like to
define reordering for general functions in Rd, with the purpose of defining
new functions spaces, other than the Lp- spaces, that capture with more
precision properties of functions.

We are in a general measure space (X,µ), although the main example to
have in mind is Rd. If f is measurable we defined the distribution function
λf (s) by λf (s) = µ{|f | > s}, a decreasing function in R+, so that∫

X
ϕ(|f |)dµ =

∫
R+

ϕ′(s)λf (s) ds,

for all increasing ϕ. We now define the non-increasing rearrangement f∗ of
f by

f∗(t) = inf{s : λf (s) ≤ t}.
It is easily seen that both are right-continuous. By definition, f∗(t) > s
means λf (s) > t so that f∗∗ = f∗, that is, f and f∗ have the same distribu-
tion function and so the same Lp-integrals, etc.
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Suppose that f is a simple function f(x) =
∑

j aj1Ej (x), with the Ej
pairwise disjoint and a1 > a2 > · · · < aN . Then λf (s) = 0 for s ≥ a1, equals
t1 = µ(E1) for a2 ≤ s < a1, equals t2 = µ(E1) + µ(E2) for a3 ≤ s < a2 and
so on, equal to tN =

∑N
j=1 µ(Ej) for 0 ≤ s < aN , so it is a step function with

jumps µ(Ej) at aj . Then f∗ takes the value a1 in [0, t1), a2 in [t1, t2), and
so on, that is, it takes the same values of f on sets with the same measure,
in decreasing size. Of course, if we identify a discrete function a1, · · · , aN
with the function

∑
aj1(j−1,j), then the rearrangement of the function gives

back the same numbers rearranged in decreasing order.
The Lorentz spaces Lp,r(X) are defined for r < +∞ for all p, 1 ≤ p < +∞

by

‖f‖p,r =

(
r

p

∫ ∞
0

[t
1
p f∗(t)]r

dt

t

) 1
r

< +∞,

and for r =∞, 1 ≤ p ≤ +∞ by using the weak Lp-norms

‖f‖p,∞ = sup t
1
p f∗(t) < +∞.

The spaces L∞,r with r finite are not defined as the condition is satisfied
only by f = 0. This definition is motivated by the fact that

‖f‖p,p = ‖f∗‖p = ‖f‖p, 1 ≤ p ≤ +∞.

Also notice that for a characteristic function 1E ,

‖1E‖p,r =

(
r

p

∫ µ(E)

0
t
r
p
−1
dt

) 1
r

= µ(E)
1
p ,

does not depend on r.
The following properties hold:

• Lp,r(X) is a linear space. Since what is involved is the Lr-norm with

respect to dt
t of (t

1
p f∗(t), it is enough to show that

(f + g)∗(t1 + t2) ≤ f∗(t1) + g∗(t2),

and use it for t1 = t2 = t
2 to find that ‖f+g‖p,r ≤ Cp,r(‖f‖p,r+‖g‖p,r.

In turn, the above follows from

λf+g(s1 + s2) ≤ λf (s1) + λg(s2),

which is obvious. Although the ‖f‖p,r are not true norms, it is possible
to find equivalent true norms if p > 1, but we will not need them.
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• The ”norm” ‖f‖p,r can be defined in terms solely of λf , more con-

cretely in terms of Φ(s) = sλf (s)
1
p as follows. For r = ∞ it is clear

that by the very definition

sup
t
t
1
p f∗(t) = sup

s
sλf (s)

1
p = sup

s
Φ(s).

For r <∞ (strictly speaking the following argument is correct just in
case λ is strictly decreasing but helps understand the basic idea) we
make the change of variables s = f∗(t), t = λf (s), to get

‖f‖p,r =

(
−r
p

∫ +∞

0
λf (s)

r
p
−1
srd(λf (s))

) 1
r

=

(
−
∫ +∞

0
srd(λ

r
p

f )

) 1
r

=

(
r

∫ +∞

0
λf (s)

r
p sr−1ds

) 1
r

=

(
r

∫ +∞

0
Φ(s)r

ds

s

) 1
r

.

