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Chapter 1

Preliminaries in Real and
Functional Analysis

1.1 Lebesgue Integrable functions.

Let (X,µ) a measure space, µ being a σ-finite positive measure defined on a
σ-algebra. Most of the time,X = Rd with dµ = dm, the Lebesgue measure
(more generally a locally compact topological space, σ-compact, and dµ a
Borel measure on X). Also it is to keep in mind the discrete setting, X = Zd

with counting measure, and the periodic setting X = Rd/Zd. Through the
map

(x1, x2, . . . , xd) 7→ (e2πix1 , e2πix2 , . . . , e2πixd),

we identify Rd/Zd with Td, the d-dimensional torus, where T = {z ∈ C :
|z| = 1}.

Using approximation by simple functions (linear combinations of indi-
cator functions of measurable sets), every measurable function defined on
X taking values in [0,+∞] has a well defined integral

∫
X f dµ, finite or

+∞. For p > 0, the space Lp(X) consists of the measurable complex-valued
functions such that

‖f‖p = (

∫
X
|f(x)|p dm(x))

1
p < +∞.

It is thus a question of the size |f |. Functions in L1(X) are called integrable.
Functions in Lp are finite a.e. We identify functions which are equal a.e.

The space L∞(X) consists of complex-valued functions which are bounded
a.e., ‖f‖∞ being the least essential supnorm.

When X is a topological space, Lploc(X) consists of functions whose re-
strictions to compact sets Y belong to Lp(Y ).
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1.2 Convergence theorems.

Monotone convergence theorem: if fn are positive and a.e. non-decreasing,
and f(x) = limn fn(x) ≤ +∞, then

∫
X fdµ = limn

∫
X fndµ. For general se-

quences,
∫
X lim inf fndµ ≤ lim inf

∫
X fndµ. As a consequence,

∫
X(
∑

n gn)dµ =∑
n

∫
X gndµ for arbitrary positive functions.

Dominated convergence theorem: if f(x) = limn fn(x) a.e. x , |fn(x)| ≤ g(x)
a.e. x with

∫
X gdµ < +∞, then f is integrable and

∫
X fdµ = limn

∫
X fndµ.

As a consequence, if
∑

n

∫
X |gn|dµ < +∞, the series

∑
n gn(x) absolutely

converges a.e. and
∫
X(
∑

n gn(x))dµ =
∑

n

∫
X gndµ.

1.3 Fubini’s theorem

If (X,µ), (Y, ν) are measure spaces there is a natural estructure of measure
space in X×Y with the product measure µ× ν. In case X = Rd,Y = Rm,
of course the product measure of Lebesgue measures is Lebesgue measure.

Fubini’s theorem has two parts: a) for a positive measurable function,
the double integral

∫ ∫
X×Y f(x, y)dµ(x)dν(y) and the two iterated integrals∫

X(
∫
Y f(x, y)dν(y))dµ(x),

∫
Y (
∫
X f(x, y)dµ(x))dν(y) are equal, finite or not.

b) If f(x, y) is integrable in X × Y , then both iterated integrals make sense
and are finite ( meaning that for a.e. x, f(x, y) is integrable in Y and the
function so defined a.e. in X is integrable in X, and the other way around)
and equal to the double integral.

Normally we use both parts in the following form: if one of the two
iterated integrals of |f(x, y)| is finite, then all three integrals are finite and
equal. In particular the iterated integrals are a.e. absolutely convergent.

1.4 Holder’s and Minkowski’s inequalities

Holder’s inequality reads as follows: If 1 ≤ p, q, r ≤ +∞, 1
p + 1

q = 1
r , and

f ∈ Lp, g ∈ Lq, then fg ∈ Lr and ‖fg‖r ≤ ‖f‖p‖g‖q. For p = q = 2 this is
known as Cauchy-Schwartz inequality.

Recall that this depends on Young’s inequality and that there is a version
with n indexes, i.e., if 1

p1
+ 1

p2
+ · · ·+ 1

pn
= 1

r , then

‖f1f2 . . . fn‖r ≤ ‖f1‖p1 . . . ‖fn‖pn .

In the opposite direction, if f is measurable and

sup{
∫
X
|fg|dµ : ‖g‖p′ ≤ 1} < +∞,

p′ being the conjugate exponent of p, 1
p + 1

p′ = 1, then f ∈ Lp and
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‖f‖p = sup{
∣∣∣∣∫
X
fgdµ

∣∣∣∣ : ‖g‖p′ ≤ 1}.

We call this the reverse Hlder inequality. In many occasions we already
know that f ∈ Lp and use this to estimate its norm.

From Holder’s one obtains the classical Minkowski or triangle inequality:
‖f + g‖p ≤ ‖f‖p + ‖g‖p, 1 ≤ p ≤ +∞, so ‖‖p is a norm if p ≥ 1. For p < 1,
since |a+ b|p ≤ |a|p + |b|p, the quantity ‖ · ‖pp is subadditive:

‖
∑
n

fn‖pp ≤
∑
n

‖fn‖pp.

Of course this goes over to finite sums and to infinite sums as well, in the
form of the so-called continuous Minkowski inequality : if we have an infinite
sum of functions, say

G(y) =

∫
X
F (x, y)dµ(x), G =

∫
X
Fxdµ(x), |G| ≤

∫
X
|Fx|dµ(x),

then

‖G‖p ≤
∫
X
‖Fy‖pdµ(x), 1 ≤ p

that is

(∫
Y

(∫
X
|F (x, y)|dµ(x)

)p
dν(y)

) 1
p

≤
∫
X

(∫
Y
|F (x, y)|pdν(y)

) 1
p

dµ(x).

One can prove this by approximating integrals by finite sums. An al-
ternative proof is as follows. For p = 1 it is just Fubini’s theorem and for
p = +∞ is trivial. To prove it for 1 < p < +∞ we may assume that F ≥ 0.
We have, using Fubini and Holder

∫
Y
G(y)pdν(y) =

∫
Y
G(y)p−1G(y)dν(y) =

∫
Y
G(y)p−1(

∫
X
F (x, y)dµ(x))dν(y) =

=

∫
X

(

∫
Y
F (x, y)G(y)p−1dν(y))dµ(x) ≤

≤
∫
X

(

∫
Y
F (x, y)pdν(y))

1
p (

∫
Y
G(y)pdν(y))

1
p′ dµ(x) =

= (

∫
Y
G(y)pdν(y))

1
p′

∫
X

(

∫
Y
F (x, y)pdν(y))

1
pdµ(x).
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The same is true replacing the L1- norm in x above by an Lr-norm with
1 ≤ r ≤ p:

(∫
Y

(∫
X
|F (x, y)|rdµ(x)

) p
r

dν(y)

) 1
p

≤

(∫
X

(∫
Y
|F (x, y)|pdν(y)

) r
p

dµ(x)

) 1
r

.

