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(Tentative) outline of this series

1 (Today) Haar measure on the classical compact groups
2 Orthogonal v. Gaussian random matrices
3 Concentration of measure
4 Applications of measure concentration
5 Eigenvalue distributions: exact formulas
6 Eigenvalue distributions: asymptotics
7 Eigenvalue distributions: inequalities
8 More (or more detail)?



Primary reference:

Elizabeth Meckes, The Random Matrix Theory of the Classical
Compact Groups, Cambridge, 2019.
www.case.edu/artsci/math/esmeckes/Haar_book.pdf

What colored text means:

Red means stop.

Green means keep going.

Violet and blue are to make things more colorful.

www.case.edu/artsci/math/esmeckes/Haar_book.pdf


Why study random matrices?

Why study random anything?

Knowing what’s “typical”
Modeling uncertainty
Randomized algorithms
Probabilistic existence proofs
Beautiful mathematics and unexpected connections



The classical compact groups

Our main characters are two cousins:

The orthogonal group O(n) =
{

U ∈ Mn(R)
∣∣UUT = In

}
The unitary group U(n) = {U ∈ Mn(C)|UU∗ = In}

They look a lot alike, but there are subtle and important
differences.

Rule of thumb:

O(n) is mostly easier to work with geometrically.
U(n) is mostly easier to work with algebraically.



The classical compact groups

We’ll also meet their kid sisters:

SO(n) = {U ∈ O(n)|detU = 1}.
SO−(n) = {U ∈ O(n)|detU = −1}.
SU(n) = {U ∈ U(n)|detU = 1}.

O(n) = SO(n) t SO−(n) = SO(n)o {±1}
U(n) = SU(n)oU(1) is connected.



The classical compact groups

The weird uncle no one talks about:

The compact symplectic group

Sp(n) = {U ∈ U(2n)|UJnU∗ = Jn} ,

where Jn =

[
0 In
−In 0

]
.

This is really the unitary group of n × n quaternionic matrices.



Structures on the classical compact groups

Each of these sets is:

a compact Lie group, and hence:

a Riemannian manifold and
a topological group;

a subset of a Euclidean space:

Mn(C) ∼= Cn2 ∼= R2n2
, with the Frobenius / Hilbert–Schmidt

inner product 〈A,B〉 = TrAB∗.



Structures on the classical compact groups

Each has two different metric space structures:
the geodesic metric dg(U,V ) from the manifold structure,

the Euclidean metric dHS(U,V ) =
√
〈U − V ,U − V 〉.

Conveniently,

dHS(U,V ) ≤ dg(U,V ) ≤ π

2
dHS(U,V )

for U,V ∈ U(n).



Haar measure

Theorem
If G is a compact topological group, there is a unique probability
measure µ which is invariant: µ(VA) = µ(A) for every A ⊆ G
and V ∈ G.
This measure also satisfies µ(AV ) = µ(A) = µ(A−1).

µ is called the Haar measure on G.

That is: there is a unique notion of a random U ∈ G with the
property that for each fixed V ∈ G, VU ∼ U.

It is then also true that UV ∼ U−1 ∼ U.



Haar measure

Typical interpretation:

There is one unique “reasonable” notion of a random U ∈ G.

Specialized to the classical compact groups G, that’s what
these lectures are about.

But: don’t necessarily take that interpretation too seriously!



A bit of terminology

For these lectures:

Random U ∈ G always means chosen according to Haar
measure.

A random U ∈ U(n) is sometimes called the Circular Unitary
Ensemble (CUE).

Warning:

The Circular Orthogonal Ensemble and Circular Symplectic
Ensemble are not the same as random matrices in O(n) or
Sp(n).



What is Haar measure, really?

The uniqueness part of the theorem means:

If you come up with some way to pick a random U ∈ G,
and it turns out to be invariant,
then it’s our way to pick a random U ∈ G.

There are a bunch of different ways to do that!



Riemannian construction

If G is a compact Lie group, then the normalized Riemannian
volume form

µ(A) =

∫
A

dvolg∫
G dvolg

is invariant.

So it’s Haar measure!



Euclidean construction

Pick U1 ∈ Sn−1 uniformly,
then pick U2 ∈ Sn−1 ∩ U⊥1 uniformly,
then pick U3 ∈ Sn−1 ∩ {U1,U2}⊥ uniformly,
...
then pick Un ∈ Sn−1 ∩ {U1, . . . ,Un−1}⊥ uniformly.