• The norms ‖f‖p,r decrease in r for fixed p, ‖f‖p,r2 ≤ ‖f‖p,r1 if r1 < r2
so that Lp,r1(X) ⊂ Lp,r2(X). We will prove here this inequality up
to a constant, and it just depends on f∗ being decreasing. First, for
r2 =∞, for all t,

‖f‖p,r1 ≥
(
r1
p

∫ t

0
[u

1
p f∗(u)]r1

du

u

) 1
r1

≥ f∗(t)
(
r1
p

∫ t

0
u

r1
p
−1
du

) 1
r1

= t
1
p f∗(t),

and the result follows taking supremum in t. If r2 is finite, we break
the inner power r2 in r2 − r1 (that we bound by the sup ‖f‖p,∞) and
r1 to obtain

‖f‖p,r2 ≤ ‖f‖
r2−r1

r2
p,∞

(
r2
p

∫ ∞
0

[t
1
p f∗(t)]r1

dt

t

) 1
r2

,

and use the already proved to bound it by

‖f‖
r2−r1

r2
p,r1 C(r2, r1)‖f‖

r2
r1
p,r1 = C(r2, r1)‖f‖p,r1 .

• Defining convergence in terms of ‖f‖p,r, the Lorentz space is complete,
simple functions are dense if r < +∞ and the convergence always
implies convergence in measure.

Proposition 1. For f, g measurable functions on X one has∫
X
|fg|dµ ≤

∫ +∞

0
f∗(t)g∗(t) dt.
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As a consequence the Hlder inequality holds true∫
X
|fg|dµ ≤ ‖f‖p,r‖g‖p′,r′ ,

(when p or p′ are infinite then r or r′ respectively, must be infinite too).

Proof. One has ∫
X
|fg|dµ =

∫
X

∫
0<u<|f(x)|

∫
0<v<|g(x)|

dudvdµ ≤∫ +∞

0

∫ +∞

0
µ({x : |f(x)| > u, |g(x)| > v})dudv

≤
∫ +∞

0

∫ +∞

0
min(λf (u), λf (v))dudv =∫ +∞

0

∫ +∞

0
min(|{f∗(t) > u}|, |{g∗(t) > v}|)dudv

=

∫ +∞

0

∫ +∞

0
|{f∗(t) > u} ∩ {g∗(t) > v}|dudv =

∫ +∞

0
f∗(t)g∗(t)dt.

From this, ∫
X
|fg|dµ ≤

∫ +∞

0
t
1
p f∗(t)t

1
p′ g∗(t)

dt

t

and Hlder’s inequality follows from the usual Hlder’s inequality with respect
the measure dt

t .

Hlder’s inequality implies that∫
E
|f |dµ ≤ ‖f‖p,r‖1E‖p′,r′ = ‖f‖p,rµ(E)

1
p′ ,

valid if p > 1 for all r and also for p = r = 1, so that in this cases functions
of Lp,r(X) are integrable over sets of finite measure.

It can be proved too for p > 1 than the converse Holder inequality holds
as well, that is, ‖f‖p,r is comparable to

sup{|
∫
X
fgdµ| : ‖g‖p′,r′ ≤ 1},

the right term defining then a true norm equivalent to ‖f‖p,r.
The following is due to Riesz:

Proposition 2. Let Mf denote the Euclidian (uncentered) maximal func-
tion of f , both in Rd and R. Then

(Mf)∗(t) ≤ CM(f∗)(t) = C
1

t

∫ t

0
f∗(u)du.
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Proof. By what was proved in the previous chapter we know that

sλMf (Cs) ≤
∫
|f |>s

|f(x)|dµ(x).

Now note that∫
|f |>s

|f(x)|dµ(x) = sλf (s) +

∫ ∞
s

λf (t) dt =

∫ λf (s)

0
f∗(u)du,

and so taking s = f∗(t) we get that∫
|f |>f∗(t)

|f(x)|dµ(x) =

∫ t

0
f∗(u)du = tM(f∗)(t).

Write ρ = M(f∗)(t). Combining both and noticing that ρ ≥ f∗(t), we see
that

ρλMf (Cρ) ≤
∫
|f |>ρ

|f |dµ ≤
∫
|f |>f∗(t)

|f |dµ = tρ,

that is, λMf (Cρ) ≤ t, which means that (Mf)∗(t) ≤ ρ = M(f∗)(t).

