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Chapter 3

The Hilbert transform

In this chapter we will study the Hilbert transform. This is a specially
important operator for several reasons:

• Because of its relationship with summability for Fourier integrals in Lp-
norms.

• Because it constitutes a link between real and complex analysis

• Because it is a model case for the general theory of singular integral op-
erators.

A main keyword in the theory of singular integrals and in analysis in
general is cancellation. We begin with some easy examples of what this
means.

3.1 Some objects that exist due to cancellation

One main example of something that exists due to cancellation is the Fourier
transform of functions in L2(Rd). In fact the whole L2-theory of the Fourier
transform exists thanks to cancellation properties. Let us review for example
the well-known Parseval’s theorem, stating that for f ∈ L1(Rd)∩L2(Rd) one
has ‖f̂‖2 = ‖f‖2, a result that allows to extend the definition of the Fourier
transform to L2(Rd). Formally,∫

Rd
|f̂(ξ)|2 dξ =

∫
Rd

∫
Rd
f(x)f(y)(

∫
Rd
e2πiξ·(y−x)dξ)dxdy.

This being equal to
∫
Rd |f(x)|2 dx means formally that∫

Rd
e2πiξ·x dξ = δ0(x).

Along the same lines, let us look at the Fourier inversion theorem, stating
that whenever f ∈ L1(Rd), f̂ ∈ L1(Rd) one has
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f(x) =

∫
Rd
f̂(ξ)e2πiξ·x dξ.

Again, the right hand side, by a formal use of Fubini’s theorem becomes

∫
Rd

(

∫
Rd
f(y)e−2πiξ·y dy)e2πiξ·x dξ =

∫
Rd
f(y)(

∫
Rd
e−2πiξ·(y−x) dy) dξ.

If this is to be equal to f(x) we arrive to the same formal conclusion, namely
that superposition of all frequencies is zero outside zero. An intuitive way
to understand this is by noting that (d = 1)∫ R

R
e2πiξx dξ =

sin(2πRx)

πx
,

is zero for x an integer multiple of 1
R , so when R → +∞ the zeros become

more and more dense.
The Fourier transform exists trivially if f ∈ L1(Rd), but not so trivially

if f ∈ L2(Rd). It exists, in the L2-sense

f̂(ξ) = lim
n

∫
R
fn(x)e−2πixξ dx,

with fn arbitrary in L1(Rd) ∩ L2(Rd) such that fn → f in L2(Rd). The
most trivial choice is to take fR(x) to be equal to f(x) if |x| < R and zero
elsewhere, so that

f̂(ξ) = lim
R

∫ R

−R
f(x)e−2πixξ dx,

the limit being in the L2-sense. It is a general and very deep result due to
L. Carleson that this limits exists a.e.

To illustrate all this we will consider the Fourier transform of two partic-
ular functions, none of which in L1(R), and study the pointwise behaviour
of the limit above.

For instance,
∫
R

sinx
x dx is conditionally convergent, meaning that

lim
R→∞

∫ R

−R

sinx

x
dx (3.1)

exists while
∫
R |

sinx
x | dx = +∞. The later can be proved by estimating from

below the contribution to the integral at points |x − (π2 + kπ)| < δ, k ∈ Z.
Alternatively, noting that the Fourier transform of 1[−a,a] is∫ a

a
e−2πxξ dx =

sin 2πaξ

πξ
,
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we can argue that it cannot be integrable, because if it were, by Fourier in-
version theorem, 1[−a,a] would be continuous. We note too that by Parseval’s
theorem ∫

R
(
sin 2πaξ

πξ
)2dξ =

∫
R

12
[−a,a] = 2a.

Regarding the value of the integral, we will see that the limit

lim
R→+∞

∫ R

−R

sin 2πaξ

πξ
e2πiξx dξ = 1[−a,a](x), (3.2)

that as we know exists in the L2 sense, exists too pointwise a.e., in fact for
x 6= ±a. Indeed, by using residues we have that

lim
R→∞

1

2πi

∫ R

−R

eiαξ

ξ
dξ

equals 1
2Res(

eiαξ

ξ , 0) = 1
2 if α > 0 and −1

2 if α < 0, and this implies (3.2).
For x = 0 we get that

lim
R→+∞

∫ R

−R

sin 2πaξ

πξ
dξ = 1,

from which it follows that the integral in (3.1) equals π.
Another example are the Fresnel integrals∫

R
sinx2dx,

∫
R

cosx2dx.

By the change of variable u = x2 one has∫ R

0
sinx2dx =

1

2

∫ R2

0

sinu√
u
du,

so the integral is not absolutely convergent. To compute the integral we will
see more generally that

lim
R→+∞

∫ R

−R
e−απx

2
e−2πixξ dx = 2 lim

R→+∞

∫ R

0
e−απx

2
cos 2πxξ dx =

1√
α
e−

π
α
ξ2 .

(3.3)
for Reα ≥ 0 and all ξ ∈ C. For Reα > 0, the above is the Fourier transform
of fα(x) = e−απx

2
, a function in the Schwarz class. Since it is holomorphic

in α and for α, ξ real equals 1√
α
e−

π
α
ξ2 , the same holds true by analytic

continuation first in α and then in ξ, that is

F (α, ξ) =

∫
R
e−απx

2
e−2πixξ dx =

1√
α
e−

π
α
ξ2 ,Reα > 0, ξ ∈ C.
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By making Reα→ 0 we can already conclude that the Fourier transform, in
the sense of distributions, of e−απx

2
is 1√

α
e−

π
α
ξ2 also if Reα = 0. However,

this does not imply (3.3). To compute the limit in (3.3) when Reα = 0
we will exploit the analyticity in x as follows. We consider the contour
in the z-plane given by the segment [0, R], the arc t 7→ Reiπt, 0 ≤ t ≤ 1

4 ,

and the segment from Rei
π
4 to 0, and apply the Cauchy theorem to the

entire function e−απz
2

cos(2πzξ). The contribution of the arc is bounded by
aRe−bR

2+cR with some positive constants a, b, c depending on ξ, and so has
limit zero when R→∞. Hence, parametrizing with z = t1+i√

2
, we get

lim
R→+∞

∫ R

0
e−απx

2
cos(2πxξ) dx =

1 + i√
2

lim
R→∞

∫ R

0
e−απit

2
cos(2π

1 + i√
2
tξ)dt.

