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Gaussian tails

The Gaussian distribution has extremely light tails:

P[g ≥ t ] = P[eλg ≥ eλt ]

≤ e−λtEeλg

= e−λt+λ2/2

= e−t2/2 for λ = t .



Application: the norm of a Gaussian matrix

For A ∈ Mn(R), ‖A‖op = sup
x∈Sn−1

‖Ax‖2 = sup
x ,y∈Sn−1

〈Ax , y〉.

For an n × n Gaussian random matrix G,

〈Gx , y〉 =
∑

ij

gijxjyi ∼ N(0,1),

so ‖G‖op is the supremum of a Gaussian stochastic process.



Application: the norm of a Gaussian matrix
N ⊆ Sn−1 is a (1/4)-net if: ∀x ∈ Sn−1 ∃y ∈ N such that
‖x − y‖2 ≤

1
4 .

Lemma
1 ‖A‖op ≤ 2 sup

x ,y∈N
〈Ax , y〉.

2 There is a 1
4 -net N ⊆ Sn−1 with #N ≤ 9n.

P[‖G‖op ≥ t ] ≤ P
[
sup

x ,y∈N
〈Gx , y〉 ≥ t/2

]
≤
∑

x ,y∈N
P[〈Gx , y〉 ≥ t/2]

≤ 81ne−t2/8

 E ‖G‖op ≤ C
√

n and ‖G‖op ≤ C′
√

n with high probability.



Spherical tails

Recall the Poincaré limit: if θ ∼ unif(Sn−1) then
√

nθ1 ≈ N(0,1).

This phenomenon extends to the tails:

P[
√

nθ1 ≥ t ] ≤ e−ct2

P[θ1 ≥ t ] ≤ e−cnt2

Almost all the mass on Sn−1 is within ≈ 1√
n of an equator.



Isoperimetric inequalities

Classical: For X ⊆ Rn, voln−1(∂X ) ≥ voln−1(∂B), where B is a
ball with voln(B) = voln(X ).

More refined version: Write Xt = {y ∈ Rn|d(X , y) ≤ t}.
Then voln(Xt) ≥ voln(Bt).

Round balloons are the easiest to inflate!

Spherical version: For X ⊆ Sn−1, write
Xt =

{
y ∈ Sn−1

∣∣d(X , y) ≤ t
}

.

Then voln−1(Xt) ≥ voln−1(Bt), where B ⊆ Sn−1 is a spherical
cap with voln−1(B) = voln−1(X ).



Concentration of measure on the sphere

If voln−1(X ) ≥ 1
2 voln−1(Sn−1), then

P[θ ∈ Xt ] ≥ P[θ ∈ Bt ] ≥ 1− e−cnt2
.

Theorem (Lévy’s lemma)

Suppose F : Sn−1 → R is 1-Lipschitz, and M is a median of
F (θ). Then

P[F (θ) ≥ M + t ] ≤ e−cnt2
.

Fluctuations of F (θ) are of size O
(

1√
n

)
.



Gaussian concentration

This fact and the Poincaré limit lead to:

Theorem (Borell, Sudakov–Tsirelson)
Suppose F : Rn → R is 1-Lipschitz, and M is a median of F (g).
Then

P[F (g) ≥ M + t ] ≤ e−ct2
.

Under a concentration result like this, all notions of the average
value are basically equivalent:

|EF (g)−M| ≤ C
EF (g) ≤

√
EF (g)2 ≤ CEF (g) if F ≥ 0.



Quick application: concentration of norms

E ‖g‖22 = n P
[∣∣‖g‖2 −√n

∣∣ ≥ t
]
≤ 2e−ct2

.

So for x ∈ Rn fixed, ‖Gx‖2 ≈
√

n ‖x‖2 with very high probability.

Similarly, ‖G‖op ≈
√

n with O(1) fluctuations.



From spheres to manifolds

Theorem (Bishop–Gromov comparison theorem)
Suppose M is an n-dimensional compact connected
Riemannian manifold with Ricci curvature ≥ K > 0.

