Random Matrices from the Classical Compact Groups: a Panorama Part III: Concentration of Measure

Mark Meckes

Case Western Reserve University

Oxford, 8 February 2021

Gaussian tails

The Gaussian distribution has extremely light tails:

$$\mathbb{P}[g \ge t] = \mathbb{P}[e^{\lambda g} \ge e^{\lambda t}]$$

$$\le e^{-\lambda t} \mathbb{E} e^{\lambda g}$$

$$= e^{-\lambda t + \lambda^2/2}$$

$$= e^{-t^2/2} \text{ for } \lambda = t.$$

Application: the norm of a Gaussian matrix

For
$$A \in M_n(\mathbb{R})$$
, $||A||_{op} = \sup_{x \in S^{n-1}} ||Ax||_2 = \sup_{x,y \in S^{n-1}} \langle Ax, y \rangle$.

For an $n \times n$ Gaussian random matrix G,

$$\langle Gx, y \rangle = \sum_{ij} g_{ij} x_j y_i \sim N(0, 1),$$

so $||G||_{op}$ is the supremum of a Gaussian stochastic process.

Application: the norm of a Gaussian matrix

 $\mathbb{N} \subseteq S^{n-1}$ is a (1/4)-net if: $\forall x \in S^{n-1} \exists y \in \mathbb{N}$ such that $\|x - y\|_2 \leq \frac{1}{4}$.

Lemma

$$\mathbb{P}[\|G\|_{op} \ge t] \le \mathbb{P}\Big[\sup_{x,y\in\mathcal{N}} \langle Gx,y\rangle \ge t/2\Big]$$
$$\le \sum_{x,y\in\mathcal{N}} \mathbb{P}[\langle Gx,y\rangle \ge t/2]$$
$$< 81^n e^{-t^2/8}$$

 $\rightarrow \mathbb{E} \|G\|_{op} \leq C\sqrt{n}$ and $\|G\|_{op} \leq C'\sqrt{n}$ with high probability.

Spherical tails

Recall the Poincaré limit: if $\theta \sim \text{unif}(S^{n-1})$ then $\sqrt{n\theta_1} \approx N(0, 1)$.

This phenomenon extends to the tails:

$$\mathbb{P}[\sqrt{n}\theta_1 \ge t] \le e^{-ct^2}$$
$$\mathbb{P}[\theta_1 \ge t] \le e^{-cnt^2}$$

Almost all the mass on S^{n-1} is within $\approx \frac{1}{\sqrt{n}}$ of an equator.

Isoperimetric inequalities

Classical: For $X \subseteq \mathbb{R}^n$, $\operatorname{vol}_{n-1}(\partial X) \ge \operatorname{vol}_{n-1}(\partial B)$, where *B* is a ball with $\operatorname{vol}_n(B) = \operatorname{vol}_n(X)$.

More refined version: Write $X_t = \{y \in \mathbb{R}^n | d(X, y) \le t\}$. Then $\operatorname{vol}_n(X_t) \ge \operatorname{vol}_n(B_t)$.

Round balloons are the easiest to inflate!

Spherical version: For $X \subseteq S^{n-1}$, write $X_t = \{y \in S^{n-1} | d(X, y) \le t\}.$

Then $\operatorname{vol}_{n-1}(X_t) \ge \operatorname{vol}_{n-1}(B_t)$, where $B \subseteq S^{n-1}$ is a spherical cap with $\operatorname{vol}_{n-1}(B) = \operatorname{vol}_{n-1}(X)$.

Concentration of measure on the sphere

If $\operatorname{vol}_{n-1}(X) \ge \frac{1}{2} \operatorname{vol}_{n-1}(S^{n-1})$, then $\mathbb{P}[\theta \in X_t] \ge \mathbb{P}[\theta \in B_t] \ge 1 - e^{-cnt^2}$.

Theorem (Lévy's lemma)

Suppose $F : S^{n-1} \to \mathbb{R}$ is 1-Lipschitz, and M is a median of $F(\theta)$. Then

 $\mathbb{P}[F(\theta) \geq M + t] \leq e^{-cnt^2}.$

Fluctuations of $F(\theta)$ are of size $O\left(\frac{1}{\sqrt{n}}\right)$.

Gaussian concentration

This fact and the Poincaré limit lead to:

Theorem (Borell, Sudakov–Tsirelson) Suppose $F : \mathbb{R}^n \to \mathbb{R}$ is 1-Lipschitz, and M is a median of F(g). Then $\mathbb{P}[F(g) \ge M + t] \le e^{-ct^2}$.

Under a concentration result like this, all notions of the average value are basically equivalent:

•
$$|\mathbb{E}F(g) - M| \leq C$$

•
$$\mathbb{E}F(g) \leq \sqrt{\mathbb{E}F(g)^2} \leq C\mathbb{E}F(g)$$
 if $F \geq 0$.

Quick application: concentration of norms

$$\mathbb{E} \|g\|_2^2 = n \rightsquigarrow \mathbb{P} \left[\left| \|g\|_2 - \sqrt{n} \right| \ge t \right] \le 2e^{-ct^2}.$$

So for $x \in \mathbb{R}^n$ fixed, $||Gx||_2 \approx \sqrt{n} ||x||_2$ with very high probability.

Similarly, $\|G\|_{op} \approx \sqrt{n}$ with O(1) fluctuations.

From spheres to manifolds

Theorem (Bishop–Gromov comparison theorem) Suppose M is an n-dimensional compact connected Riemannian manifold with Ricci curvature $\geq K > 0$.

Then the volume on M concentrates around balls at least as strongly as on an n-sphere of Ricci curvature K.