If Re iα > 0, that is, Imα < 0 this shows that the limits exist and equals

1 + i√
2
F (iα,

1 + i√
2
ξ) =

1√
α
e−

π
α
ξ2 ,

as claimed. For ξ = 0 and α = − i
π we get the value

√
π

2
√

2
for the Fresnel

integrals.

3.2 The conjugate Poisson kernel and the Cauchy
transform

One method to study the summability of the Fourier integral is by the means
method. The Abel method consists in using∫

Rd
f̂(ξ)e−2πt|ξ|e2πix·ξ dξ.

The behaviour as t → 0 is easily understood. Indeed, by Fubini’s theorem
the above equals∫

Rd
f(y)(

∫
Rd
e−2πt|ξ|e2πiξ(x−y) dξ)dy = (f ∗ Pt)(x),

with

Pt(x) =

∫
Rd
e−2πt|ξ|e2πix·ξ dξ.

Let us compute explicitly Pt in d = 1:

Pt(x) =

∫ +∞

0
e2πξ(ix−t) dξ +

∫ 0

−∞
e2πξ(ix+t) dξ = A+B,

with

A =
1

2π(t− ix)
, B = A =

1

2π(t+ ix)
.
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This gives

Pt(x) =
1

π

t

x2 + t2
.

Note that Pt(x) = 1
tP (x/t), with P = P1, and that P1, e

−2π|ξ| are a Fourier
pair, P is positive with integral one. In dimension d > 1 the computation is
harder, the result being Pt(x) = t−dP (x/t), with

P (x) = cd
1

(|x|2 + 1)
d+1
2

, cd =
Γ(d+1

2 )

π
d+1
2

,

It is convenient to look as (f ∗Pt)(x) as a function of (x, t) in the upper
half space t > 0. Noticing that P is in all Lp-spaces we define

Definition 1. For f ∈ Lp(Rd), 1 ≤ p ≤ +∞, we define the Poisson trans-
form u = P [f ] as the function defined in the upper half-space t > 0 by

P [f ](x, t) = (f∗Pt)(x) =
1

π

∫
Rd
f(y)

t

(x− y)2 + t2
dy =

∫
Rd
f̂(ξ)e−2πt|ξ|e2πix·ξ dξ

Since we will need it again in a more general form we state again the main
properties of convolutions with functions of the form ht(x) = t−dh(x/t), with
h ∈  L1(Rd).

Proposition 1. Let h ∈ L1(Rd),m =
∫
h, and set ht(x) = t−dh(x/t).. For

f ∈ Lp(Rd), 1 ≤ p ≤ +∞, consider f ∗ ht. Then

• ‖f ∗ ht‖p ≤ ‖f‖p‖h‖1, and f ∗ ht → mf as t → 0 in Lp(Rd), 1 ≤ p <
+∞.

• If f is bounded and continuous at x0 then f ∗ ht(x0)→ mf(x0).

• If f is bounded and uniformly continuous then f ∗ht → mf uniformly.

• If the least radially decreasing majorant of h,

Ψ(x) = sup
|y|≥|x|

|h(x)|,

is in L1(Rd), then f ∗ ht(x)→ mf(x) a.e.

Proof. The continuous Minkowski inequality implies the first assertion. We
write

f∗ht(x) =

∫
Rd
f(x−y)ht(y)dy, f∗ht(x)−mf(x) =

∫
Rd

(f(x−y)−f(x))ht(y)dy,

so that

|f ∗ ht(x)−mf(x)| ≤
∫
Rd
|f(x− ty)− f(x)||h(y)|dy,
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and by continuous Minkowski inequality again

‖f ∗ ht −mf‖p ≤
∫
Rd
‖τtyf − f‖p|h(y)|dy.

The dominated convergence theorem implies then all assertions but the last.
We saw in the first chapter that

sup
t
|f ∗ ht(x)| ≤ ‖Ψ‖1Mf(x),

so that the maximal function on the left satisfies a weak (1, 1) estimate,
hence it suffices to check the last assertion for f continuous with compact
support, and this is the second statement.

Theorem 1. Let f ∈ Lp(Rd), 1 ≤ p ≤ +∞ and let u = P [f ] be its Poisson
transform. Then

• The function u is harmonic in the upper half-space t > 0.

• The function u satisfies

sup
t

(∫
Rd
|u(x, t)|p dt

) 1
p

≤ ‖f‖p, 1 ≤ p <∞, |u(x, t)| ≤ ‖f‖∞, p = +∞.

(3.4)
and Ptf → f in Lp, 1 ≤ p <∞.

• The maximal function

P ∗f(x) = sup
t
|Ptf(x)

satisfies P ∗f ≤ CMf(x), where Mf denotes the Hardy-Littlewood
maximal function of f . The same holds for the non-tangential maximal
function

P ∗nt(x) = sup
(y,t),|y−x|<ct

|Ptf(y)|.

• limt→0 u(x, t) = f(x) a.e. In fact the non-tangential limit

lim
(y,t)→x,|y−x|≤ct

u(y, t)

is a.e. equal to f(x).

The fact that u is harmonic is checked on the Fourier transform side
definition. The other properties are restatements of proposition 1 in the
particular case of the Poisson kernel. The last statement is checked first for
f continuous with compact support and then it follows from the fact that
the non-tangential maximal function is also bounded by Mf for general f .
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The space of harmonic functions in the half-space satisfying (3.4) is de-
noted by hp(Rd+1

+ ). It is possible, for 1 < p ≤ +∞ and using the Helly se-
lection theorem (that is Banach-Alaouglu theorem for Lp- spaces) to prove
that it is exactly the space of harmonic functions that are Poisson trans-
forms of functions in Lp(Rd). For p = 1 it is the space of Poisson transforms
P [µ](x, t) = (µ ∗ Pt)(x) of finite complex Borel measures µ in Rd. If u ∈ h1,
and moreover, limt u(·, t) = f exists in L1, then u = P [f ].

