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Quantum mechanics in a hurry
The state of a system is represented by a unit vector ψ in a
(finite- or infinite-dimensional) complex Hilbert space H.

Measurements correspond to an ONB {uj} of H:
j indexes the possible outcomes.∣∣〈ψ,uj

〉∣∣2 is the probability of the j th outcome.

Measurements can’t distinguish ψ from eiθψ, so really a state is
an element of projective space.

Equivalently, use ρ = ψψ∗ ∈ B(H), so that∣∣〈ψ,uj
〉∣∣2 =

〈
ρuj ,uj

〉
.

Time evolution corresponds to a unitary map U ∈ B(H):

ψ 7→ U(ψ), ρ 7→ UρU∗.



Quantum mechanics in a hurry

A compound system is modeled via a tensor product H = S⊗E.

What if we only measure what’s happening in S?

Say {uj} and {vk} are ONBs of S and E.

The total probability of the j th outcome of the S measurement is∑
k

∣∣〈ψ,uj ⊗ vk
〉∣∣2 =

∑
k

〈
ρ(uj ⊗ vk ),uj ⊗ vk

〉
=
〈
(TrE ρ)uj ,uj

〉
,

where TrE = I ⊗ Tr : B(S)⊗ B(E)→ B(S) is the partial trace.

TrE ρ is a positive semidefinite operator with trace 1 (mixed
state or density matrix), called a quantum marginal of ρ.



Evolution of mixed states

Suppose ρ ∈ B(S⊗ E) evolves according to U ∈ B(S⊗ E).

The quantum marginal σ = TrE ρ evolves as

σ 7→ TrE(UρU∗).

Every mixed state σ ∈ B(S) can be written as σ = TrE(σ ⊗ ε) for
some E and density matrix ε ∈ B(E), so

σ 7→ TrE(U(σ ⊗ ε)U∗)

for U acting on S⊗ E is the most general type of evolution for
mixed states.



Quantum channels

Proposition
The following are equivalent for a linear map
Φ : Mn(C)→ Mn(C):

1 (Stinespring representation) Φ(ρ) = TrCk [U(ρ⊗ ε)U∗] for
some k, density matrix ε ∈ Mk (C), and U ∈ U(nk).

2 (Kraus decomposition) Φ(ρ) =
∑k

i=1 ViρV ∗i for some
Vi ∈ Mn(C) with

∑
i V ∗i Vi = In.

3 Φ is completely positive and trace-preserving.

Such a map Φ is called a quantum channel.

We can always take k ≤ n2 and ε = E11.



Random matrices in QIT

Quantum information theory deals with various properties of
(the sets of) density matrices and quantum channels.

Random matrices arise in QIT as
random density matrices,
random quantum channels (or building blocks of them),
outputs of random quantum channels.

The sets of density matrices or of quantum channels do not
possess canonical probability measures.

But there are many natural probability measures we can
choose from.

I’ll discuss a few results about random quantum channels built
from Haar-distributed unitary matrices.



Almost randomizing channels

ρ∗ =
1
n

In is the maximally mixed state on Cn.

A channel Φ is ε-randomizing if

‖Φ(ρ)− ρ∗‖op ≤
ε

n
.

The completely randomizing channel R(ρ) = ρ∗ requires n2

terms in its Kraus decomposition.



Almost randomizing channels via random Kraus
decomposition

Theorem (Hayden–Leung–Shor–Winter, Aubrun)
Let

Φ(ρ) =
1
k

k∑
i=1

UiρU∗i ,

where U1, . . . ,Uk ∈ U(n) are independent and Haar-distributed.
If 0 < ε < 1 and k ≥ Cε−2n then Φ is ε-randomizing with high
probability.

Idea of proof:
‖A‖op = sup

σ
|Tr(Aσ)|, where the sup is over density

matrices.

For each ρ, σ ∈ Mn(C), Tr(Φ(ρ)σ) is tightly concentrated.

Discretization of the set of density matrices.



Random Stinespring decomposition

Fix n and k . For U ∈ U(nk) define the channel

ΦU(ρ) = TrCk [U(ρ⊗ E11)U∗]

for E11 ∈ Mk (C).

Given U,V ∈ U(nk), ΦU ⊗ ΦV is a quantum channel on
Cn ⊗ Cn ∼= Cn2

.

If U and V are random and ρ ∈ Mn2(C) is fixed, then

ΦU ⊗ ΦV (ρ)

is an n2 × n2 random matrix.

We consider a Bell state β = ψψ∗, where ψ =
1√
n

n∑
i=1

ei ⊗ ei is

maximally entangled, and let σ = ΦU ⊗ ΦV (β).



Outputs from Bell states

Theorem (Collins–Nechita)
Suppose U,V ∈ U(nk) are independent. Then

1 For fixed n, σ k→∞−−−→ ρ∗ = 1
n2 In2 .

2 For fixed k, essentially µσ
n→∞−−−→ k2

n2 δ1/k2 +
(

1− k2

n2

)
δ0.

Suppose U ∈ U(nk) is random and V = U. Then

1 For fixed n, σ k→∞−−−→ ρ∗ = 1
n2 In2 .

2 For fixed k, essentially

µσ
n→∞−−−→ 1

n2 δ 1
k +

1
k2−

1
k3

+
k2 − 1

n2 δ 1
k2−

1
k3

+

(
1− k2

n2

)
δ0.

Idea of proof: Method of moments, using Weingarten calculus.



Entropy in QIT
The von Neumann entropy of a density matrix ρ is

S(ρ) = −Tr(ρ log ρ) = −
∑

i

λi(ρ) log λi(ρ).

The entropy of entanglement of ψ ∈ Cn ⊗ Cm is

E(ψ) = S (TrCm (ψψ∗)) = S (TrCn (ψψ∗)).

We can generalize a quantum channel as a completely positive
trace-preserving linear map Φ : Mn(C)→ Mm(C).

The minimum output entropy of a channel Φ is

Smin(Φ) = min
ρ

S(Φ(ρ)),

where the min is over density matrices ρ.



Additivity problem

If Φ and Ψ are quantum channels then Φ⊗Ψ is a channel and

Smin(Φ⊗Ψ) ≤ Smin(Φ) + Smin(Ψ).

A major open problem in QIT for some time was whether

Smin(Φ⊗Ψ) = Smin(Φ) + Smin(Ψ).

Theorem (Hastings)
For sufficiently large m and n, there exist quantum channels
Φ,Ψ : Mn(C)→ Mm(C) such that

Smin(Φ⊗Ψ) < Smin(Φ) + Smin(Ψ).



The counterexample

For U ∈ U(mk) random, let

V : Cn → Cm ⊗ Ck ∼= Cmk

be given by the first n columns of U. Then

ΦU(ρ) = TrCk (VρV ∗)

is a random quantum channel ΦU : Mn(C)→ Mm(C).

Proposition

If k = m2 and n = cm2, then for sufficiently large m,

Smin
(

ΦU ⊗ ΦU
)
< Smin

(
ΦU
)

+ Smin
(

ΦU
)

with high probability.



The counterexample

Ideas in the proof:

Smin
(

ΦU ⊗ ΦU
)

is fairly small because ΦU ⊗ΦU(β) has a large
eigenvalue.

Smin
(

ΦU
)

= Smin
(

ΦU
)

= min
ψ⊆rangeV

E(ψ) is fairly large with

high probability by measure concentration.

The latter can be seen as a manifestation of (a generalization
of) Dvoretzky’s theorem (Aubrun–Szarek–Werner).

Sharper results can be obtained using other RMT techniques,
including free probability (Belinschi–Collins–Nechita).



Thank you!