In fact this follows from the above applied to |F |r with p replaced by p
r .

1.5 The Lp(X) spaces as Banach spaces

The Lp(X)-spaces, 1 ≤ p ≤ +∞ equipped with the Lp norm are complete
spaces, meaning that every Cauchy sequence, i.e. ‖fn− fm‖ → 0 as n,m→
+∞, is convergent to some f ∈ Lp(X), that is ‖fn − f‖ → 0 as n → +∞.
If p < +∞, convergence of fn to f in Lp implies pointwise a.e. convergence
of a partial subsequence; if p = +∞, we have of course uniform convergence
a.e. For p = 2, Lp(X) is a Hilbert space with the scalar product defined by

〈f, g〉 =

∫
X
f(x)g(x)dµ(x).

If X is an open set U in Rd, the space Cc(U) of continuous compactly
supported functions is dense in Lp(U), 1 ≤ p < +∞, meaning that an
arbitrary f ∈ Lp(U) can be approximated by a sequence gn ∈ Cc(U) :
‖f − gn‖p → 0 as n → +∞. In case p = +∞ the space in which Cc(U)
is dense is the space C0(U) of continuous functions vanishing at infinity,
meaning that for each ε there is a compact set in U out of which |f | < ε.
In the periodic setting C(Tn) is dense in the Lp(Tn) for 1 ≤ p < +∞ and
is already complete with the sup-norm.

Recall that the linear maps T : E → F between linear spaces that are
continuous are the bounded ones, that is, those for which ‖T (f)‖F ≤ C‖f‖E
for some constant C > 0, the infimum of such C being the norm of T . The
density of a subspace G of E is useful to define linear continuous maps
T : E → F between Banach spaces; namely every linear continuous maps
T : G → F extends uniquely to E. This is so because T maps Cauchy
sequences to Cauchy sequences, hence if f is approximated by gn ∈ G, Tf
can be defined by the limit of the Cauchy sequence T (gn).

We define the translation operator τx, x ∈ Rd acting on functions f
defined on Rd by (τxf)(y) = f(y − x). Obviously ‖τxf‖p = ‖f‖p. For fixed
f ∈ Lp(Rd),1 ≤ p < +∞, the map x → τxf is continuous. It is enough
proving continuity at zero. This is clear for g ∈ Cc(Rd) because τxg → g
uniformly as x → 0; since the τxg have a common compact support, one
has then ‖τxg − g‖p → 0 as well. Once we have established this for g in the
dense space Cc(R

d) the general case follows through

‖τxf − f‖ ≤ ‖τxf − τxg‖+ ‖τxg − g‖+ ‖g − f‖ = 2‖f − g‖+ ‖τxg − g‖.
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In the periodic situation, translation becomes rotation, of course.
The reverse Hlder inequality can be used to prove that the dual space

of Lp(X), 1 ≤ p < +∞ is Lp
′
(X), meaning that the general form of a

continuous linear form ω : Lp(X)→ C is of the form

f 7→
∫
f
g dµ,

for some g ∈ Lp′(X).

1.6 Riesz representation theorems

There are several versions of the Riesz representation theorem, the contents
of each of them being the identification of the dual of some space of contin-
uous functions.

Let X be a locally compact topological space which is σ-compact, such
as Rd or an open set. A Radon measure µ on X is a positive Borel measure
on X which is locally finite and both inner and outer regular. Exactly as
with Lebesgue measure, Cc(X) is dense in Lp(X,µ) for 1 ≤ p < +∞, while
its completion with the sup-norm is the space C0(X) of continuous functions
vanishing at infinity.

The most simple example of Radon measure is the one having mass one
at x and zero elsewhere. ∫

X
fdδx = f(x).

If µ is a Radon measure on X then

L(f) =

∫
X
fdµ

is a linear functional on Cc(X) which is positive, that is L(f) ≥ 0 for f ≥ 0.
Conversely, the first Riesz representation states that every positive linear
functional is of this type; more precisely, given L there is a unique Radon
measure such that L is given as above.

A first consequence of this result is the description of the dual of Cc(X)
equipped with the sup-norm, or what amounts to the same, the description
of the dual of C(X), the space of complex-valued continuous functions on
a compact topological space, equipped with the sup-norm. The Riesz rep-
resentation theorem establishes that there is a one-to-one correspondence
between the dual space of C(X) and the regular complex Borel measures
µ on X. Namely, the general form of a continuous linear functional L on
C(X) is the one defined by such a measure through

L(f) =

∫
X
fdµ,
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and ‖L‖ = ‖µ‖, the total variation mass of µ, which is always finite for
complex measures. Since dµ = hd|µ| for some h with |h| = 1, we may think
that ∫

X
fdµ =

∫
X
fhd|µ|,

is the definition of the integral with respect to dµ.
Sometimes Cc(X) is viewed as equipped with the so called inductive

topology (convergence of a sequence fn → f means that all fn have their
support within a fixed compact set and fn converges uniformly there), for
which it is complete. The Riesz representation theorem can be used to show
that the general form of a continuous linear functional L in this case is

L(f) =

∫
X
fhdρ, f ∈ Cc(X),

where dρ is a Radon measure on X and h ∈ L1
loc(X, ρ).

Along the same lines, the general form of a continuous linear functional
on the space C(U) of all continuous functions in an open set with the topol-
ogy of uniform convergence on compacts subsets of U is

L(f) =

∫
U
fdµ,

where dµ is a regular complex measure with compact support.
The statement that Lp

′
(X) is the dual space of Lp(X), 1 ≤ p < +∞ is

also known as a Riesz-type representation theorem.
In all these cases an important result is the Banach-Alouglu theorem:

if one has a uniformly bounded family fε of Lp
′
(X) functions, then there

exists a subsequence εn such that fεn has a weak limit f ∈ Lp′ , that is

lim
n

∫
X
g(x)fεn(x) dµ(x) =

∫
X
g(x)f(x)dµ(x), g ∈ Lp(X).