Then the volume on M concentrates around balls at least as
strongly as on an n-sphere of Ricci curvature K .

In particular, if F : M → R is 1-Lipschitz and X ∼ unif(M), then

P[F (X )− EF (X ) ≥ t ] ≤ 2e−cKt2
.



Concentration on the classical compact groups (finally)

The Ricci curvature on SO(n), SU(n), and Sp(n) is ≥ cn.

Theorem (Gromov, Gromov–Milman)
If G = SO(n), SO−(n), SU(n), or Sp(n) and F : G→ R is
1-Lipschitz, then

P[F (U)− EF (U) ≥ t ] ≤ 2e−cnt2
.

But:

O(n) isn’t connected, and U(n) doesn’t have a positive lower
bound on curvature.



Concentration on the classical compact groups

Dealing with O(n):

Are you sure don’t actually just want to work with SO(n)?
Condition on detU: equal probability of being in SO(n) and
SO−(n).

Dealing with U(n):

Let V ∈ SU(n) be Haar-distributed and X ∼ unif
[
0, π

√
2√

n

]
be independent.

Then U = e
√

2iX/
√

nV ∈ U(n) is Haar-distributed.
The theorem on the last slide also applies when G = U(n).



Quick application: concentration of norms again

Let Pk ∈ Mn,k (R) be the first k columns of a random U ∈ O(n)
(equivalently, U ∈ SO(n)).

Pk is essentially the projection onto a random E ∈ Gn,k .

Easy computations:
For fixed x ∈ Rn, F (U) = ‖Pkx‖2 is ‖x‖2-Lipschitz.

E ‖Pkx‖22 = ‖x‖22 E ‖Pke1‖22 = k
n ‖x‖

2
2.

Therefore,

P

[∣∣∣∣∣‖Pkx‖2 −
√

k
n
‖x‖2

∣∣∣∣∣ ≥
(√

k
n
‖x‖2

)
t

]
≤ 2e−ckt2

.



Convergence of the spectral measure: a no-work proof

Let f : C→ R be 1-Lipschitz, and define F (U) =
1
n

n∑
i=1

f (λi(U)).

By invariance, if U ∈ U(n) is random, then

EF (U) =
1

2π

∫ 2π

0
f (eiθ) dθ.

By the Hoffman–Wielandt inequality, F is 1√
n -Lipschitz.



Convergence of the spectral measure: a no-work proof

So for each fixed 1-Lipschitz f : C→ R,

P

[∣∣∣∣∣1n
n∑

i=1

f (λi(U))− 1
2π

∫ 2π

0
f (eiθ) dθ

∣∣∣∣∣ ≥ C
√
log n
n

]
≤ 1

n2 .

By the Borel–Cantelli lemma, if Un ∈ U(n) is random for each n,
then with probability 1∣∣∣∣∣1n

n∑
i=1

f (λi(Un))−
1

2π

∫ 2π

0
f (eiθ) dθ

∣∣∣∣∣ < C
√
log n
n

for all sufficiently large n.



Tensorizable concentration

Using logarithmic Sobolev inequalities (Bakry–Émery, Herbst)
the Gromov–Milman result generalizes to:

Theorem
Suppose U1, . . . ,Um ∈ G are Haar-distributed in any of the
connected groups and independent and F : Mn(C)m → R is
1-Lipschitz. Then

P[F (U1, . . . ,Um)− EF (U1, . . . ,Um) ≥ t ] ≤ e−cnt2
.

The upper bound here is independent of m.



Another tool for next time: Dudley’s inequality

A subgaussian random process is a collection of random
variables {Xu|u ∈ T} indexed by metric space T such that

P[|Xu − Xv | ≥ t ] ≤ 2e−t2/d(u,v)2
.

Theorem (Dudley’s entropy bound)
If {Xu|u ∈ T} is a centered subgaussian random process then

E sup
u∈T

Xu ≤ C
∫ ∞

0

√
logN(T , ε) dε,

where N(T , ε) is the smallest number of ε-balls needed to cover
T .

logN(T , ε) is called the metric entropy.
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