In dimension d = 1 one can show using the Riesz rising sun lemma that
the above holds with C = 1, The Riesz inequality implies that for every
increasing ϕ one has∫

X
ϕ((Mf)(x))dµ(x) ≤ C

∫
X
ϕ(M(f∗))dµ.

This was the original inequality obtained by Hardy-Littlewood; in d = 1
and for discrete functions it says that if a1, a2, · · · , aN are arbitrary numbers
and the b1 ≥ b2 ≥ · · · ≥ bN denote the same numbers in decreasing order,
and if

αk = max
1≤j≤k

∑k
i=j ai

k − j + 1
, βk =

1

k

k∑
i=1

bi,

then for every increasing ϕ it holds

N∑
k=1

ϕ(αk) ≤
N∑
k=1

ϕ(βk).

Hardy, a very good player of cricket, said that the best way to understand it
is thinking that the ai represent the cricket scores and ϕ the batsman ”total
satisfaction”, so the theorem says that ”the batsman’s total satisfaction is
maximized if he plays a given collection of innings in decreasing order”.

For ϕ(t) = tp, and using Hardy’s inequality one can obtain another proof
of the strong (p, p) inequality for Mf for p > 1.
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2.3 The Marcinkiewicz interpolation theorem

The Riesz-Thorin interpolation theorem uses complex methods, deals with
strong type conditions and applies to linear operators. Next we will de-
scribe the Marcinkiewicz interpolation theorem that applies to subadditive
maps and Lorentz spaces. In fact, Lorentz spaces are defined so to extract
the maximum information from the hypothesis. When applied to classi-
cal Lebesgue spaces Lp(Rd) the Marcinkiewicz theorem does not imply the
Riesz-Thorin theorem in full generality.

Theorem 3. 1. Assume that T is a subadditive operator acting on a
domain D ⊂ L0(X) :→ L0(Y ), and assume that D contains the simple
functions and is closed by truncation. Assume too that with p0 <
p1, q0 6= q1, 1 ≤ pi, qi ≤ +∞,

‖Tf‖qi,∞ ≤ Ai‖f‖pi,1, f ∈ D.

(Note that this is the case under the stronger assumption that T is of
weak type (pi, qi), i = 0, 1). Then, if

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
, 0 < t < 1,

T satisfies

‖Tf‖qt,r ≤ B(t, A1, A2)‖f‖pt,r, f ∈ D, 1 ≤ r ≤ ∞

In fact it is enough that the hypothesis holds for f = 1E , a character-
istic function.

2. In particular, one has

‖Tf‖qt,pt ≤ C‖f‖pt , ‖Tf‖qt ≤ C‖f‖pt,qt .

In case p1 ≤ q1, then pt ≤ qt and

‖Tf‖qt ≤ C‖f‖pt .

Proof. We will give the proof of a weakened version and only in the par-
ticular case that pi = qi, that’s what we will need later. The proof in the
general case can be found in [SteinWeiss, Introduction to Fourier Analysis
on Euclidean spaces, pg. 197]. We assume that T is of weak type (p0, p0)
and (p1, p1), p0 < p1,

‖Tf‖pi,∞ ≤ Ai‖f‖pi , f ∈ D, i = 0, 1,

and will prove that T is of strong type (p, p) for p0 < p < p1. For f ∈
D ∩ Lp(Rd) and s > 0 given we decompose f = f0 + f1, with f0 = f
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where |f | > cs, and zero elsewhere, with the constant c to be chosen. Then
|Tf | ≤ |Tf0|+ |Tf1| and hence

λTf (s) ≤ λTf0(
s

2
) + λTf1(

s

2
).

If p1 = ∞, we have ‖Tf1‖∞ ≤ A1‖f1‖∞ ≤ A1cs, so choosing c = 1/(2A1)
the second term is zero, while the first is bounded by(

2A0

s
‖f0‖p0

)p0
.

