Random Matrices from the Classical Compact Groups: a Panorama Part I: Haar Measure

Mark Meckes

Case Western Reserve University

Oxford, 25 January 2021

(Tentative) outline of this series

- (Today) Haar measure on the classical compact groups
- Orthogonal v. Gaussian random matrices
- Oncentration of measure
- Applications of measure concentration
- Eigenvalue distributions: exact formulas
- Eigenvalue distributions: asymptotics
- Eigenvalue distributions: inequalities
- More (or more detail)?

Primary reference:

Elizabeth Meckes, *The Random Matrix Theory of the Classical Compact Groups*, Cambridge, 2019.

www.case.edu/artsci/math/esmeckes/Haar_book.pdf

What colored text means:

Red means stop.

Green means keep going.

Violet and blue are to make things more colorful.

Why study random matrices?

Why study random anything?

- Knowing what's "typical"
- Modeling uncertainty
- Randomized algorithms
- Probabilistic existence proofs
- Beautiful mathematics and unexpected connections

The classical compact groups

Our main characters are two cousins:

- The orthogonal group $\mathbb{O}(n) = \{ U \in M_n(\mathbb{R}) | UU^T = I_n \}$
- The unitary group $\mathbb{U}(n) = \{U \in M_n(\mathbb{C}) | UU^* = I_n\}$

They look a lot alike, but there are subtle and important differences.

Rule of thumb:

- $\mathbb{O}(n)$ is mostly easier to work with geometrically.
- $\mathbb{U}(n)$ is mostly easier to work with algebraically.

The classical compact groups

We'll also meet their kid sisters:

•
$$\mathbb{SO}(n) = \{U \in \mathbb{O}(n) | \det U = 1\}.$$

•
$$\mathbb{SO}^{-}(n) = \{U \in \mathbb{O}(n) | \det U = -1\}.$$

•
$$\mathbb{SU}(n) = \{U \in \mathbb{U}(n) | \det U = 1\}.$$

$$\mathbb{O}(n) = \mathbb{SO}(n) \sqcup \mathbb{SO}^{-}(n) = \mathbb{SO}(n) \rtimes \{\pm 1\}$$

 $\mathbb{U}(n) = \mathbb{SU}(n) \rtimes \mathbb{U}(1)$ is connected.

The classical compact groups

The weird uncle no one talks about:

The compact symplectic group

$$\mathbb{S}_{\mathbb{P}}(n) = \left\{ U \in \mathbb{U}(2n) | UJ_n U^* = J_n \right\},$$
 where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$.

This is really the unitary group of $n \times n$ quaternionic matrices.

Structures on the classical compact groups

Each of these sets is:

- a compact Lie group, and hence:
 - a Riemannian manifold and
 - a topological group;

- a subset of a Euclidean space:
 - *M_n*(ℂ) ≅ ℂ^{n²} ≅ ℝ^{2n²}, with the Frobenius / Hilbert–Schmidt inner product ⟨*A*, *B*⟩ = Tr *AB**.

Structures on the classical compact groups

Each has two different metric space structures:

- the geodesic metric $d_g(U, V)$ from the manifold structure,
- the Euclidean metric $d_{HS}(U, V) = \sqrt{\langle U V, U V \rangle}$.

Conveniently,

$$d_{HS}(U,V) \leq d_g(U,V) \leq rac{\pi}{2} d_{HS}(U,V)$$

for $U, V \in \mathbb{U}(n)$.

Haar measure

Theorem

If \mathbb{G} is a compact topological group, there is a <u>unique</u> probability measure μ which is <u>invariant</u>: $\mu(VA) = \mu(A)$ for every $A \subseteq \mathbb{G}$ and $V \in \mathbb{G}$. This measure also satisfies $\mu(AV) = \mu(A) = \mu(A^{-1})$.

 μ is called the <u>Haar measure</u> on \mathbb{G} .

That is: there is a unique notion of a random $U \in \mathbb{G}$ with the property that for each fixed $V \in \mathbb{G}$, $VU \sim U$.