Similarly, if µε is a family of complex valued measures with uniformly
bounded mass, then there exists a complex valued (finite) measure µ and a
sequence εn → 0 such that

lim
n

∫
X
g(x)dµεn(x) =

∫
X
g(x)dµ(x), g ∈ C0(X).

The Banach-Alaouglu theorem is a powerful existence theorem.

1.7 Operators between the Lp spaces

We will be dealing with linear maps among the Lp(X), that is, operators
T that map functions f(x) to functions T (f)(y) linearly. In case of fi-
nite dimensional dimensional signals, that is, x = 1, 2, . . . , n, f is a vector
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(u1, u2, . . . , un) in Cn, and Tf is a vector (v1, . . . , vm) in Cm , T is given by
an m× n matrix,

vi =
n∑
j=1

aijuj , i = 1, . . . ,m.

1.7.1 Sequence spaces

Similarly, a linear operator mapping infinite sequences u = (uj) to infinite
sequences Tu = v = (vi) is, loosely speaking, given by a doubly infinite
matrix aij ,

vi =
∞∑
j=1

aijuj .

Of course here we should take care of convergence questions. Let us give us
a precise example. Suppose that T : lp(Z)→ lq(Z) is linear and continuous,
that is, ‖Tu‖q ≤ C‖u‖p for some constant C and all sequences u ∈ lp(Z).
Denote by δj the sequence that has 1 in position j and zero elsewhere. Since∑

j |uj |p is finite, the representation u =
∑

j ujδj is convergent in lp(Z)
and so Tu =

∑
j ujT (δj), with convergence in lq(Z). This means that T

is determined by the T (δj). If T (δj) = (aij), the convergence in lq(Z) of
Tu =

∑
j ujT (δj) implies pointwise convergence and so we must have

vi =
∑
j

aijuj , i ∈ Z.

This shows that T must be given by a matrix (aij) satisfying

sup
j

(
∑
i

|aij |q)
1
q = C < +∞, (1.1)

(that is the columns are uniformly in lq )and

|vi| = |
+∞∑
j=−∞

aijuj | ≤ ‖Tu‖q ≤M‖u‖p.

The later implies that all files must be uniformly in lp
′
:

sup
i

(
∑
j

|aij |p
′
)
1
p

′
≤M < +∞. (1.2)

This does not mean that a matrix (aij) satisfying conditions (1.1) and
(1.2) defines a linear continuous map T from lp(Z) to lq(Z); it is in general
a difficult problem to characterize exactly those matrices. In case p = 1,
however, these two necessary conditions are also sufficient. Observe first
that condition (2) reads in this case supj |aij | ≤ ‖T‖ and follows from (1).
Since
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(
∑
i

|vi|q)
1
q ≤ (

∑
i

(
∑
j

|aij ||uj |)q)
1
q ,

the continuous Minkowski inequality gives that this is bounded by∑
j

(
∑
i

|aij |q|uj |q)
1
q =

∑
j

|uj |(
∑
i

|aij |q)
1
q ≤ C‖u‖1.

In an analogous way, the case q = +∞ can be described as well. Here
condition (1) reads supi,j |aij | ≤ C and follows from condition (2), and since
by Holder’s inequality

|vi| ≤
∑
j

|aij ||uj | ≤ (
∑
j

|aij |p
′
)
1
p

′
‖u‖p ≤M‖u‖p,

we are done.

1.7.2 Lp(X)-spaces

Thus, continuous linear maps between the lp(Z) spaces are given by infinite
matrices. In an analogous way, an operator from Lp(X) to Lq(Y ) for general
X,Y is also given in loose terms by an infinite matrix or kernel K(x, y) in
the sense that

T (f)(y) =

∫
X
K(x, y)f(x)dµ(x), y ∈ Y.

The informal and non-rigorous argument is as before. If δx denotes the
”function equal to 1 at x and zero elsewhere”, we may think that

f =

∫
X
f(x)δxdµ(x)

and so by linearity and continuty Tf =
∫
X f(x)(Tδx)dµ(x). If T (δx)(y) =

Kx(y) = K(x, y), we have

Tf(y) =

∫
X
f(x)K(x, y)dµ(x).

Generically speaking, they are called integral operators. We will see later
rigorous arguments along this lines, but by now it should be clear that to do
that one needs to enlarge the notion of function; for instance, the identity
operator should correspond to the ”function” δ(x, y) which equals 1 when
x = y and 0 otherwise.

Very often we will be considering the following situation: a dense sub-
space DX of  Lp(X) (usually the space Cc(Rd) of continuous with compact
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suport when X = Rd or the space C∞c (Rd) of compactly supported in-
finitely differentiable functions) and an integral operator

Tf(y) =

∫
X
K(x, y)f(x)dµ(x),

that makes sense for f ∈ DX and a.e. y (or all y). If we prove that
‖Tf‖q ≤ C‖f‖p, and 1 ≤ p < +∞, then T extends to a continuous linear
mapping defined on the whole of Lp(X). In some cases, as e.g. with the
Fourier transform in L2 or with CZO integrals, it is hard to prove that the
extension is given a.e. by the same expression.

Duality is a very important tool to deal with inequalities. In the above
situation, usually there is a similar space DY in Lq

′
(Y ) such that

(Tf, g) =

∫
X

∫
Y
K(x, y)f(x)g(y)dµ(x)dν(y)

is well defined for f ∈ DX , g ∈ DY and one can use Fubini to write (Tf, g) =
(f, T ∗g) with

T ∗(g)(x) =

∫
Y
K(x, y)g(y)dν(y).

This is the dual map. If 1 ≤ p < +∞, then by the reverse Holder inequality,
‖Tf‖q ≤ C‖f‖p implies ‖T ∗g‖p′ ≤ C‖g‖q′ , and so both are equivalent if
1 < p < +∞. Note however that in case p = +∞ if we know a priori that
T ∗g ∈ L1(X) it is still true that ‖Tf‖q ≤ C‖f‖∞ implies ‖T ∗g‖1 ≤ C‖g‖q′ ,

1.7.3 Integral operators depending only on size

To finish this section we consider conditions on the kernel K that ensure that
T is bounded from Lp(X) to Lq(Y ). We emphasize that all these criteria
depend just on the size |K|, that is to say they are in fact properties of
the operator T|K| defined by |K|, and consequence of the trivial estimate
|TK(f)(x)| ≤ T|K|(|f |)(x). Along the same lines, all these criteria provide
operators for which

Tf(y) =

∫
Y
K(x, y)f(x)dµ(x)

converges absolutely for a.e. y. In later chapters we will encounters much
subtle situations in which boundedness of T depends on cancellation prop-
erties of K and pointwise convergence becomes a delicate issue.

