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Today’s first slogan

Not-too-low-rank projections act almost like isometries.



Concentration of a norm

Let Pk ∈ Mn,k (R) be the first k columns of a random U ∈ O(n).

Recall from last time:
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Concentration of many norms

If x1, . . . , xm ∈ Sn−1, then with probability at least

1− 2me−ckε2

we have
1− ε ≤

‖Pkxi‖2√
k
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≤ 1 + ε

for every i .



High-dimensional intuition
This phenomenon is surprising to our two/three-dimensional
brains:

but makes more sense from a properly high-dimensional
perspective.



The Johnson–Lindenstrauss lemma

Applying the argument to the
(m

2

)
points xi − xj , we get:

Theorem (∼ Johnson–Lindenstrauss)

If k ≥ C
ε2 logm, then with probability at least

1− 2e−ckε2

we have

1− ε ≤
∥∥Pk (xi − xj)

∥∥
2√

k
n

∥∥(xi − xj)
∥∥

2

≤ 1 + ε

for every i and j.



Dimension reduction

The punchline:

Projecting {xi}mi=1 ⊆ Rn onto a ≈ logm-dimensional subspace
barely changes the distances between the points. (Probably.)

Why you should care:

Algorithms that depend only on distances between
n-dimensional data points can be run on the
≈ logm-dimensional projections instead, lifting the curse of
dimensionality!



Restricted Isometry Property

Combining the same ideas with a discretization argument
yields:

Theorem (∼ Candès–Tao)
If k ≥ Cs log

( cn
s

)
, then with probability at least

1− 2e−ck

we have
0.9 ≤
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k
n ‖x‖2

≤ 1.1

for every x ∈ Rn with ≤ s nonzero components.



Sparse signal recovery

Corollary

If k ≥ Cs log
( cn

s

)
, then with probability at least 1− 2e−ck the

following holds:
If x ∈ Rn has ≤ s nonzero components, then

x = argmin
x ′:Pk x ′=Pk x

∥∥x ′
∥∥

1 .

Why you should care:

Under the assumption that x is sparse, it can (probably!) be
recovered from Pkx via a convex program.



Today’s second slogan

Not-too-high-dimensional sections/projections are almost
all alike.



The Dvoretzky–Milman theorem

Let ‖·‖ be an arbitrary norm on Rn.

For normalization, assume ‖·‖2 ≤ ‖·‖.

M := E ‖θ‖ for θ ∼ unif(Sn−1).

Theorem (V. Milman, Gordon)

Suppose k ≤ cε2M2n and let E ∈ Gn,k be random. Then with
probability at least 1− 2e−ck ,

1− ε ≤ ‖x‖
M ‖x‖2

≤ 1 + ε

for every x ∈ E.



The Dvoretzky–Milman theorem
The punchline:

On a random ≈ ε2M2n-dimensional subspace, ‖·‖ is basically
the same as ‖·‖2.

Or:

A random ≈ ε2M2n-dimensional section of a symmetric convex
body is basically a Euclidean ball.

Random 2-dimensional subspaces of `100
1 and `1000000

∞ .

A version for projections follows by duality.



Dvoretzky’s theorem

The Dvoretzky–Rogers lemma roughly says that we can

arrange to have M ≤ c
√

log n
n .

Theorem (Dvoretzky)
If B is an infinite-dimensional Banach space, then for every k, B
has k-dimensional subspaces which are arbitrarily close to
being Hilbert spaces.



Sketch of proof of Dvoretzky–Milman

Fix F ∈ Gn,k . Then E ∼ U(F ).

P [|‖Ux‖ − ‖Uy‖| ≥ t ] ≤ 2e−cnt2/‖x−y‖2
2

Thus {‖Ux‖ −M} is a subgaussian random process indexed by
x ∈ Sn−1 ∩ F with d(x , y) = n−1/2 ‖x − y‖2.

Dudley’s entropy bound⇒

E sup
x∈Sn−1∩F

|‖Ux‖ −M| ≤ C

√
k
n
.

So for a typical E , ‖y‖ ≈ M for every y ∈ Sn−1 ∩ E .



Projections of measures
Observation (Sudakov, Diaconis–Freedman, ...):

If you project a high-dimensional probability measure /
data set onto one or two dimensions, the result nearly
always looks Gaussian.

Figure from Buja, Cook, and Swayne “Interactive High-dimensional Data Visualization”, 1996.



Measure-theoretic Dvoretzky theorem

The bounded Lipschitz distance between X and Y is

dBL(X ,Y ) = sup
‖ψ‖L,‖ψ‖∞≤1

|Eψ(X )− Eψ(Y )|.

Theorem (E. Meckes)
Suppose that X ∈ Rn satisfies

EX = 0, EXiXj = δij , E
∣∣∣‖X‖22 − n

∣∣∣ ≤ C
n

(log n)1/3 ,

and that k ≤ (2− ε) log n
log log n .

Then for almost all E ∈ Gn,k , dBL(πE(X ),ZE) is small, where ZE
is a standard Gaussian vector in E.



Measure-theoretic Dvoretzky theorem

If k ≥ (2 + ε) log n
log log n , there is an X such that dBL(πE(X ),ZE) ≥ c

for every E ∈ Gn,k .

Theorem (Klartag, ...)
If X ∈ Rn satisfies EX = 0, EXiXj = δij , and is log-concave, and
k ≤ cnα, then dTV (πE(X ),ZE) is small for almost all E ∈ Gn,k .



Outline of proof of measure-theoretic Dvoretzky

First step — annealed version:

Let µE be the distribution of πE(X ) ∈ Rk .
Then dBL(EµE ,N(0, Ik )) is small (∼ Poincaré limit).

Second step — average distance to the average:

EdBL(µE ,EµE) = E sup
ψ
|ψ(πE(X ))− Eψ(πE(X ))| is the expected

supremum of a centered subgaussian random process
(concentration on SO(n): E = U(F )).
We can bound it using Dudley’s entropy bound.

Third step — from annealed to quenched:
dBL(µE , µ) is a Lipschitz function of U, and hence is usually not
much bigger than its mean.



Additional reference

Roman Vershynin, High-Dimensional Probability: An
Introduction with Applications in Data Science, Cambridge,
2018.


