Random Matrices from the Classical Compact Groups: a Panorama

 Part III: Concentration of MeasureMark Meckes

Case Western Reserve University

Oxford, 8 February 2021

Gaussian tails

The Gaussian distribution has extremely light tails:

$$
\begin{aligned}
\mathbb{P}[g \geq t] & =\mathbb{P}\left[e^{\lambda g} \geq e^{\lambda t}\right] \\
& \leq e^{-\lambda t} \mathbb{E} e^{\lambda g} \\
& =e^{-\lambda t+\lambda^{2} / 2} \\
& =e^{-t^{2} / 2} \quad \text { for } \lambda=t .
\end{aligned}
$$

Application: the norm of a Gaussian matrix

For $A \in M_{n}(\mathbb{R}),\|A\|_{o p}=\sup _{x \in S^{n-1}}\|A x\|_{2}=\sup _{x, y \in S^{n-1}}\langle A x, y\rangle$.

For an $n \times n$ Gaussian random matrix G,

$$
\langle G x, y\rangle=\sum_{i j} g_{i j} x_{j} y_{i} \sim N(0,1)
$$

so $\|G\|_{o p}$ is the supremum of a Gaussian stochastic process.

Application: the norm of a Gaussian matrix

$\mathcal{N} \subseteq S^{n-1}$ is a (1/4)-net if: $\forall x \in S^{n-1} \exists y \in \mathcal{N}$ such that $\|x-y\|_{2} \leq \frac{1}{4}$.

Lemma
(1) $\|A\|_{o p} \leq 2 \sup _{x, y \in \mathcal{N}}\langle A x, y\rangle$.
(2) There is a $\frac{1}{4}-n e t \mathcal{N} \subseteq S^{n-1}$ with $\# \mathcal{N} \leq 9^{n}$.

$$
\begin{aligned}
\mathbb{P}\left[\|G\|_{o p} \geq t\right] & \leq \mathbb{P}\left[\sup _{x, y \in \mathcal{N}}\langle G x, y\rangle \geq t / 2\right] \\
& \leq \sum_{x, y \in \mathcal{N}} \mathbb{P}[\langle G x, y\rangle \geq t / 2] \\
& \leq 81^{n} e^{-t^{2} / 8}
\end{aligned}
$$

$\rightsquigarrow \mathbb{E}\|G\|_{o p} \leq C \sqrt{n}$ and $\|G\|_{o p} \leq C^{\prime} \sqrt{n}$ with high probability.

Spherical tails

Recall the Poincaré limit: if $\theta \sim \operatorname{unif}\left(S^{n-1}\right)$ then $\sqrt{n} \theta_{1} \approx N(0,1)$.
This phenomenon extends to the tails:

$$
\begin{aligned}
& \mathbb{P}\left[\sqrt{n} \theta_{1} \geq t\right] \leq e^{-c t^{2}} \\
& \mathbb{P}\left[\theta_{1} \geq t\right] \leq e^{-c n t^{2}}
\end{aligned}
$$

Almost all the mass on S^{n-1} is within $\approx \frac{1}{\sqrt{n}}$ of an equator.

Isoperimetric inequalities

Classical: For $X \subseteq \mathbb{R}^{n}, \operatorname{vol}_{n-1}(\partial X) \geq \operatorname{vol}_{n-1}(\partial B)$, where B is a ball with $\operatorname{vol}_{n}(B)=\operatorname{vol}_{n}(X)$.

More refined version: Write $X_{t}=\left\{y \in \mathbb{R}^{n} \mid d(X, y) \leq t\right\}$.
Then vol ${ }_{n}\left(X_{t}\right) \geq \operatorname{vol}_{n}\left(B_{t}\right)$.
Round balloons are the easiest to inflate!

Spherical version: For $X \subseteq S^{n-1}$, write $X_{t}=\left\{y \in S^{n-1} \mid d(X, y) \leq t\right\}$.
Then $\operatorname{vol}_{n-1}\left(X_{t}\right) \geq \operatorname{vol}_{n-1}\left(B_{t}\right)$, where $B \subseteq S^{n-1}$ is a spherical cap with $\operatorname{vol}_{n-1}(B)=\operatorname{vol}_{n-1}(X)$.