We now consider only d = 1. We know that an harmonic function u in a
simply connected domain has up to constants a unique harmonic conjugate
v, that is, such that u + iv is holomorphic. Let us compute explicitly the
harmonic conjugate of u = P [f ]. For this purpose we rewrite, in terms of
z = x+ it,

u(z) = P [f ](z) =

∫ +∞

0
f̂(ξ)e2πizξ dξ +

∫ 0

−∞
f̂(ξ)e2πizξ dξ

which exhibits P [f ] as the sum of an holomorphic function and a antiholo-
morphic function.

We define v(z) by setting

iv(z) =

∫ +∞

0
f̂(ξ)e2πizξ dξ −

∫ 0

−∞
f̂(ξ)e2πizξ dξ,

so that v is also harmonic and

(u+ iv)(z) = 2

∫ +∞

0
f̂(ξ)e2πizξ dξ,

is indeed holomorphic.
This is the expression of v in the Fourier transform side. On the other

side we can use the same computations done above. Indeed, to define iv we
have separated the contribution of positive and negative ξ and changed the
sign of the later. This corresponds to considering, in the above notations,
A−B = A−A instead of A+B. Since

A−A =
1

2π
(

1

t− ix
− 1

t+ ix
) =

i

π

x

x2 + t2
,

this means that v(x, t) = (f ∗Qt)(x), where

Qt(x) =
1

π

x

x2 + t2
, Q̂t(ξ) = −i sign(ξ) e−2πt|ξ|.

Note that Qt(x) = 1
tQ(x/t), with Q(x) = 1

π
x

x2+1
and that

Pt(x) + iQt(x) =
1

π

t+ ix

x2 + t2
=

i

πz
.

The family Qt is called the conjugate Poisson kernel. Notice that Q /∈ L1(R)
but Q ∈  Lq(R) for 1 < q ≤ +∞.
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Definition 2. If f ∈ Lp(R), 1 ≤ p < +∞ we define the conjugate Poisson
transform Q[f ] of f as the harmonic function in the upper half-plane defined
by

Q[f ](z) = (f ∗Qt)(x) =
1

π

∫
R
f(x− y)

y

y2 + t2
dy, z = x+ it, t > 0,

and the Cauchy transform by

Cf(z) =
1

2πi

∫
R

f(y)

y − z
dy, z /∈ R.

The computations above show that

Cf(z) =
1

2
(P [f ] + iQ[f ])(z) =

∫ +∞

0
f̂(ξ)e2πizξ dξ, t = Im z > 0.

They also show that

(P [f ]− iQ[f ])(z) = 2

∫ 0

−∞
f̂(ξ)e2πizξ dξ = − 1

2πi

∫
R

f(y)

y − z
dy,

or

Cf(z) =
1

2
(−P [f ](z) + iQ[f ](z)), Im z < 0.

3.3 The Hilbert transform

We want to study now the behaviour of f ∗Qt as t→ 0. Formally we have

lim
t→0

Qt(x) =
1

π

1

x
, lim
t→0

Q̂t(ξ) = −i sign(ξ).

Convolution with 1
x does not mean sense since it is not integrable and

neither is a distribution. Now, recall that thanks to Parseval’s theorem, any
bounded measurable function m in R defines a translation invariant operator
T in L2(R) by setting T̂ f(ξ) = m(ξ)f̂(ξ), and then ‖T‖ = ‖m‖∞. In our
case, then, it makes sense

Definition 3. The Hilbert transform H is the translation-invariant operator
defined in L2(R) by

Ĥf(ξ) = −isign(ξ)f̂(ξ),

which amounts to

Hf(x) = −i lim
R→+∞

∫ R

R
sign(ξ)f̂(ξ)e2πix·ξ dξ, inL2,

or, equivalently,
Hf = lim

t→0
f ∗Qt, inL2(R).
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Theorem 2. The Hilbert transform H satisfies:

• It is an isometry of L2(R) with H∗ = H−1 = −H, hence∫
Hfg = −

∫
fHg, f, g ∈ L2(R).

• With the notation ρλf(x) = f(λx), λ > 0 for positive dilations and f̃(x) =
f(−x) for the reflection operator, H commutes with the ρλ, Hρλ = ρλH,

and anticommutes with the reflection operator, H(f̃)(x) = −H̃f(x) =
−Hf(−x).

• If T is a bounded operator in L2(R) that commutes with translations,
with positive dilations, and anticommutes with the reflection operator,
then T = cH for some constant c.

Proof. Let us call m(ξ) = −i sign(ξ) for the multiplier of H. The first
statement then corresponds to |m| = 1,m = m−1 = −m. Now, one has

ρ̂λf(ξ) = f̂(ξ/λ), and
̂̃
f(ξ) = f̂(−ξ) =

˜̂
f(ξ); therefore, a a translation

invariant operator with multiplier m commutes with positive dilations iff
m is a constant on R+, and it anticommutes with the reflection iff m is
odd. Thus, H has these properties and any other operator with the same
properties is a scalar multiple of H.

Notice that the same argument shows that the multiples of the identity
operator are the only ones that commute with translations, with positive
dilations and with the reflection.

Thus we have a clear picture of what is limtQt on the Fourier transform
side and now we would like to understand it as a convolution operator.
Formally,

lim
t
Qt(x) =

1

π

1

x
,

which is not a locally integrable function, neither it is a distribution, it does
not make sense something like

1

π

∫
R

f(y)

y − x
dy.

At this point we recall the definition of the so called its principal value,
namely,

lim
t→0

1

π

∫
|y−x|>t

f(y)

x− y
dy =

1

π

∫
|y|>t

f(x− y)

y
dy.

