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Gaussian and orthogonal random matrices

Until further notice: U is random in O(n) (mainly for simplicity).

G ∈ Mn(R) has independent N(0,1) entries.

Today’s slogan:

U and 1√
nG are a lot alike.



Caveats

G has independent entries, U doesn’t.
U has bounded entries (

∣∣uij
∣∣ ≤ 1), G doesn’t.

U has orthogonal columns/rows, G doesn’t.
U acts as an isometry (‖Ux‖2 = ‖x‖2), G doesn’t.

So why is a raven like a writing-desk?

U has almost independent entries.
1√
n G has almost bounded entries.

G has almost orthogonal columns/rows.
1√
n G acts almost almost as an isometry.



Action on a single vector

Fix x ∈ Rn. Then Ux ∼ unif(‖x‖2 Sn−1).

Gx ∼ N(0, ‖x‖22 In), but more usefully:

Gx = ‖Gx‖2
Gx
‖Gx‖2

,

‖Gx‖2 and Gx
‖Gx‖2

are independent.
Gx
‖Gx‖2

∼ unif(Sn−1),

E ‖Gx‖2 ≈
√

n ‖x‖2 and ‖Gx2‖ ≈
√

n ‖x‖2 with
overwhelming probability (for large n).

More on this last point next time!



The caveats aren’t all bad!
Ux and Gx are a lot alike, but Gx has independent entries.

Independence⇒ Gx is easy to calculate with.
“A lot alike”⇒ we can transfer results from Gx to Ux .

Simple example:

Write θ = Ue1 ∼ unif(Sn−1), g = Ge1 ∼ N(0, In).
Then g ∼ Rθ, with R = ‖g‖2 independent of θ.

P(x) = xk1
1 · · · x

kn
n , k = k1 + · · ·+ kn.

Then
EP(g) = EP(Rθ) = (ERk )(EP(θ))

and so

EP(θ) =
EP(g)
ERk =

(Egk1
1 ) · · · (Egkn

n )

ERk ,

and the latter expectations are elementary.



Action on subspaces

The Grassmann manifold Gn,k is the set of all k -dimensional
linear subspaces of Rn.

Gn,k has a Haar measure: a unique notion of a random
k -dimensional subspace E ⊆ Rn such that V (E) ∼ E for each
fixed V ∈ O(n).

If F ∈ Gn,k is fixed, then

U(F ) ∼ G(F ) ∼ E .



Norms

Theorem (Folklore?)
There are constants c,C > 0 such that if ‖·‖ is any seminorm
on Mn(R), then

cE ‖U‖ ≤ 1√
n
E ‖G‖ ≤ CE ‖U‖.

Again, this is mostly used in situations where
we want to work with E ‖U‖, but
E ‖G‖ is easier to estimate.

The form of this result is typical of nonasymptotic random
matrix theory.



Asymptotic distribution of single entries

Let θ = Ue1 ∼ unif(Sn−1), g = Ge1 ∼ N(0, In).

Recall:
g ∼ Rθ,
R = ‖g‖2 and θ are independent.
R ≈

√
n with high probability (for large n).

This suggests:

For large n, entries of
√

nθ are distributed similarly to entries of
g, i.e., independent standard Gaussians.

This was apparently first observed by Maxwell, and a rigorous
version (for one entry) was first proved by Borel.

In their honor it is sometimes referred to as the “Poincaré limit”.



Asymptotic distribution of entries in one column
The total variation distance between random vectors X ∼ fX
and Y ∼ fY is

dTV (X ,Y ) = 2 sup
A
|P[X ∈ A]− P[Y ∈ A]|

= sup
‖ψ‖∞≤1

|Eψ(X )− Eψ(Y )|

=

∫
Rn
|fX − fY | .

Theorem (Diaconis–Freedman)

dTV
(√

n(θ1, . . . , θk ), (g1, . . . ,gk )
)
≤ C

k
n
.

In this sense, as many as o(n) entries of θ = Ue1 are
asymptotically independent Gaussians.



Asymptotic distribution of a submatrix

Recall: the upper-left p × q submatrix M of U has a density
proportional to

det(Iq −MT M)
n−p−q−1

2 .

For fixed p,q and n→∞, the density of
√

nM looks like

det

(
Iq −

1
n

MT M
) n−p−q−1

2

=

q∏
i=1

(
1− 1

n
λi(MT M)

) n−p−q−1
2

≈
q∏

i=1

e−λi (MT M)/2

= e−
1
2 TrMT M = e−

1
2‖M‖

2
HS .

This suggests there is a matrix version of the
Diaconis–Freedman result.



Asymptotic distribution of a submatrix: total variation

Theorem (Jiang–Ma, Stewart)

Let p,q depend on n with pq n→∞−−−→∞ and pq = o(n).
Let Mn be the upper-left p × q submatrix of U ∈ O(n), and let
Gn be a p × q Gaussian random matrix.
Then dTV (

√
nMn,Gn)

n→∞−−−→ 0.

This result is sharp: if lim sup
n→∞

pq
n
> 0, then dTV (

√
nMn,Gn) 6→ 0.

Basic idea of proof:

dTV (
√

nMn,Gn) =

∫
|fM − fG| =

∫ ∣∣∣∣ fMfG − 1
∣∣∣∣ fG = E

∣∣∣∣ fM(G)

fG(G)
− 1
∣∣∣∣

followed by a much more precise version of the asymptotic
analysis on the last slide.



Asymptotic distribution of a submatrix: in probability

Theorem (Jiang)
Let G be an n × n Gaussian random matrix, and let U ∈ O(n)
be obtained from G by the Gram–Schmidt process.
Then

P
[

max
1≤i≤n, 1≤j≤m

∣∣√nuij − gij
∣∣ > ε

]
n→∞−−−→ 0

for every ε > 0 if and only if m = o
(

n
log n

)
.

The proof consists of a careful probabilistic analysis of the
Gram–Schmidt process.



Arbitrary linear functions of the entries

If A ∈ Mn(R) is fixed then

TrAU =
〈

U,AT
〉
=

n∑
i,j=1

ajiuij .

Theorem (E. Meckes)
If ‖A‖HS =

√
n and g ∼ N(0,1), then

dTV (TrAU,g) ≤ C
n
.

The proof is by Stein’s method.



Arbitrary linear projections
The L1-Wasserstein distance between random vectors X and Y
is

W1(X ,Y ) = sup
‖ψ‖L≤1

|Eψ(X )− Eψ(Y )|,

where ‖ψ‖L = sup
x 6=y

|ψ(x)− ψ(y)|
‖x − y‖2

.

Theorem (Chatterjee–E. Meckes)
Suppose A1, . . . ,Ak ∈ Mn(R) are orthogonal (w.r.t. the
Hilbert–Schmidt inner product) with ‖Ai‖HS =

√
n, and

g ∼ N(0, Ik ). Then

W1
(
(TrA1U, . . . ,TrAkU),g

)
≤ C

k
n
.

In this sense, arbitrary projections of dimension k = o(n) are
asymptotically Gaussian.



Traces
When A = In, the Gaussian approximation is amazingly good:

Theorem (Johansson)
dTV (TrU,g) ≤ Ce−cn if U ∈ O(n).

dTV

(
TrU,

1√
2
(g1 + ig2)

)
≤ Cn−cn if U ∈ U(n).

The proof is by Fourier analysis, and we’ll return to the result
itself later.

For U(n), Keating–Mezzadri–Singphu prove a rate of
convergence for ReTrAU to Gaussian which

depends on the singular values of A,
is O(n−1) always, and
is O(n−2) when the singular values of A are bounded (as
for A = In).
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