Concentration of measure on the sphere

If $\operatorname{vol}_{n-1}(X) \geq \frac{1}{2} \operatorname{vol}_{n-1}\left(S^{n-1}\right)$, then

$$
\mathbb{P}\left[\theta \in X_{t}\right] \geq \mathbb{P}\left[\theta \in B_{t}\right] \geq 1-e^{-c n t^{2}}
$$

Theorem (Lévy's lemma)
Suppose $F: S^{n-1} \rightarrow \mathbb{R}$ is 1 -Lipschitz, and M is a median of $F(\theta)$. Then

$$
\mathbb{P}[F(\theta) \geq M+t] \leq e^{-c n t^{2}}
$$

Fluctuations of $F(\theta)$ are of size $O\left(\frac{1}{\sqrt{n}}\right)$.

Gaussian concentration

This fact and the Poincaré limit lead to:

Theorem (Borell, Sudakov-Tsirelson)
Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is 1 -Lipschitz, and M is a median of $F(g)$. Then

$$
\mathbb{P}[F(g) \geq M+t] \leq e^{-c t^{2}} .
$$

Under a concentration result like this, all notions of the average value are basically equivalent:

- $|\mathbb{E} F(g)-M| \leq C$
- $\mathbb{E F}(g) \leq \sqrt{\mathbb{E} F(g)^{2}} \leq C \mathbb{E} F(g)$ if $F \geq 0$.

Quick application: concentration of norms

$\mathbb{E}\|g\|_{2}^{2}=n \rightsquigarrow \mathbb{P}\left[\left|\|g\|_{2}-\sqrt{n}\right| \geq t\right] \leq 2 e^{-c t^{2}}$.

So for $x \in \mathbb{R}^{n}$ fixed, $\|G x\|_{2} \approx \sqrt{n}\|x\|_{2}$ with very high probability.

Similarly, $\|G\|_{o p} \approx \sqrt{n}$ with $O(1)$ fluctuations.

From spheres to manifolds

Theorem (Bishop-Gromov comparison theorem)
Suppose M is an n-dimensional compact connected Riemannian manifold with Ricci curvature $\geq K>0$.

Then the volume on M concentrates around balls at least as strongly as on an n-sphere of Ricci curvature K.

In particular, if $F: M \rightarrow \mathbb{R}$ is 1 -Lipschitz and $X \sim \operatorname{unif}(M)$, then

$$
\mathbb{P}[F(X)-\mathbb{E} F(X) \geq t] \leq 2 e^{-c k t^{2}}
$$

Concentration on the classical compact groups (finally)

The Ricci curvature on $\operatorname{SO}(n), \operatorname{SU}(n)$, and $\mathbb{S p}(n)$ is $\geq c n$.

Theorem (Gromov, Gromov-Milman)

If $\mathbb{G}=\mathbb{S O}(n), \mathbb{S O}^{-}(n), \mathbb{S U}(n)$, or $\mathbb{S p}(n)$ and $F: \mathbb{G} \rightarrow \mathbb{R}$ is
1-Lipschitz, then

$$
\mathbb{P}[F(U)-\mathbb{E} F(U) \geq t] \leq 2 e^{-c n t^{2}} .
$$

But:
$\mathbb{O}(n)$ isn't connected, and $\mathbb{U}(n)$ doesn't have a positive lower bound on curvature.

Concentration on the classical compact groups

Dealing with $\mathbb{O}(n)$:

- Are you sure don't actually just want to work with $\mathbb{S O}(n)$?
- Condition on $\operatorname{det} U$: equal probability of being in $\mathbb{S O}(n)$ and $\mathrm{SO}^{-}(n)$.

Dealing with $\mathbb{U}(n)$:

- Let $V \in \mathbb{S U}(n)$ be Haar-distributed and $X \sim$ unif $\left[0, \frac{\pi \sqrt{2}}{\sqrt{n}}\right]$ be independent.
- Then $U=e^{\sqrt{2} i X / \sqrt{n}} V \in \mathbb{U}(n)$ is Haar-distributed.
- The theorem on the last slide also applies when $\mathbb{G}=\mathbb{U}(n)$.