We will set Φt(x) = 1
x1|x|>t, and

Htf(x) =
1

π
(f ∗ Φt)(x) =

1

π

∫
|y|>t

f(x− y)

y
dy.
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The functions Φt, that also obey Φt(x) = 1
tΦ(x/t), with Φ = Φ1, have

limit in the distribution sense, that is, the limit

lim
t→0
〈Φt, ϕ〉 = lim

t→0

∫
|y|>t

ϕ(y)

y
dy,

exists for every ϕ ∈ S(Rd). This is because exploiting that the kernel is odd
the limit equals∫ +∞

0

ϕ(y)− ϕ(−y)

y
dy =

∫
|y|<1

ϕ(y)− ϕ(0)

y
dy +

∫
|y|>1

ϕ(y)

y
dy.

The limit of Φt in the distribution sense is called p.v 1
x . Thus,

lim
t→0

Htϕ(x) =
1

π
ϕ∗(p.v.1

x
) = lim

t→0

1

π

∫
|y|>t

ϕ(x− y)

y
dy =

∫ ∞
0

ϕ(x− y)− ϕ(x+ y)

y
dy,

exists for all ϕ ∈ S(Rd) and all x. Now we will see that in fact it exists for
general ϕ ∈ L2, and equals H(ϕ).

Theorem 3. For f ∈ L2(R), the Hilbert transform, that has been defined
as

Hf = lim
t→0

f ∗Qt, inL2(R),

or equivalently, by Ĥf(ξ) = −i sign(ξ) f̂(ξ), is also given by

Hf =
1

π
(f ∗ p.v.1

x
) = lim

t→0
Htf = lim

t→0

1

π
f ∗ Φt,

that is

Hf(x) =
1

π
p.v.

∫
R

f(x− y)

y
dy,

where this limit is in L2-norm as well. Moreover, for both expressions

lim
t→0

f ∗Qt(x) = lim
t→0

Htf(x) = Hf(x) a.e.x.

Proof. First note that for f ∈ L2(R) we have that Qtf = PtHf because
both have the same Fourier transform −isign(ξ)e−2πt|ξ|f̂(ξ). Since Pt is an
approximation of the identity with a radial function, it follows that Qtf(x) =
Pt(Hf)(x) has limit Hf(x) a.e. Next we look at the difference ht(x) =
Qt(x)− 1

πΦt(x), that also obeys the rule ht(x) = 1
th(x/t),, with

h(x) =
1

π

{
x

1+x2
, |x| < 1

x
1+x2

− 1
x = − 1

x(1+x2)
, |x| > 1

.
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Since h is odd, it has integral m =
∫
h = 0; moreover, its radial majorant

Ψ is explicitly, up to the factor 1
π , equal to 1

|x|(1+|x|2)
if |x| > 1 and so it is

integrable. Applying the proposition 1, we see that limt→0 f ∗ ht = 0, for
f ∈ Lp(R), 1 ≤ p < +∞, both in Lp- norm and pointwise a.e. Since for
f ∈ L2(R), the limit of f ∗ Qt equals Hf both in L2-norm and pointwise
a.e., the same happens with Htf .

That completes the definition of H in L2(R), from three points of view:
through a multiplier −i sign(ξ) of L2(R), through a complex analysis point
of view (limit of the conjugate harmonic function Q[f ]), and from the real
analysis point of view ( as a principal value integral), the limits existing
both in the L2-sense and a.e. pointwise.

3.4 The Cauchy transform in L2(R). The holo-
morphic Hardy space H2(Π)

As mentioned above, the map f 7→ P [f ] is a one-to-one map between L2(R)
and the space h2(Π) of harmonic functions u(x, t) in the upper half space Π
such that

sup
t

∫
R
|u(x, t)|2 dx < +∞.

The closed subspace of h2(Π) consisting of holomorphic functions is de-
noted by H2(Π). From the decomposition

P [f ](z) =

∫ +∞

0
f̂(ξ)e2πizξ dξ +

∫ 0

−∞
f̂(ξ)e2πizξ dξ

it follows that P [f ] is holomorphic if and only if f̂ is supported in (0,+∞)
in which case

P [f ](z) =

∫ +∞

0
f̂(ξ)e2πizξ dξ = Cf(z) =

1

2πi

∫
R

f(y)

y − z
and is antiholomorphic (conjugate of an holomorphic function) if and only
if g = f̂ is supported in (−∞, 0).

From the relation Cf = 1
2(P [f ] + iQ[f ]) we see that

lim
t→0

Cf(x+ it) =
1

2
(f(x) + iHf(x)),

both in the L2- sense and pointwise a.e.
We may think then that on the Fourier transform side L2(0,+∞) is the

holomorphic closed subspace of L2(R), its orthogonal complement being of
course L2(−∞, 0). The orhogonal projection A onto this subspace, that

in the Fourier transform side is simply defined Âf(ξ) = f̂(ξ)10,+∞(ξ) is
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done on the other side by A equal to the boundary value of Cf , that is,
A = 1

2(I + iH). Indeed the multiplier of A is 1
2(1 + sign(ξ)) = 1(0,∞). The

properties of H translate precisely in A being a projector, for instance

A2 =
1

4
(I + iH)2 =

1

4
(I −H2 + 2iH) =

1

2
(I + iH) = A,

and similarly the others.
It follows from all this that the operators H,A and C are equivalent,

and their properties the same.
Note finally that from the computations in section 3.2 it follows that the

jump of the Cauchy transform

lim
t→0

Cf(x+ it)− Cf(x− it) = f(x), a.e.x.

This is a general fact for Cauchy transforms. If Γ is an arbitrary rectifi-
able curve and

CΓf(z) =
1

2πi

∫
Γ

f(w)

w − z
dw, z /∈ Γ,

then the boundary value at one point w0 ∈ Γ is

1

2
(f(w0)± i 1

π
p.v.

∫
Γ

f(w)

w − w0
dw),

and so the jump is f(w0). This result is known as Plemej formula.

3.5 The Calderon-Zygmund decomposition

In chapter 2, in the setting of interpolation theory, and in a general measure
space (X,µ), we have used the following decomposition of a function f ∈
L1(X), given λ > 0,

f = g + b, g = f1|f |<λ, b = f1|f |≥λ.

The function g (standing for g) inherits the property of f , meaning that
‖g‖1 ≤ ‖f‖1, but has an additional good property, namely it is bounded by
λ. The function b, which stands for bad, also is integrable with ‖b‖1 ≤ ‖f‖1,
and has an additional property, namely that its support has measure less
than ‖f‖1λ .