Then U =

 | · · · |
U1 · · · Un
| · · · |

 ∈ O(n) is Haar-distributed.



Inductive construction

Say we already know how to generate a random
Un−1 ∈ O(n − 1).

Can we leverage that?

Pick X ∈ Sn−1 uniformly and independently of Un−1.
Pick M ∈ O(n) independently of U with first column X .

Then U = M
[
1 0
0 Un−1

]
∈ O(M) is Haar-distributed.



Gauss–Gram–Schmidt construction

If M ∈ Mn(C) is nonsingular and we perform the Gram–Schmidt
process on the columns of M, we get a U ∈ U(n).

If M is random and invariant w.r.t. unitary multiplication, then so
is U, so U is Haar-distributed.

Easiest way to do that:

Let M be a Gaussian random matrix: independent standard
Gaussian entries.



Gauss–Gram–Schmidt construction

We can summarize that construction via a matrix factorization
(handy for computer simulation):

Let M be a Gaussian random matrix and let

M = QR

be the QR decomposition of M, then take U = Q.

BUT:

QR decompositions are not unique!

If your QR decomposition is not based on Gram–Schmidt then
Q won’t necessarily by Haar-distributed.



Gaussian polar decomposition construction

Every nonsingular M ∈ Mn(C) has a unique polar
decomposition

M = UP

where U ∈ U(n) and P ∈ Mn(C) is positive definite.

P = (M∗M)1/2 and U = MP−1.

If M is a Gaussian random matrix then U is Haar-distributed.



Euler angles

A rotation U ∈ SO(n) can be specified as a product of rotations
in 2-dimensional planes through Euler angles θk

j ,
1 ≤ k ≤ n − 1, 1 ≤ j ≤ k .

A Haar-distributed U ∈ SO(n) corresponds to picking the θk
j

independently with densities ∝ sinj−1(θk
j ).



Permutation invariance

Invariance is enough to prove basic properties without a
concrete construction.

If P,Q are permutation matrices then

PUQ ∼ U.

=⇒
All entries of U are identically distributed.
All k × ` submatrices of U are identically distributed.



Moments of entries

We can compute a lot about joint distributions of entries just
from symmetry and knowing the distribution of a single column:

If U ∈ O(n) is Haar-distributed:

Eu2
11 =

1
n

n∑
j=1

Eu2
j1 =

1
n

Eu2
11u2

21 =
1

n(n + 2)

Eu2
11u2

22 = Eu2
11

 1
n − 1

n∑
j=2

u2
j2

 =
1

n − 1
Eu2

11(1− u2
12)

=
n + 1

(n − 1)n(n + 2)

Observation:
∣∣∣Cov(u2

ij u
2
kl)
∣∣∣ ≤ C

n3 if (i , j) 6= (k , `).



Moments of entries

It’s possible to be totally systematic:

Theorem (Weingarten calculus, Collins)
If U ∈ U(n) is Haar-distributed, then

Eui1,j1 · · · uik ,jk ui ′1,j
′
1
· · · ui ′k ,j

′
k
=
∑
σ,τ∈Sn

1iσ=i ′,jτ=j ′WgU(σ−1τ,n),

where the Weingarten function WgU is a sum of terms related
to the irreducible representations of Sn.

More complicated versions exist for O(n) and Sp(n).



Joint distribution of entries

Theorem (Eaton)
Let 1 ≤ p ≤ q and p + q ≤ n. Then the upper-left p × q
submatrix M of a random U ∈ O(n) has a density proportional
to

det(Iq −MT M)
n−p−q−1

2

on
{

M ∈ Mp×q(R)
∣∣λmax(MT M) < 1

}
.

Rough outline of Eaton’s proof:

Both descriptions of M give MT M a matrix-variate beta
distribution.
The distribution of M is determined by the distribution of
MT M (invariant theory).

Other proofs, and versions for U(n) and Sp(n), are also known.



Beyond Haar measure

Haar measure isn’t really the only reasonable way to pick a
random matrix in U ∈ G.

Pick random M however you like, decompose M = QR,
take U = Q.
Pick independent reflections M1,M2, . . . ,Mt across random
hyperplanes (Householder transformations), take
U = M1M2 · · ·Mt .
Heat kernel measure / Brownian motion on G
Pick M by Haar measure, take U = Mk or U = MT M.

We’ll come back to (only) the last of these later on.
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