Quick application: concentration of norms again

Let $P_{k} \in M_{n, k}(\mathbb{R})$ be the first k columns of a random $U \in \mathbb{O}(n)$ (equivalently, $U \in \mathbb{S O}(n)$).
P_{k} is essentially the projection onto a random $E \in G_{n, k}$.
Easy computations:

- For fixed $x \in \mathbb{R}^{n}, F(U)=\left\|P_{k} x\right\|_{2}$ is $\|x\|_{2}$-Lipschitz.
- $\mathbb{E}\left\|P_{k} x\right\|_{2}^{2}=\|x\|_{2}^{2} \mathbb{E}\left\|P_{k} e_{1}\right\|_{2}^{2}=\frac{k}{n}\|x\|_{2}^{2}$.

Therefore,

$$
\mathbb{P}\left[\left|\left\|P_{k} x\right\|_{2}-\sqrt{\frac{k}{n}}\|x\|_{2}\right| \geq\left(\sqrt{\frac{k}{n}}\|x\|_{2}\right) t\right] \leq 2 e^{-c k t^{2}} .
$$

Convergence of the spectral measure: a no-work proof

Let $f: \mathbb{C} \rightarrow \mathbb{R}$ be 1-Lipschitz, and define $F(U)=\frac{1}{n} \sum_{i=1}^{n} f\left(\lambda_{i}(U)\right)$.

By invariance, if $U \in \mathbb{U}(n)$ is random, then

$$
\mathbb{E} F(U)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta
$$

By the Hoffman-Wielandt inequality, F is $\frac{1}{\sqrt{n}}$-Lipschitz.

Convergence of the spectral measure: a no-work proof

So for each fixed 1-Lipschitz $f: \mathbb{C} \rightarrow \mathbb{R}$,

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} f\left(\lambda_{i}(U)\right)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta\right| \geq C \frac{\sqrt{\log n}}{n}\right] \leq \frac{1}{n^{2}}
$$

By the Borel-Cantelli lemma, if $U_{n} \in \mathbb{U}(n)$ is random for each n, then with probability 1

$$
\left|\frac{1}{n} \sum_{i=1}^{n} f\left(\lambda_{i}\left(U_{n}\right)\right)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta\right|<C \frac{\sqrt{\log n}}{n}
$$

for all sufficiently large n.

Tensorizable concentration

Using logarithmic Sobolev inequalities (Bakry-Émery, Herbst) the Gromov-Milman result generalizes to:

Theorem

Suppose $U_{1}, \ldots, U_{m} \in \mathbb{G}$ are Haar-distributed in any of the connected groups and independent and $F: M_{n}(\mathbb{C})^{m} \rightarrow \mathbb{R}$ is 1-Lipschitz. Then

$$
\mathbb{P}\left[F\left(U_{1}, \ldots, U_{m}\right)-\mathbb{E} F\left(U_{1}, \ldots, U_{m}\right) \geq t\right] \leq e^{-c n t^{2}}
$$

The upper bound here is independent of m.

Another tool for next time: Dudley's inequality

A subgaussian random process is a collection of random variables $\left\{X_{u} \mid u \in T\right\}$ indexed by metric space T such that

$$
\mathbb{P}\left[\left|X_{u}-X_{v}\right| \geq t\right] \leq 2 e^{-t^{2} / d(u, v)^{2}} .
$$

Theorem (Dudley's entropy bound)

If $\left\{X_{u} \mid u \in T\right\}$ is a centered subgaussian random process then

$$
\mathbb{E} \sup _{u \in T} X_{u} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \varepsilon)} d \varepsilon,
$$

where $N(T, \varepsilon)$ is the smallest number of ε-balls needed to cover T.
$\log N(T, \varepsilon)$ is called the metric entropy.

Additional references

- Roman Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge, 2018.
- Keith Ball, "An elementary introduction to modern convex geometry", in Flavors of Geometry, Cambridge, 1997.
- Mikhael Gromov, "Isoperimetic inequalities in Riemannian manifolds", appendix to Asymptotic Theory of Finite Dimensional Normed Spaces by Vitali Milman and Gideon Schechtman, Springer, 1986.