In measure spaces with more structure, as in the real line, it turns out
that something more deep can be stated. This is the contents of a famous
decomposition due to Calderon and Zygmund, that plays an important role
in the theory of singular integrals. We need first another famous result, due
to Riesz, named the Rising sun lemma, because its proof consists simply in
thinking that the sun rises from the right of the graphic of g.
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Lemma 1 (The rising sun lemma). Let g : R→ R be a continuous function
with g(−∞) = +∞, g(+∞) = −∞. Let

E = {x : there exists y > x such that g(y) > g(x)}.

Then E is open, and if not empty it is the union of intervals Ik = (αk, βk),
with g(αk) = g(βk).

Theorem 4 (Calderon-Zygmund decomposition in R). Let f ∈ L1(R), f ≥
0, λ ≥ 0. Then, there is a sequence Ik of disjoint open intervals such that

1

|Ik|

∫
Ik

f = λ, f(x) ≤ λ for a.e. x /∈ ∪kIk.

In particular, ∑
k

|Ik| =
1

λ

∫
∪Ik

f ≤ 1

λ
‖f‖1.

Proof. We apply the rising sun lemma to

g(x) =

∫ x

−∞
f(t) dt− λx.

Then g(αk) = g(βk) means exactly that the mean over Ik is λ. Next, by
Lebesgue’s differentiation theorem (chapter 1), we know that al almost every
point g has derivative f(x)− λ. Since at the points of E where g′(x) exists
it must be ≤ 0, we have that f(x) ≤ λ a.e. outside E.

Then we define

g(x) =

{
f(x), x /∈ E
λ, x ∈ E

b(x) =

{
0, x /∈ E
f(x)− λ, x ∈ E

Then ‖g‖1 = ‖f‖1, g is bounded by λ a.e. We have too that b is supported
in a set E = ∪kIk with measure∑

|Ik| =
1

λ

∫
E
f ≤ 1

λ
‖f‖1,

and also

‖b‖1 =
∑
k

∫
Ik

|f(x)− λ| ≤ 2
∑
k

∫
Ik

f = 2‖f‖1.

What’s new with respect the previous ”trivial” decomposition? The fact
that we can write b =

∑
k bk, with each bk supported in Ik, with mean zero.

We refer to the decomposition f = g + b as the Calderon-Zygmund
decomposition at level λ.
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3.6 Kolmogorov’s and Riesz’s theorem

The Kolmogorov’s theorem asserts that the Hilbert transform satisfies a
weak (1, 1) estimate. He proved this using complex analysis. Here we shall
give the real analysis proof based on the Calderon-Zygmund decomposition,
since it goes over to dimension d > 1.

Theorem 5 (Kolmogorov’s theorem). There exists a constant C such that
for f ∈ L1(R) ∩ L2(R),

|{x : |Hf(x)| > λ}| ≤ C

λ
‖f‖1.

Proof. We may assume that f ≥ 0 by decomposing f in its real and imag-
inary part, f = f1 + if2, and then in positive and negative parts, fj =
f+
j − f

−
j , j = 1, 2. We fix λ > 0, apply the Calderon-Zygmund decomposi-

tion at level λ and consider f = g + b. Then g ∈ L1 ∩ L2 (because it is in
L1 and bounded), and so is b. We have |Hf | ≤ |Hg|+ |Hb|, whence

|{|Hf | > λ}| ≤ |{|Hg| > λ

2
}|+ |{|Hb| > λ

2
}|.

The first term is estimated using that H is bounded in L2: by Tchebychev’s
inequality, the first term is bounded by

4

λ2
‖Hg‖2 =

4

λ2
‖g‖2.

But g being bounded by λ implies ‖g‖2 ≤ λ‖g‖1 ≤ λ‖f‖1, therefore this first
term satisfies the required estimate. Let us now denote by I∗k the interval
with the same center ck as Ik but twice its length, and set E∗ = ∪kI∗k . Since

|E∗| ≤ 2
∑
k

|Ik| ≤
2

λ
‖f‖1,

we need just to estimate

|{x /∈ E∗ : |Hb(x)| > λ

2
}|.

By Tchebychev’s inequality once again, it is enough to prove that∫
R\E∗

|Hb(x)|dx ≤ C‖f‖1,

and for that, using b =
∑
bk, Hb =

∑
kHbk, it is in turn enough to prove

that ∑
k

∫
R\I∗k
|Hbk(x)| dx ≤ C‖f‖1.
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With this purpose we will obtain a pointwise crucial estimate. For x /∈ I∗k ,

Hbk(x) =
1

π

∫
Ik

bk(y)

x− y
dy.

But bk has mean zero over Ik and therefore

Hbk(x) =
1

π

∫
Ik

bk(y)

(
1

x− y
− 1

x− ck

)
dy =

1

π

∫
Ik

bk(y)

(
y − ck

(x− y)(x− ck)

)
dy

where ck denotes the center of Ik. Having exploited cancelation we now
estimate the size of |Hbk(x)|, x /∈ I∗k , using |y−ck| ≤ |Ik|, and that 1

2 |x−ck| ≤
|x− y| ≤ 3

2 |x− ck| for y ∈ Ik, x /∈ I∗k by

|Hbk(x)| ≤ C |Ik|
|x− ck|2

∫
Ik

|bk(y)| dy, x /∈ I∗k .

Therefore,∫
R\I∗k
|Hbk(x)| dx ≤ C|Ik|(

∫
Ik

|bk(y)| dy)

∫
R\I∗k

1

|x− ck|2
dx.

But this last integral is a constant times 1
|Ik| , so we see that∫

R\I∗k
|Hbk(x)| dx ≤

∫
Ik

|bk(y)| dy,

so that summing in k we are done because ‖b‖ ≤ C‖f‖1.

Theorem 6 (Riesz’s theorem). The Hilbert transform satisfies a strong
(p, p)-estimate for 1 < p < +∞:

‖Hf‖p ≤ Cp‖f‖p, f ∈ L2(R) ∩ Lp(R).