Now, using Fubini

‖Tf‖pp = p

∫ ∞
0

sp−1λTf (s)ds ≤ 2A0)
pp

∫ ∞
0

sp−1−p0(

∫
|f |>cs

|f(x)|p0dµ)ds =

= C

∫
X
|f(x)|p0

∫ |f(x)|/c
0

sp−1−p0ds = C‖f‖pp.

Assume now that p1 is finite; then

λTfi(
s

2
) ≤

(
2Ai‖fi‖pi

s

)pi
, i = 0, 1,

and therefore

‖Tf‖pp = p

∫ ∞
0

sp−1λTf (s)ds ≤

(2A0)
pp

∫ ∞
0

sp−1−p0(

∫
|f |>cs

|f(x)|p0dµ)ds+ (2A1)
pp

∫ ∞
0

sp−1−p1(

∫
|f |<cs

|f(x)|p1dµ)ds =

=

(
p2p0

p− p0
Ap00
cp−p0

+
p2p1

p1 − p
Ap11
cp−p1

)
‖f‖pp.

By minimizing in c in the bound just obtained one may check that the
constant B obtained satisfies

B ≤ 2p
1
p

(
1

p− p0
+

1

p1 − p

) 1
p

A1−t
0 At1.

2.4 Applications of the Marcinkiewicz theorem

As a first application the Haussdorf-Young theorem can be improved. Since
the Fourier transform is of strong types (1,∞) and (2, 2) we get

Theorem 4. For 1 < p < 2, 1 ≤ r ≤ ∞, ‖f̂‖p′,r ≤ Cp‖f‖p,r. In particular,

‖f̂‖p′,p ≤ C‖f‖p, ‖f̂‖p′ ≤ C‖f‖p,p′ .
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The second application will show how Marcinkiewicz result can be used
to improve inequalities in an automatic way. Let us consider again the
operator of convolution with a fixed g ∈ Lr, that as we saw satisfies strong
type (1, r) and (r′,∞). By Riesz theorem we saw that

‖f ∗ g‖q ≤ ‖f‖p‖g‖r,

for 1
p + 1

r = 1 + 1
q , that is, for 1 ≤ p ≤ r′ and q given by that equation. But

with Marcinkiewicz theorem we can improve and find that for 1 < p < r′,
the same q and all s, 1 ≤ s ≤ ∞, also we have

‖f ∗ g‖q,s ≤ C‖f‖p,s.‖g‖r.

This already says that to get f ∗g ∈ Lq we need just f ∈ Lp,q, a larger space
than Lp. But in fact more can be said if instead we think now with f fixed in
Lp,∞(X), 1 < p, as an operator in g. The last estimate with s =∞ tells us
that it is of weak type (r, q) for 1 < r < p′ and q given by the same equation.
But this is an open range of weak inequalities; given a fixed r in this range
we can always choose r0, r1 so that r0 < r < r1, the corresponding q0, q and
q1 will satisfy the same convex relationships than the r′s and therefore we
can conclude by another application of Marcinkiewicz theorem that in fact
a strong inequality holds. Altogether we have proved the Young’s inequality
for weak type spaces

‖f ∗ g‖q ≤ ‖f‖p,∞‖g‖r, 1 < p, q, r <∞.

Finally, the Hardy-Littlewood maximal operator Mf satisfies a weak
(1, 1) inequality and a strong (∞,∞) inequality, and so an application of
Marcinkiewicz theorem shows that M is bounded in all Lp,q(Rd),1 < p.

The theorems of Riesz-Thorin and Marcinkiewicz constitute a glympse
to what is calles Interpolation theory in Functional Analysis. The general
context is the same, that is, one has an operator that satisfies two different
estimates, say it is bounded from E0 to F0 and from E1 to F1, with E0, E1

lying in a common ambiance space and similarly for F0, F1. One then con-
structs the intermediate spaces Et, Ft so that T is bounded too from Et to
Ft. Two different approacles exist, the real method, based on K-functional,
and the complex method that uses complex analysis in the spirit of the proof
of the Riesz-Thorin theorem.

By both of these theories, the interpolated space between Lp0 , Lp1 is Lpt ,
and we have thus avoided the general construction.

11