First, as with sequence spaces, bounded mappings from L1(X) to  Lq(Y )
can be characterized by the condition

sup
x

(

∫
Y
|K(x, y)|qdν(y))

1
q ≤ C.
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If this holds true, then Tf is a.e. defined for all f ∈ L1(X) and T is bounded
from L1(X) to Lq(Y ) as a consequence of Minkowski continuous inequality

‖
∫
X
f(x)K(x, y)dµ(x)‖Lq(Y ) ≤

∫
X
‖f(x)K(x, y)‖Lq(Y )dµ(x) =∫

X
|f(x)|‖K(x, y)‖Lq(Y )dµ(x) ≤ C‖f‖1.

In fact one can prove that

‖T‖ = sup
x

(

∫
Y
|K(x, y)|qdν(y))

1
q .

Also as before, bounded maps on L∞(Y ) are described by the condition

‖T‖ = sup
y

(

∫
X
|K(x, y)|p′dµ(x))

1
p′

by using simply the Holder inequality.
In case p = +∞, then

|Tf(y)| ≤ ‖f‖∞
∫
X
|K(x, y)|dµ(x)

and so T is bounded from L∞(X) to  Lq(Y ) if∫
Y

(

∫
X
|K(x, y)|dµ(x))qdν(y) < +∞

the converse being true if K ≥ 0.
In case q = 1, since∫

Y
|Tf(y)|dν(y) ≤

∫
X
|f(x)|(

∫
Y
|K(x, y)|dν(y))dµ(x)

T is bounded from Lp(X) to L1(Y ) if∫
X

(

∫
Y
|K(x, y)|dν(y))p

′
dµ(x) < +∞,

the converse being true again if K ≥ 0.
In other cases there are no explicit necessary and sufficient conditions in

terms of K so that T is bounded from Lp(X) to Lq(Y ). We collect here a
number of criteria.

Theorem 1. (Schur’s) Suppose 1 ≤ p, q, r ≤ +∞, 1
p + 1

r = 1 + 1
q and

sup
x

(

∫
Y
|K(x, y)|rdν(y))

1
r ≤ C

sup
y

(

∫
X
|K(x, y)|rdµ(x))

1
r ≤ C.

Then T is bounded from Lp(X) to Lp(Y ) with constant ‖T‖ ≤ C.
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Proof. If q = +∞ it follows from Holder’s inequality, while the cases r = +∞
or p = +∞ are trivial; so we assume that all indexes are finite.

The hypothesis imply that

1

r′
+

1

q
+

1

p′
= 1,

p

q
+
p

q′
= 1,

r

q
+
r

p′
= 1.

Using Hlder’s inequality with r′, q, p′,

|Tf(y)| ≤
∫
X
|f(x)|

p
r′ |f(x)|

p
q |K(x, y)|

r
q |K(x, y)|

r
p′ dµ(x) ≤

≤ ‖f‖
p
r′
p

(∫
X
|f(x)|p|K(x, y)|rdµ(x)

) 1
q
(∫

X
|K(x, y)|rdµ(x)

) 1
p′

≤

≤ C
r
p′ ‖f‖

p
r′
p

(∫
X
|f(x)|p|K(x, y)|rdµ(x)

) 1
q

Raising to q and integrating in y gives

‖Tf‖q ≤ C
r
p′ ‖f‖

p
r′
p

(∫
X

∫
Y
|f(x)|p|K(x, y)|rdµ(x)

) 1
q

=

= C
r
p′ ‖f‖

p
r′
p C

r
q ‖f‖

p
q
p = C‖f‖p

Theorem 2. (Schur’s) Suppose 1 < p < +∞ and that there exists functions
hX , hY such that ∫

X
|K(x, y)|hX(x)p

′
dµ(x) ≤ ChY (y)p

′

∫
Y
|K(x, y)|hY (y)pdν(y) ≤ ChX(x)p

Then T is bounded from Lp(X) to Lp(Y ) with norm at most C.

Proof. Assuming K ≥ 0, we write

|Tf(y)| ≤
∫
X
K(x, y)|f(x)|hX(x)h−1

X (x)dµ(x) =

=

∫
X
K

1
p′ hX(x)K

1
p |f(x)|h−1

X (x)dµ(x) ≤

≤ (

∫
X
K(x, y)hX(x)qdµ(x))

1
q (

∫
X
K(x, y)hX(x)−p|f(x)|pdµ(x))

1
p ≤

≤ C
1
q hY (y)(

∫
X
K(x, y)hX(x)−p|f(x)|pdµ(x))

1
p
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so that

|Tf(y)|p ≤ C
p
q hY (y)p

∫
X
K(x, y)hX(x)−p|f(x)|pdµ(x).

Now, integrating in y and using the hypothesis again the proof is finished.

Note than when X = Y and K is symmetric, K(x, y) = K(y, x), T is
bounded in L2(X) if there exists h > 0 a.e. such that T (h) ≤ Ch for some
constant C. The converse is true if K is positive; indeed if T is bounded
and λ > ‖T‖, and f > 0 a.e. is in L2(X) consider

h(x) =
∑
n

Tnf

λn
.

Since ‖Tnf‖2 ≤ ‖T‖n‖f‖2, the series is convergent in L2(X) and defines
h ∈ L2(X) such that Th ≤ λh.

The operators satisfying the hypothesis of next theorem are called Hilbert-
Schmidt operators

Theorem 3. If K ∈ L2(X × Y ), i.e.∫
X

∫
Y
|K(x, y)|2dµ(x)dν(y) = C < +∞,

then T is bounded from L2(X) to L2(Y ) with norm at most C.

Proof. Just notice that by Hlder’s inequality

|Tf(y)|2 ≤ ‖f‖22
∫
Y
|K(x, y)|2dµ(x).