Proof. For 1 < p < 2 this follows from Marcinkiewicz interpolation theorem.
For p > 2 we argue by duality exploiting that H is essentially self-adjoint:
for f ∈ S(Rd),

‖Hf‖p = sup
‖g‖p′≤1

∣∣∣∣∫ (Hf)g

∣∣∣∣ =

= sup
‖g‖p′≤1

∣∣∣∣∫ f(Hg)

∣∣∣∣ ≤ ‖f‖p‖Hg‖p′ ≤ ‖f‖Cp′‖g‖p′ ≤ Cp′‖f‖p.
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3.7 The Hilbert transform in Lp(R), 1 ≤ p <∞ and
in S(Rd)

By the usual extension method based in density arguments, we may now
extend the definition of H to Lp(R), 1 < p < +∞: if say ϕn ∈ S(Rd)
approach f ∈ Lp(R) in the Lp-norm, we define Hf = limnHϕn. A slightly
different consideration occurs if f ∈ L1(R). We may take again ϕn ∈ S(Rd)
approaching f in L1(R); then the weak (1, 1) estimate says that Hϕn is a
Cauchy sequence in measure, that is, for each ε > 0,

lim
n,m→+∞

|{|Hϕn −Hϕm| > ε}| = 0,

and hence Hf can be a.e. be defined as the limit in measure of the Hϕn,
that is,

lim
n,→+∞

|{|Hϕn −Hf | > ε}| = 0.

The function Hf thus defined is in weak L1 = L1,∞(R), that is

|{|Hf | > λ}| ≤ C

λ
.

Alternatively, to define H in Lp(R), 1 ≤ p < +∞, we may argue that
Ht can be treated exactly as H so that it satisfies a strong (p, p) estimate,
p > 1, and a weak (1, 1) estimate uniformly in t. Since the Htf converge for
f ∈ S(Rd) we see that they converge too for f ∈ Lp(R) in the Lp-norm when
p > 1 and in measure if p = 1. Both definitions of course agree because they
agree on a dense class, that is

lim
n
Hϕn = lim

n
lim
t
Htϕn = lim

t
lim
n
Htϕn = lim

t
Htf.

We claim now that in this later definition the Htf can be replaced by the
Qtf and that moreover the limit exists a.e. pointwise for both. In case p > 1
this is easy for we have Qtϕn = PtHϕn, and therefore, since Pt, Qt ∈ Lp

′
(R),

it follows that Qtf = PtHf . Using that Pt is an approximation of the
identity and theorem 1 we thus see that

Hf = lim
t
Qtf,Hf = lim

t
Htf,

boths limits being in the Lp-norm and also pointwise a.e.
For f ∈ L1(R), Hf is the limit in measure of the Htf . To see that

the Qtf converge in measure to Hf too and that in both cases there is
a.e.. convergence we cannot apply the same argument as before, because we
cannot pass to the limit in Qtϕn = PtHϕn, as Ptg does not make sense for
g ∈ L1,∞.
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To study this question we need to introduce the maximal functions

H∗f(x) = supt|Htf(x)|, Q∗f(x) = sup
t
|Qtf(x)|, f ∈ Lp(R), 1 ≤ p < +∞.

Theorem 7. • For f ∈ Lp(R), 1 < p <∞, one has

Q∗f(x) ≤ CM(Hf)(x), H∗f(x) ≤ C(M(Hf)(x) +Mf(x)),

for some constant C, where Mf denotes the Hardy-Littlewood maximal
function of f .

• As a consequence, H∗, Q∗ satisfy, a strong (p, p) estimate for 1 < p < +∞.

• H∗, Q∗ satisfy a weak (1, 1)- estimate.

Proof. The first inequality in the first part follows from Qtf = PtHf and
theorem 1. The first one then follows from, with the notations of theorem 3

|Htf(x)| = |Qtf(x)|+ |Htf(x)−Qtf(x)| ≤ |Qtf(x)|+ |Ψtf(x)| =
|PtHf(x)|+ |Ψtf(x)| ≤M(Hf)(x) +M(f)(x).

Given that M satisfies a strong (p, p) estimate and that H is bounded in
Lp, the second part follows. For the third part we must slightly modify the
proof of Kolmogorov’s theorem. With the same notations, and using that we
know that H∗ satisfies a strong (2, 2) estimate, again everything is reduced
to prove that

|{x /∈ E∗ : |H∗b(x)| > λ}| ≤ C ‖f‖1
λ

,

and again we need a pointwise estimate of H∗b(x) for x /∈ E. Fixed such
x and one k, three cases can happen: either (x− t, x+ t) contains Ik, they
are disjoint, or else one and only one of the two end points x± t is in Ik. In
the first case Htbk(x) = 0, in the second case Htbk(x) = Hbk(x) and then
we have the estimate already proved

|Htbk(x)| ≤ C |Ik|
|x− ck|2

∫
Ik

|bk(y)| dy.

In the third case, since x /∈ E∗, one has that Ik ⊂ (x− 3t, x+ 3t), |x− y| >
t
3 , y ∈ Ik, so that

|Htbk(x)| ≤
∫
Ik

|bk(y)|
|x− y|

dy ≤ 3

t

∫ x+3t

x−3t
|bk(y)| dy.

Altogether we can write that in all three cases

|Htbk(x)| ≤ C |Ik|
|x− ck|2

∫
Ik

bk(y) dy +
3

t

∫ x+3t

x−3t
bk(y) dy,
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noticing that the last term, fixed x, can appear only twice. Adding on
k, this shows

|Htb|(x)| ≤
∑
k

|Ik|
|x− ck|2

‖bk‖1 +
3

t

∫ x+3t

x−3t
b(y) dy.

Taking the supremum in t we get

H∗b(x) ≤
∑
k

|Ik|
|x− ck|2

‖bk‖1 +Mb(x).

The set where Mb > λ
2 has measure less than C ‖b‖1λ ≤ C ‖f‖1λ by the

weak estimate satisfied by M , while the measure of the set where the above
sum is bigger than λ/2 is treated exactly as in the proof of Kolmogorov’s
theorem. this shows that H∗ satisfies a weak (1, 1) estimate, and since
Q∗f ≤ H∗f + CMf , the same holds for Q∗f .