In particular, if $F : M \to \mathbb{R}$ is 1-Lipschitz and $X \sim unif(M)$, then

 $\mathbb{P}[F(X) - \mathbb{E}F(X) \ge t] \le 2e^{-cKt^2}.$

Concentration on the classical compact groups (finally)

The Ricci curvature on SO(n), SU(n), and Sp(n) is $\geq cn$.

Theorem (Gromov, Gromov–Milman) If $\mathbb{G} = \mathbb{SO}(n)$, $\mathbb{SO}^{-}(n)$, $\mathbb{SU}(n)$, or $\mathbb{Sp}(n)$ and $F : \mathbb{G} \to \mathbb{R}$ is 1-Lipschitz, then

$$\mathbb{P}[F(U) - \mathbb{E}F(U) \ge t] \le 2e^{-cnt^2}$$

But:

 $\mathbb{O}(n)$ isn't connected, and $\mathbb{U}(n)$ doesn't have a positive lower bound on curvature.

Concentration on the classical compact groups

Dealing with $\mathbb{O}(n)$:

- Are you sure don't actually just want to work with SO(n)?
- Condition on det *U*: equal probability of being in SO(n) and $SO^{-}(n)$.

Dealing with $\mathbb{U}(n)$:

- Let V ∈ SU(n) be Haar-distributed and X ~ unif [0, π√2/√n] be independent.
- Then $U = e^{\sqrt{2}iX/\sqrt{n}}V \in \mathbb{U}(n)$ is Haar-distributed.
- The theorem on the last slide also applies when $\mathbb{G} = \mathbb{U}(n)$.

Quick application: concentration of norms again

Let $P_k \in M_{n,k}(\mathbb{R})$ be the first *k* columns of a random $U \in \mathbb{O}(n)$ (equivalently, $U \in \mathbb{SO}(n)$).

 P_k is essentially the projection onto a random $E \in G_{n,k}$.

Easy computations:

- For fixed $x \in \mathbb{R}^n$, $F(U) = \|P_k x\|_2$ is $\|x\|_2$ -Lipschitz.
- $\mathbb{E} \|P_k x\|_2^2 = \|x\|_2^2 \mathbb{E} \|P_k e_1\|_2^2 = \frac{k}{n} \|x\|_2^2.$

Therefore,

$$\mathbb{P}\left[\left|\|\boldsymbol{P}_{k}\boldsymbol{x}\|_{2}-\sqrt{\frac{k}{n}}\,\|\boldsymbol{x}\|_{2}\right|\geq\left(\sqrt{\frac{k}{n}}\,\|\boldsymbol{x}\|_{2}\right)\,t\right]\leq2\boldsymbol{e}^{-\boldsymbol{c}\boldsymbol{k}t^{2}}$$

Convergence of the spectral measure: a no-work proof

Let
$$f : \mathbb{C} \to \mathbb{R}$$
 be 1-Lipschitz, and define $F(U) = \frac{1}{n} \sum_{i=1}^{n} f(\lambda_i(U))$.

By invariance, if $U \in \mathbb{U}(n)$ is random, then

$$\mathbb{E}F(U) = rac{1}{2\pi}\int_0^{2\pi} f(e^{i\theta}) d\theta.$$

By the Hoffman–Wielandt inequality, F is $\frac{1}{\sqrt{n}}$ -Lipschitz.

Convergence of the spectral measure: a no-work proof

So for each fixed 1-Lipschitz $f : \mathbb{C} \to \mathbb{R}$,

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^n f(\lambda_i(U)) - \frac{1}{2\pi}\int_0^{2\pi} f(e^{i\theta}) \ d\theta\right| \ge C\frac{\sqrt{\log n}}{n}\right] \le \frac{1}{n^2}.$$

By the Borel–Cantelli lemma, if $U_n \in \mathbb{U}(n)$ is random for each n, then with probability 1

$$\left|\frac{1}{n}\sum_{i=1}^n f(\lambda_i(U_n)) - \frac{1}{2\pi}\int_0^{2\pi} f(e^{i\theta}) \ d\theta\right| < C\frac{\sqrt{\log n}}{n}$$

for all sufficiently large n.

Tensorizable concentration

Using logarithmic Sobolev inequalities (Bakry–Émery, Herbst) the Gromov–Milman result generalizes to:

Theorem

Suppose $U_1, \ldots, U_m \in \mathbb{G}$ are Haar-distributed in any of the connected groups and independent and $F : M_n(\mathbb{C})^m \to \mathbb{R}$ is 1-Lipschitz. Then

 $\mathbb{P}[F(U_1,\ldots,U_m)-\mathbb{E}F(U_1,\ldots,U_m)\geq t]\leq e^{-cnt^2}.$

The upper bound here is independent of *m*.

Another tool for next time: Dudley's inequality

A subgaussian random process is a collection of random variables $\{X_u | u \in T\}$ indexed by metric space T such that

 $\mathbb{P}[|X_u - X_v| \ge t] \le 2e^{-t^2/d(u,v)^2}.$

Theorem (Dudley's entropy bound) If $\{X_u | u \in T\}$ is a centered subgaussian random process then $\mathbb{E} \sup_{u \in T} X_u \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \ d\varepsilon,$ where $N(T, \varepsilon)$ is the smallest number of ε -balls needed to cover T.

 $\log N(T,\varepsilon)$ is called the <u>metric entropy</u>.

Additional references

 Roman Vershynin, *High-Dimensional Probability: An* Introduction with Applications in Data Science, Cambridge, 2018.

• Keith Ball, "An elementary introduction to modern convex geometry", in *Flavors of Geometry*, Cambridge, 1997.

 Mikhael Gromov, "Isoperimetic inequalities in Riemannian manifolds", appendix to Asymptotic Theory of Finite Dimensional Normed Spaces by Vitali Milman and Gideon Schechtman, Springer, 1986.