It is then also true that $UV \sim U^{-1} \sim U$.

Haar measure

Typical interpretation:

There is one unique "reasonable" notion of a random $U \in \mathbb{G}$.

Specialized to the classical compact groups $\mathbb{G},$ that's what these lectures are about.

But: don't necessarily take that interpretation too seriously!

A bit of terminology

For these lectures:

Random $U \in \mathbb{G}$ always means chosen according to Haar measure.

A random $U \in \mathbb{U}(n)$ is sometimes called the <u>Circular Unitary</u> <u>Ensemble</u> (<u>CUE</u>).

Warning:

The Circular Orthogonal Ensemble and Circular Symplectic Ensemble are <u>not</u> the same as random matrices in $\mathbb{O}(n)$ or $\mathbb{S}_{\mathbb{P}}(n)$.

What is Haar measure, really?

The uniqueness part of the theorem means:

If you come up with some way to pick a random $U \in \mathbb{G}$, and it turns out to be invariant, then it's our way to pick a random $U \in \mathbb{G}$.

There are a bunch of different ways to do that!

Riemannian construction

If $\mathbb G$ is a compact Lie group, then the normalized Riemannian volume form

$$\mu(\mathcal{A}) = \frac{\int_{\mathcal{A}} d\operatorname{vol}_{g}}{\int_{\mathbb{G}} d\operatorname{vol}_{g}}$$

is invariant.

So it's Haar measure!

Euclidean construction

Pick $U_1 \in S^{n-1}$ uniformly, then pick $U_2 \in S^{n-1} \cap U_1^{\perp}$ uniformly, then pick $U_3 \in S^{n-1} \cap \{U_1, U_2\}^{\perp}$ uniformly, : then pick $U_n \in S^{n-1} \cap \{U_1, \dots, U_{n-1}\}^{\perp}$ uniformly.

Then
$$U = \begin{bmatrix} | & \cdots & | \\ U_1 & \cdots & U_n \\ | & \cdots & | \end{bmatrix} \in \mathbb{O}(n)$$
 is Haar-distributed.

Inductive construction

Say we already know how to generate a random $U_{n-1} \in \mathbb{O}(n-1)$.

Can we leverage that?

Pick $X \in S^{n-1}$ uniformly and independently of U_{n-1} . Pick $M \in \mathbb{O}(n)$ independently of U with first column X.

Then
$$U = M \begin{bmatrix} 1 & 0 \\ 0 & U_{n-1} \end{bmatrix} \in \mathbb{O}(M)$$
 is Haar-distributed.

Gauss-Gram-Schmidt construction

If $M \in M_n(\mathbb{C})$ is nonsingular and we perform the Gram–Schmidt process on the columns of M, we get a $U \in \mathbb{U}(n)$.

If M is random and invariant w.r.t. unitary multiplication, then so is U, so U is Haar-distributed.

Easiest way to do that:

Let M be a Gaussian random matrix: independent standard Gaussian entries.

Gauss-Gram-Schmidt construction

We can summarize that construction via a matrix factorization (handy for computer simulation):

Let *M* be a Gaussian random matrix and let

M = QR

be the QR decomposition of *M*, then take U = Q.

BUT:

QR decompositions are not unique!

If your QR decomposition is not based on Gram–Schmidt then *Q* won't necessarily by Haar-distributed.

Gaussian polar decomposition construction

Every nonsingular $M \in M_n(\mathbb{C})$ has a unique polar decomposition

M = UP

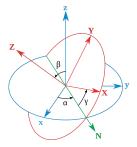
where $U \in \mathbb{U}(n)$ and $P \in M_n(\mathbb{C})$ is positive definite.

 $P = (M^*M)^{1/2}$ and $U = MP^{-1}$.

If *M* is a Gaussian random matrix then *U* is Haar-distributed.

Euler angles

A rotation $U \in SO(n)$ can be specified as a product of rotations in 2-dimensional planes through Euler angles θ_j^k , $1 \le k \le n-1, 1 \le j \le k$.