1.8 Hilbert spaces. Different notions of basis

The Euclidean space of countable or continuum dimensions is formally intro-
duced with the notion of H ilbert space. Recall that a Hilbert space H is a
linear space over C endowed with a positive definite hermitian product 〈u, v〉
so that with the norm ‖u‖ =

√
‖u, u‖ is complete. Completeness ensures

that the familiar results in finite dimensional linear algebra still hold in this
context. In particular, if F is a closed subspace of H, every u ∈ H has a well
defined projection PF (u) ∈ F such that ‖u − PF (u)‖ realizes the distance
from u to F and u−PF (u) is orthogonal to F ; if v = u−PF (u), u = PF (u)+v
is the unique decomposition of u as a sum of a vector in F and a vector in
F o, the orthogonal of F , and ‖u‖2 = ‖PF (u)‖2 + ‖v‖2.
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Besides the finite dimensional spaces Cn (mappings {1, 2, ..., n} → C),
we single out the space of countable dimension l2(Z) consisting of sequences
u = (un)n∈Z such that ‖u‖2 =

∑
n |un|2 < +∞. This is the space L2(X)

above when X = Z is equipped with the counting measure ( we could use
as well N instead of Z as index set). Analogously, the space lp(Z) consists
of sequences such that

∑
n |un|p < +∞.

L2(X) should be thought as the Euclidean space CX of as many di-
mensions as the cardinal of X. Finite n-dimensional vectors (signals) v =
(vi)i=1,...,n are replaced by f = (f(x))x∈X , the finite sums ‖v‖2 =

∑n
i=1 |vi|2

by the infinite sum (integral) ‖f‖2, and the scalar product
∑

i viui replaced

by
∫
X f(x)g(x)dµ(x). As with vectors, the quantity

ρ(f, g) =
|〈f, g〉|
‖f‖2‖g‖2

,

which by Schwarz inequality satisfies 0 ≤ ρ(f, g) ≤ 1 measures the degree of
linear dependence (correlation) between f, g: if ρ(f, g) = 1, f, g are linearly
dependent.

A family (ei)i∈I of vectors in a Hilbert space H is called an orthonormal
basis if: a) 〈ei, ej〉 = δi,j and b) their finite linear combinations are dense
in H. For the time being we may think that I is countable, say I = Z or
I = N .

If (ei)i∈I is an o.b., then every vector u ∈ H has a series expansion

u =
∑
i

〈u, ei〉ei

which is convergent in H, and

‖u‖2 = 〈u, u〉 =
∑
i

〈〈u, ei〉ei, ei〉 =
∑
i

〈u, ei〉〈u, ei〉 =
∑
i

|〈u, ei〉|2,

which is known as Parseval’s equality. Conversely, if
∑

i |λi|2 < +∞, u =∑
i λiei defines a vector u ∈ H with coefficients λi.
An orthonormal basis thus establishes a linear isometry H −→ l2(I), u 7→

(〈u, ei〉)i.
The most important example to have in mind is H = L2(Td) and the

orthonormal basis consisting of the complex exponentials

e2πik·t, k ∈ Zd

Here k · t = k1t1 + k2t2 + · · · + kdtd. They are easily seen to be an
orthonormal family; their finite linear combinations are dense in the space
of continuous functions C(Td), by Weierstrass theorem, whence they are
dense in L2(Td) too.

13



A frame in H is a family of vectors ei, i ∈ I such that

m
∑
i

|〈u, ei〉|2 ≤ ‖u‖2 ≤M
∑
i

|〈u, ei〉|2, u ∈ H,

for some constants m,M .
If the index set I is a continuum provided with a measure, the infinite

sums are replaced with integrals,

m

∫
I
|〈u, ei〉|2dµ(i) ≤ ‖u‖2 ≤M

∫
I
|〈u, ei〉|2dµ(i), u ∈ H.

When m = M the frame is called rigid. These notions are interesting
even in finite dimension. The above means that the corrrelations 〈u, ei〉
still code u in a stable way. The mapping u → (〈u, ei〉)i is one-to-one (
meaning that the linear combinations of the ei are dense) onto the space
of coefficients, a closed subspace F on l2(I). The fact that F 6= l2(I) is
due to the existence of possible linear dependencies among the ei. Thus, a
frame corresponds, in linear algebra, to a set of generating vectors which
are not necessarily linearly independent. In any event, if (ei) is a frame,
the coefficients 〈u, ei〉 determine u uniquely in a stable way. The way they
do is through the dual frame; namely, if (ei) is a frame there exists another
frame (fi), termed the dual frame, such that u =

∑
i〈u, ei〉fi. In fact, also

u =
∑

i〈u, fi〉ei. Among all possible ways of writing u as a (infinite) linear
combination of the ei, this last one minimizes the l2 norm of the coefficients.

If the frame is rigid with constant M , then fi = 1
M ei. An example of a

rigid frame in the plane is provided (in complex notation) by the three unit
vectors at angles of 120 degrees between them.

If there is no redundancy and the above map is onto the whole of l2(I),
that is, for every (λi),

∑
i |λi|2 < +∞, there exists u ∈ H such that 〈u, ei〉 =

λi, then the (ei) are called a Riesz basis. In this case, every u ∈ H has a
unique expansion u =

∑
i λiei with

m‖u‖2 ≤
∑
i

|λi|2 ≤M‖u‖2,

for some constants m,M . Riesz basis are as good as orthonormal basis in
applications and easier to construct.
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Chapter 2

Fourier analysis in some LCA
groups

2.1 Sines and cosines, complex exponentials. Why
these? The notion of character

Historically, Fourier analysis arose as a way to deal with periodic functions
in the real line. A periodic function f has a group of periods, which is an
additive subgroup of the real line R, that is either discrete or dense. In the
later case f is trivial, and in the former case the group of periods consists
of integer multiples of a basic, fundamental period.

The simplest and elementary periodic functions with a fundamental pe-
riod a are the sine and cosine functions sin 2π

a x, cos 2π
a x. We choose manip-

ulating them in terms of the complex exponential ei
2π
a
x and its conjugate

e−i
2π
a
x.

In his pioneer work dealing with heath diffusion Fourier stated that an
arbitrary a- periodic function f can be written as a superposition (infinite
sum) of the elementary a- periodic functions, that is, those with fundamental
period a

n :

f(x) =
∑
n∈Z

cn(f)ei
2π
a
nx.

We call n
a the n-th frequency and cn(f) the n-th harmonic of f .