The last statement implies of course that for f ∈ L1(R),

lim
t
Htf(x) = Hf(x), lim

t
Qtf(x) = Hf(x),

both in measure and pointwise a.e.
Of course, all these facts hold as well for the Cauchy transform, in par-

ticular the Plemej result holds a.e. for f ∈ L1(R).
The definition of H in L2(R) amounts to

Hf(x) = −i lim
R→∞

∫ R

−R
sign(ξ)f̂(ξ)e2πix·ξ dξ,

the limit being taken in L2-norm. Now, if f ∈ Lp(R), 1 ≤ p < 2, then
f̂ ∈ Lp

′
(R), the right hand side makes and it is then a natural question

whether the above holds true with convergence in Lp(R). this turns out to
be true but we need postponing the proof.

On the other hand, it is easy to see that H cannot satisfy a strong (1, 1)
estimate, that is, Hf is not integrable in general for f ∈ L1(R). For instance,

a computation shows that the Hilbert transform of 1[0,1] is 1
π log( |x||x−1|).

Notice too that if Hf is integrable then Ĥf must be continuous and this
is possible only if f̂(0) = 0, that is, f has zero integral. Along this line,
notice that if f is compactly supported then for x big enough

xHf(x) =
1

π

∫
f(y)x

x− y
dy,

has limit 1
π

∫
f as x→∞ and so it is not integrable if

∫
f 6= 0.
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Let us study in some detail H on the Schwarz class. First, note that the
above holds as well for f ∈ S(Rd): namely we write for |x| big

πHf(x) =

∫
|x−y|<1

f(y)− f(x)

x− y
dy +

∫
|x−y|>1

f(y)

x− y
dy.

In the second term,

|x f(y)

x− y
| ≤ (1 + |y|)|f(y)|.

In the second one, by Taylor expansion at y, f(x)−f(y) = f ′(y)(x−y)+R,
with |R| ≤ 1

2 |f
′′(z)||x − y|2 for some z between x and y; since |z| > ||y| −

1| > c|y| and f ′′ is rapidly decreasing we see that R = O(|y|−2); altogether
the first term is bounded by |f ′(y)| + |y|−2 uniformly in x. By dominated
convergence we conclude that limx→∞ xHf(x) = 1

π

∫
f . If

∫
f = 0, then we

can substract 1
x from the kernel and get

Hf(x) =
1

π
p.v.

∫
R
f(y)(

1

x− y
− 1

x
) dy =

1

x
H(yf)(x),

so that x2Hf(x) has limit 1
π

∫
yf . Iterating we see that if all the moments∫

xkf are zero, then xkHf(x) has limit zero at ∞ for all k.
Now D(n)Hf = D(n)(f ∗ 1

πp.v.
1
x) = (D(n)f) ∗ 1

πp.v.
1
x = H(D(n)f); on

the other hand, integration by parts shows that all moments of D(n)f are
zero if n ≥ 1. It follows then that xkD(n)Hf(x) has limit zero at infinity
for all k and all n ≥ 1. The only obstacle for Hf to be in S(Rd) is n = 0
and this holds if and only if all moments of f are zero. Incidentally we can
see this in a clear way on the Fourier transform side, because for f̂ ∈ S(Rd),
the function sign(ξ)f̂(ξ) is in S(Rd) if and only if f̂ is flat at zero, that is,
it has all derivatives zero at zero, which exactly says that the moments of f
are zero.

3.8 Multipliers of Lp(Rd)

We will see that the boundedness of the Hilbert transform has some impor-
tant consequences. But first we explain some general facts about multipliers,
and in doing so we place ourselves again in a general dimension d ≥ 1.

We consider bounded linear operators T : Lp(Rd) → Lq(Rd), 1 ≤ p, q ≤
∞ that commute with translations. A general theorem of Hormander ( see
Harmonic Analysis course) says that if p, q are both finite such an operator
is given by convolution with a tempered distribution u ∈ S ′(Rd), Tf = f ∗u
so that its action on ϕ ∈ S(Rd) can be read T̂ϕ(ξ) = ϕ̂(ξ)m(ξ), with m =
û ∈ S ′(Rd).

We denote by Mp,q(Rd) the space of all translation invariant operators
from Lp(Rd) to Lq(Rd). A first point to remark is that we may assume that
p ≤ q:
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Theorem 8. Mp,q(Rd) reduces to zero if p > q.

Proof. The proof is similar to what was shown when seeing that the Fourier
transform cannot be bounded from Lp to Lp

′
if p > 2. Let us consider

f ∈ S(Rd) such that Tf 6= 0 and g a sum of N translates of f, g(x) =∑N
k=1 f(x−λk). If the λk are chosen spread enough we will have that ‖g‖p =

N
1
p ‖f‖p. On the other hand, since T is translation invariant, Tg(x) =∑N
k=1 Tf(x− λk). But for an arbitrary non zero h ∈ Lq(Rd), q <∞,

(

∫
Rd
|
N∑
k=1

h(x− λk)|q dx, )
1
q

behaves like N
1
q if the λk tend to infinity in a spread way ( this is proved

first for h with compact support). Thus we would have

N
1
q ≤ C‖T‖N

1
p ,

for all N , and so q ≥ p if T is not zero.

We remind that in two cases we have already characterized the space
Mp,q(Rd). Namely, when p = q = 1,Mp,q(Rd) is the space of finite complex
Borel measures, that is, convolution with a finite measure is the general
translation invariant operator in L1(Rd). Also, when p = q = 2, we know
that the translation invariant operators in L2(R) correspond exactly with
the bounded multipliers m.

The case p = q = ∞ is exceptional. Of course convolution with a
finite measure is an example, but there are translation invariant operators
in L∞(Rd) that are not given by convolution. For example, let S be defined
by

Sf = lim
R→+∞

1

R

∫ R

0
f(x) dx,

on the space of bounded periodic functions, and extend it to L∞(R) using
Hahn-Banach Theorem. Then T is a continuous linear operator onto the
space of constants functions that commutes with translations and is not
given by convolution because its action on test functions is zero.