A Haar-distributed $U \in SO(n)$ corresponds to picking the θ_j^k independently with densities $\propto \sin^{j-1}(\theta_j^k)$.

Permutation invariance

Invariance is enough to prove basic properties without a concrete construction.

If *P*, *Q* are permutation matrices then

 $PUQ \sim U.$

• All entries of U are identically distributed.

• All $k \times \ell$ submatrices of U are identically distributed.

Moments of entries

We can compute a lot about joint distributions of entries just from symmetry and knowing the distribution of a single column:

If $U \in \mathbb{O}(n)$ is Haar-distributed:

•
$$\mathbb{E}u_{11}^2 = \frac{1}{n} \sum_{j=1}^n \mathbb{E}u_{j1}^2 = \frac{1}{n}$$

• $\mathbb{E}u_{11}^2 u_{21}^2 = \frac{1}{n(n+2)}$
• $\mathbb{E}u_{11}^2 u_{22}^2 = \mathbb{E}u_{11}^2 \left(\frac{1}{n-1} \sum_{j=2}^n u_{j2}^2\right) = \frac{1}{n-1} \mathbb{E}u_{11}^2 (1-u_{12}^2)$
 $= \frac{n+1}{(n-1)n(n+2)}$

Observation: $\left| \operatorname{Cov}(u_{ij}^2 u_{kl}^2) \right| \leq \frac{C}{n^3}$ if $(i, j) \neq (k, \ell)$.

Moments of entries

It's possible to be totally systematic:

Theorem (Weingarten calculus, Collins) If $U \in \mathbb{U}(n)$ is Haar-distributed, then

$$\mathbb{E} u_{i_1,j_1}\cdots u_{i_k,j_k}\overline{u_{i'_1,j'_1}\cdots u_{i'_k,j'_k}} = \sum_{\sigma,\tau\in S_n} \mathbb{1}_{i_\sigma=i',j_\tau=j'} \mathrm{Wg}^U(\sigma^{-1}\tau,n),$$

where the Weingarten function Wg^U is a sum of terms related to the irreducible representations of S_n .

More complicated versions exist for $\mathbb{O}(n)$ and $\mathbb{S}_{\mathbb{P}}(n)$.

Joint distribution of entries

Theorem (Eaton)

Let $1 \le p \le q$ and $p + q \le n$. Then the upper-left $p \times q$ submatrix *M* of a random $U \in \mathbb{O}(n)$ has a density proportional to

$$\det(I_q - M^T M)^{\frac{n-p-q-1}{2}}$$

on $\{M \in M_{p \times q}(\mathbb{R}) | \lambda_{\max}(M^T M) < 1\}.$

Rough outline of Eaton's proof:

- Both descriptions of *M* give *M*^T*M* a matrix-variate beta distribution.
- The distribution of *M* is determined by the distribution of *M^TM* (invariant theory).

Other proofs, and versions for $\mathbb{U}(n)$ and $\mathbb{S}_{\mathbb{P}}(n)$, are also known.

Beyond Haar measure

Haar measure isn't really the only reasonable way to pick a random matrix in $U \in \mathbb{G}$.

- Pick random *M* however you like, decompose *M* = *QR*, take *U* = *Q*.
- Pick independent reflections M₁, M₂, ..., M_t across random hyperplanes (Householder transformations), take U = M₁M₂ ··· M_t.
- $\bullet\,$ Heat kernel measure / Brownian motion on $\mathbb G$
- Pick *M* by Haar measure, take $U = M^k$ or $U = M^T M$.

We'll come back to (only) the last of these later on.

Additional references

- Kristopher Tapp, *Matrix Groups for Undergraduates*, 2nd edition, AMS, 2005.
- Francesco Mezzadri, "How to generate random matrices from the classical compact groups", *Notices of the AMS* 54, pp. 592–604, 2007.
- Benoît Collins and Piotr Śniady, "Integration with respect to the Haar measure on unitary, orthogonal and symplectic group", *Commun. Math. Phys.*, 264, pp. 773–795, 2006.
- Peter Forrester, *Log-Gases and Random Matrices*, Princeton, 2010.