The theory of Fourier series deals with several aspects related to this
representation that we will review in the next sections. Normalizing to
a = 1, we deal with functions defined on the unit circle T. To deal with
general, non-periodic functions, one needs to consider all frequencies ξ and
all sines and cosines, and we are led to the theory of Fourier integrals.

This the heart of Fourier analysis, expressing functions in terms of sim-
pler elementary pieces, expressions that make easier the study of a certain
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aspect.
The fact that the ”simpler elementary pieces” are sines and cosines,

complex exponentials in modern notation, is justified historically but also
by a very important fact that we emphasize here, which is their behavior
under the rotation/ translation operators.

To explain this and for further reference we place ourselves in the general
context of a locally compact abelian group G, that is, an abelian group (with
additive notation) equipped with a topology that makes all group operations
continuous. In this setting there always exists a translation invariant mea-
sure, unique aup to constants, called the Haar measure. Our two main
examples to keep in mind are of course G = Rd/Zd = Td and G = Rd,
with Lebesgue measure, but it is also worth noting the cases G = Zd or the
cyclic group G = ZN of the N -th roots of unity, with the counting measure.
A fifth example is the multiplicative group G = R+, with Haar measure dt

t ,
but we will just consider here the first four examples.

The translation operator τx, x ∈ G acts on functions f defined on G by
(τxf)(y) = f(y − x). It is then natural to consider translation-invariant
spaces of functions on G, that is, spaces E such that τxf ∈ E whenever
f ∈ E, and τxf is continuous in x. For instance, all Lp spaces are.

If E is translation-invariant, an operator T : E → E is said to commute
with translations if τx(Tf) = T (τxf), x ∈ G. Note that this is a very natural
assumption to do when dealing for instance with functions of time or space
that describe physical phenomena and operations T among them that are
time invariant, i.e. do not depend on the choice of origin in time or space.
For instance, a differential operator T is time-invariant if it has constant
coefficients.

We look now at functions f such that the smallest translation-invariant
space containing f has dimension one. This means that for x ∈ G, τxf must
be a scalar multiple of f ; denoting by convenience χ(−x) this scalar factor,
this means that

τxf = χ(−x)f, f(y − x) = χ(−x)f(y), x, y ∈ G. (2.1)

In particular, χ is continuous and so is f . Also, since τxτy = τx+y, χ must
satisfy

χ(x+ y) = χ(x)χ(y), x, y ∈ G. (2.2)

Specializing (2.1) to y = 0 yields f(−x) = χ(−x)f(0). Therefore f is a
scalar multiple of χ.

We are thus lead to the notion of a character of G, a continuous non-zero
homomorphism χ : G→ C, that is, satisfying (2.2).

All functions whose translation-invariant span has dimension one are
multiples of a character. Note that this implies χ(0) = 1 and that if χ is
bounded then |χ| = 1, that is the bounded characters are the continuous
homomorphisms from G to T .
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The set of characters of G has a natural group structure and constitute
the so-called dual group Ĝ.

Now, if χ is a character and T is a translation invariant operator acting
on a space containing χ, we can repeat the argument above. Namely, a
character χ satisfies, as function of y,

τxχ = χ(−x)χ, x ∈ G.

If T commutes with translations, it follows that

τx(Tχ) = T (τxχ) = T (χ(−x)χ),

and since T is linear, this equals χ(−x)T (χ). Hence

(Tχ)(y − x) = χ(−x)T (χ)(y), x, y ∈ G.

If we set y = 0 we find that Tχ = λχ with λ = T (χ)(0), that is, we have
proved

Theorem 4. The characters of a group are eigenvectors of all translation
invariant operators.

Let us now compute what are the characters of R. Integrating (2.2) in
y over [0, h] for h small, we obtain∫ x+h

x
χ(z)dz =

∫ h

0
χ(x+ y)dy = χ(x)

∫ h

0
χ(y)dy.

Since χ is continuous and equals 1 at zero we may choose h small enough so
that the last integral is non-zero. The left-hand side is differentiable because
χ is continuous, whence χ is differentiable. Then, using (2.2) again we get

χ′(x) = lim
y→0

χ(x+ y)− χ(x)

y
= χ′(0)χ(x).

Hence χ(x) = eαx for some α ∈ C. These are all the characters in R.
From this it is immediate that the characters in Rd are of the same form

with α multicomplex, if we interpret that α · x = α1x1 + · · ·+ αdxd.
Obviously, the characters in Td = Rd/Zd are those of the above that

are 1-periodic, that is, α = 2πin for some n ∈ Zd.
In Rd, if we want the characters to be bounded α must be pure imagi-

nary. For convenience we write α = 2πiξ. We are thus lead to

eξ(x) = e2πiξ·x, ξ ∈ Rd, ξ = (ξ1, . . . , ξd).

These are all the bounded characters on Rd, and en, n ∈ Zd are all the
characters in Td. Thus the dual group of Rd is identified with Rd and the
dual group of Td is identified with Zd.
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It is worth mentioning here that the complex exponentials are linearly
independent, that is, whenever we have different multifrequencies ξk,∑

k

cke
2πiξk·x = 0,

then ck = 0 for all k.
It is immediate to check that the characters in Z are of the form n 7→ zn

for some z ∈ C, and so the bounded characters correspond to |z| = 1, that
is

χz(n) = zn = e2πitn.

Thus the dual group of Z is identified with T.
We identify the cyclic group ZN with {0, 1, . . . , N − 1} and functions

there with N - periodic sequences x = (xn) indexed by n ∈ Z. If ωN = e2πi/N

denotes the primitive root of unity, it is immediate to check that the dual
group is ZN itself through

ψm(n) = ωnmN , n ∈ Z,m = 0,1, . . . ,N− 1.

2.2 Translation invariant operators. Convolution.
Impulse function.

We have seen above that the characters of a group are eigenvectors of all
translation invariant operators T . We wish now to see how this helps to
understand translation-invariant operators.