So from now on we assume that p ≤ q, q > 1 and leave the case p = q =∞
aside. For such T , its transpose T t is the operator T t : Lq

′
(Rd) → Lp

′
(Rd)

defined by

〈Tf, g〉 =

∫
Rd
Tfgdx = 〈f, T tg〉 =

∫
Rd
fT tg, f ∈ Lp(Rd), g ∈ Lq′(Rd).

Then T t is translation invariant and T 7→ T t establishes a bijection between
Mp,q(Rd) and Mq′,p′(Rd). In general, if T is given by a kernel K
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Tf(x) =

∫
Rd
f(y)K(x, y) dy,

then

T tg(y) =

∫
Rd
g(x)K(x, y) dx,

that is, T t is given by the kernel Kt(x, y) = K(y, x). When it is translation
invariant then K(x, y) = K(x− y). In terms of the multiplier, if m(ξ) is the
multiplier of T , then m(−ξ) is the multiplier of T t. Since obviously all Lp

spaces are stable by the reflection operator, we see that in factMp,q(Rd) and
Mq′,p′(Rd) are equal. Besides, by the Riesz interpolation theorem, we know
that then T will be bounded too from Lr(Rd) to Ls(Rd) if r = rt, s = st are
the required convex combinations. When p = q, we call Mp(Rd) the space
of all translation invariant operators from Lp(Rd) to itself, 1 < p < ∞.
Thus Mp′(Rd) = Mp(Rd) and we can assume 1 < p ≤ 2. By the Riesz
interpolation theorem just mentioned, it follows that for 1 ≤ p < q ≤ 2,

Mp(Rd)Mq(Rd)M2(Rd) = L∞(Rd)

.
Thus all multipliers m of Lp(Rd) are also multipliers of L2(Rd) and so

they are bounded. For p = 1,M1(Rd), is the smallest, it consists in convo-
lution with measures µ, that is bounded in Lp, and has multiplier m = µ̂, a
bounded function

3.9 Some multipliers of Lp(R)

We have seen that H is a multiplier of Lp(R), 1 < p <∞, and the same holds
for the Cauchy transform, the projection onto the holomorphic subspace.
From this it is immediate to see that any filter Sa,b in frequency, that is, the
operator with multiplier

m(ξ) = 1[a,b](ξ),

is also an Lp multiplier. If Ma denotes the operation of multiplication with
e2πiax, which is obviously bounded and that corresponds to the translation
τa in frequency, just notice that

Sa,b =
i

2
(MaHM−a −MbHM−b).

Moreover we get from this that their operator norm is uniformly bounded
in a, b,

‖Sa,bf‖p ≤ Cp‖f‖p.

Let us consider SR = S−R,R which for f ∈ L2(R) is given by
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SRf(x) =

∫ R

−R
f̂(ξ)e2πix·ξ dξ.

We know that SRf → f in L2(R) if f ∈ L2(R) by the very definition of
the Fourier transform in L2. If we can exhibit a dense subspace of Lp(R) in
which SRf → f then by the uniform boundedness principle this would hold
for all f . That space is simply the subspace of ϕ ∈ S(Rd) with ϕ̂ compactly
supported. Obviously SRϕ = ϕ for R big enough. To see that it is dense
it suffices to approximate f ∈ S(Rd) in Lp-norm by such functions. If Ψ is
C∞ and has compact support and equals 1 at 0, then Ψ̂t(x) = t−dΨ̂(x/t)
is an approximation of the identity so f ∗ Ψ̂t → f in Lp, and has Fourier
transform equal to f̂(ξ)Ψ(tξ), with compact support.

We have thus shown that SRf → f in Lp(R), 1 < p <∞. An analogous
argument would show that for p = 1 the convergence is in measure. For
1 ≤ p ≤ 2, f̂ ∈ Lp′(R) and SRf is given by the above expression, but this is
not the case for p > 2. Along the same lines, applying H to f = limR SRf
we see that

Hf(x) = −i lim
R→∞

∫ R

−R
sign(ξ)f̂(ξ)e2πix·ξdξ, f ∈ Lp(R), 1 < p ≤ 2.

Theorem 9. Assume that m is a function of bounded variation in R, that
is

sup
N∑
j=1

|m(xj)−m(xj−1)| ≤ C < +∞,

for all points x0 < x1 < · · · < xN . Then m is a multiplier for Lp(Rd), 1 ≤
p < +∞.

Proof. We may assume that m is up to an additive constant the distribution
function of a finite measure,

m(ξ) = c+

∫ ξ

−∞
dµ(t),

that we may write in a compact form

m = c+

∫ +∞

−∞
1(t,+∞)dµ(t).

Then the operator Tm with symbol m is

Tm = cI +

∫ +∞

−∞
S(t,+∞)dµ(t),

that is, an infinite linear combination with summable coefficients of the
S(t,+∞) which are uniformly bounded in Lp by Cp, and so Tm is bounded in
Lp.
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It is easy to obtain examples of multipliers in general dimension from
multipliers in d = 1. Indeed, if m(ξ1) is a multiplier in Lp(R), then this same
function viewed as independent from ξ2, · · · , ξd is a multiplier in Lp(Rd),
with the same norm, by Fubini’s theorem. On the other hand, if m is a
multiplier in Lp(Rd), then m(ξ+a),m(λξ),m(Aξ) with a ∈ Rd, λ > 0, and A
an unitary matrix are also multiplier with the same norm. Combining both
things, we see that the characteristic function of a half-space is a multiplier
for Lp(Rd), 1 < p < ∞. The characteristic function of a convex polyhedra
with N faces is the product of the N characteristic functions of half-spaces,
and so it is a multiplier. This implies, in a similar way as we saw before

Theorem 10. The characteristic function of a convex polyhedra U is a
multiplier of Lp(Rd), 1 < p <∞. In particular, limλ→∞ SλUf = f in Lp.

The situation is quite different for other convex bodies. For instance, a
celebrated theorem of C. Fefferman establishes that the characteristic func-
tion of a ball is a multiplier only for p = 2.
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