First let us precise in what spaces we consider these operators. In gen-
eral, every locally compact abelian group has a Haar measure dµ, which
is the unique measure, up to constants, invariant by translations. In our
four examples, Haar measure is the counting measure in the two discrete
examples and the Lebesgue measure dm in the others. We consider linear
operators T betwen the Lp(G) spaces. Recall we said in subsection 1.7.2
that at the formal level T is given by a kernel K(x, y),

Tf(y) =

∫
G
K(x, y)f(x)dµ(x), y ∈ G,

where formally Kx(y) = K(x, y) = T (δx)(y). Suppose now that T commutes
with translations, and set g(y) = K0(y) = T (δ0)(y), Then, since formally
δx = τx(δ0) we will have Kx = T (δx) = T (τxδ0) = τxT (δ0) = τxg. That is,
K(x, y) = g(y− x). Hence, formally, all translations invariant operators are
given by

Tf(y) = (f ∗ g)(y) =

∫
G
g(y − x)f(x)dµ(x),
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with a fixed g. This is called the convolution of f, g. The function g = T (δ0)
is known, specially in the engineering community, by the ”impulse response”
of T .

Definition 1. The convolution of two functions f, g is defined by

(f ∗ g)(y) =

∫
G
g(y − x)f(x)dµ(x),

whenever this makes sense. More generally, the convolution of a measure ν
and g is defined by

(ν ∗ g)(y) =

∫
G
g(y − x)dν(x).

It is worth emphasizing that f ∗ g is an (infinite) linear combination of
translates of g, namely we can write that as a whole,

f ∗ g =

∫
G
τx(g)f(x)dµ(x).

Note also that f∗g = g∗f . One can check that convolution is also associative,
that is f ∗ (g ∗ h) = (f ∗ g) ∗ h.

In case g ∈ L1(G) is positive and
∫
G gdµ = 1,, the convolution

(f∗)g(y) =

∫
G
f(y − x)g(x)dµ(x)

can be seen as a weighted average of f . For instance, if g is the characteristic
function of a ball B (divided by µ(B)) then (f ∗g)(y) is the mean value of f
in the ball y+B. If we think in g as being the density of a random variable
X, then f ∗ g is the expected value of f(y −X).

If we specialize theorem 1 to the case K(x, y) = g(x− y) we obtain

Theorem 5. (Young’s inequality) Suppose 1 ≤ p, q, r ≤ +∞, 1
p + 1

r =

1 + 1
q , f ∈ L

p(G), g ∈ Lr(G). Then

(f ∗ g)(y) =

∫
G
g(y − x)f(x)dµ(x),

converges absolutely for a.e y, f ∗ g ∈ Lq(G) and ‖f ∗ g‖q ≤ ‖f‖p‖g‖r.

Note that the case p = r = 1 extends trivially to measures, namely the
convolution ν ∗ g of a finite measure ν and g ∈ L1(G) is a.e defined and
ν ∗ g ∈ L1(G).

In case G = Rd we can state a local version of Young’s inequality, in
which one of the functions has compact support while the other is locally in
the corresponding Lp-space.
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Theorem 6. (Young’s inequality) Suppose 1 ≤ p, q, r ≤ +∞, 1
p + 1

r =

1 + 1
q , f ∈ L

p
loc(G), g ∈ Lrc(G). Then

f ∗ g(y) =

∫
G
g(y − x)f(x)dµ(x),

converges absolutely for a.e y, and f ∗ g ∈ Lqloc(G).

In case G = Rd,G = Td, it makes sense to look at the regularity
properties of f ∗ g.

Theorem 7. Suppose 1 ≤ p, r ≤ +∞, 1
p + 1

r = 1, and that either f ∈
Lp(G), g ∈ Lr(G), f ∈ Lploc(G), g ∈ Lrc(G) or f ∈ Lpc(G), g ∈ Lrloc(G). Then
f ∗ g is a continuous function. Assume that f (resp. g) is differentiable at
every point and that its partial derivatives ∂f

∂xi
(respectively ∂g

∂xi
) satisfy the

same hypothesis of f (resp. g). Then f ∗ g is differentiable and

∂

∂xi
(f ∗ g) =

∂f

∂xi
∗ g, (respectively = f ∗ ∂g

∂xi
).

In general, f ∗ g inherits the regularity properties of both f, g. For
instance, using the notation

Dα =
∂|α|

∂xα1
1 . . . ∂xαnn

,

we can state that the rule

Dα(f ∗ g) = (Dαf) ∗ g, (respectively = f ∗Dαg),

holds whenever one the the right terms makes sense.

2.3 The Fourier transform in G. Multipliers

Now, we know that formally the characters are eigenvectors of T . It is quite
natural then to try to express f in terms of characters. This is analogous of
what is done in elementary linear algebra; to deal with a linear operator T on
Cd (look at vectors as functions defined on 1, 2, . . . n ) we try to diagonalize
it in a basis of eigenvectors. If the characters of G constitute a basis of
some sort in E then we will have that all translation-invariant operators
on E diagonalize in a basis of characters. We emphasize the value of this
fact; in finite dimensional linear algebra, a single operator (matrix) may
diagonalize in a certain basis, for instance when it is symmetric. Here we
find a basis that does the job not for one but for a whole range of operators,
all translation-invariant operators.

That’s why we will consider the correlations of f with the characters.
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Definition 2. The Fourier transform of a function f ∈ L1(G) is the function
f̂ on Ĝ defined by

f̂(χ) = 〈f, χ〉 =

∫
G
fχdµ.

The map f 7→ f̂ is called the Fourier transform in G.

Note that since the characters are bounded this is perfectly defined for
f ∈ L1(G). and f̂ ∈ L∞(Ĝ).

Now, note that in our four examples Ĝ also has a natural structure of
group and a Haar measure dν. Our hope is that, as in finite linear algebra,
the χ behave like an orthonormal basis or continuous rigid frame

f =

∫
Ĝ
f̂(χ)χdν(χ) =

∫
Ĝ
〈f, χ〉χdν(χ)

that is

f(x) =

∫
Ĝ
f̂(χ)χ(x) dν(χ), x ∈ G.

If this is so, since T commutes with infinite sums we will have

Tf =

∫
Ĝ
f̂(χ)T (χ) dν(χ).

Next we use that χ is a eigenvector of T , say T (χ) = m(χ)χ, to get

Tf =

∫
Ĝ
f̂(χ)m(χ)χdν(χ).

Another formal way of writing the above is that

T̂ f(χ) = m(χ)f̂(χ).

This means that in ”the base of characters” T diagonalizes, its infinite
matrix being the diagonal one with entries m(χ).

There is a relation between the formally introduced g and the formally
introduced m. This follows from the fact the Fourier transform of a convo-
lution is the product of Fourier transforms

T̂ f(χ) = (̂f ∗ g)(χ) =

∫
G

(f ∗ g)(y)χ(y)dµ(y) =

=

∫
G

∫
G
g(y − x)f(x)χ(y − x)χ(x)dµ(x)dµ(y) =

= f̂(χ)ĝ(χ)

Hence, formally m = ĝ. The function m is called the transference func-
tion or multiplier or symbol of T .
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In the next sections we will see the precise form of these (formal) facts
in each of four examples. If we think in the object ”g” as being a function in
some Lp- space then in some cases this formal argument breaks down, and
g must be considered in larger spaces.

2.4 The discrete Fourier transform

For a function in ZN, that is, a N -periodic sequence (xn)n, the N trans-
lations are the shifted sequences (xn+m)n. A linear operator acting on
these sequences is given by a N × N matrix A = (ai,j) that accordingly
we think as a doubly infinite matrix whose rows and columns are N peri-
odic, ai+N,j = ai,j , ai,j+N = ai,j . The operator is translation-invariant when
the matrix A is a circulant matrix, meaning that

ai+1,j+1 = ai,j , i, j ∈ Z.

We consider ZN endowed with the counting measure, the L2-norm of a
N -periodic sequence x being

‖x‖2 =
N−1∑
n=0

|xn|2.

Of course this identifies L2(ZN) with CN. It is immediate to check that the
characters ψm are pairwise orthogonal:

N−1∑
n=0

ψm(n)ψk(n) =
N−1∑
n=0

ω
n(m−k)
N .

If m 6= k this equals

1− ωN(m−k)
N

1− ωm−kN

= 0,

and N if m = k. Accordingly, the normalized characters em = 1√
N
ψm,m =

0, 1, . . . , N − 1, constitute an orthonormal basis of L2(ZN).
This means that the N vectors in CN

em =
1√
N

(ωmnN )N−1
n=0 ,m = 0, 1, . . . , N − 1,

constitute an orthonormal basis of CN in which all circulant matrices diag-
onalize.

For a finite signal x = (xn)N−1
n=0 the correlations

〈x, em〉 =
1√
N

N−1∑
n=0

xnω
−mn
N ,m = 0, . . . , N − 1,
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satisfy of course

x =

N−1∑
m=0

〈x, em〉em =
1

N

N−1∑
m=0

〈x, ψm〉ψm,

that is

xn =
N−1∑
m=0

x̂(m)ωmnN , (2.3)

with

x̂(m) =
1

N

N−1∑
n=0

xnω
−mk
N . (2.4)

The equations (2.4) define the discrete Fourier transform of the N -
periodic signal x and (2.3) is called the discrete Fourier inversion formula.

As it is well known, the computation of the discrete Fourier transform
is implemented with the famous Cooley-Tukey algorithm called the Fast
Fourier transform (FFT).

2.5 The Fourier transform in Z

Identifying z with z = e2πit, here the Fourier transform of a sequence x =
(xn) ∈ l1(Z) is the function x̂ defined on T by

x̂(t) =
∑
n∈Z

xne
−2πint.

Note that the series converges uniformly on T, and so x̂ is continuous.
Now, remember that the functions 1√

2π
e2πint, n ∈ Z form an orthonormal

basis in L2(T ), and so

1

2π

∫ 2π

0
x̂(t)e2πimt dt = xm.

This is the inverse Fourier transform in Z. If x is a finite sequence, the
same computation shows that∫ 2π

0
|x̂(t)|2 dt = 2π

∑
n

|xn|2.

Therefore, the Fourier transform extends continuously to l2(Z),

x̂(t) =
∑
n∈Z

xne
−2πint,

where the series in the right is convergent in L2(T), and with the same
inversion formula. The fact that the functions en form an orthonormal basis
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says that the Fourier transform is up to a constant an isometry from l2(Z)
to L2(T).

Here the δ sequence is indeed in all function spaces, so there is no problem
in stating that the general bounded linear translation invariant operator T
from Lp(Z) to Lq(Z) must be a convolution operator

(Tx)(m) =
∑
n

a(m− n)x(n),m ∈ Z,

for some a = T (δ) ∈ Lq(Z). If p = 1 there is no other restriction at all,
that is, convolution with a general a ∈ lq(Z) is the general bounded trans-
lation invariant operator from l1(Z) to lq(Z); this is so by the continuous
Minkowski’s inequality.

However, for p 6= 1 we cannot recognize in terms of a and its size when
convolution with a is bounded. For p = q = 2 however, we can describe them
all, using Fourier transform and the notion of multiplier described before in
a general setting.

Theorem 8. The bounded translation invariant operators in l2(Z) are
in one-to-one correspondence with the bounded multipliers m ∈ L∞(T),
through the equation

T̂ x(t) = m(t)x̂(t), t ∈ T.

Equivalently, they are given by convolution with a sequence a given by

am =
1

2π

∫ 2π

0
m(t)e2πimt dt,

with m bounded. In fact, ‖T‖ = ‖m‖∞.

The important point to be noticed here is that this is a criteria for
boundedness that is not a matter of size, that is,it does not depend solely
on |a|.

2.6 Approximate identities. Regularization

For the non discrete groups G = Td or G = Rd, the delta mass is not a
function but a measure, so it does not belong to any Lp space. However
there is a good replacement for it. The starting point is, of course, that δ
is the formal unit for convolution, f ∗ δ = f . In what follows G denotes one
these groups, with additive notation and dx being the Lebesgue measure.

Definition 3. An approximate identity (or approximate kernel) is a family
(kε) of functions in L1(G) satisfying

1.
∫
G kεdx = 1.
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2.
∫
G |kε|dx ≤ C, for some constant C > 0.

3. For any δ > 0,
∫
|x|>δ |kε(x)|dx→ 0 as ε→ 0.

It is very easy to produce examples. If k ∈ L1(G) is arbitrary with
integral one, set kε(x) = ε−dk(x/ε). The first two conditions are obvious,
while for the third one∫

|x|>δ
|kε(x)|dx =

∫
|x|> δ

ε

|k(x)|dx→ 0

because the rests of an absolutely convergent integral tend to zero by dom-
inated convergence.

The simplest example is to take as k the normalized characteristic func-
tion of the unit ball. That is, if ωd is the volume of the unit ball B in Rd,
consider k(x) = 1

ωd
if x ∈ B and zero otherwise, so that k has integral one.

Then kε is the normalized characteristic function of the ball Bε of radious
ε and f ∗ kε(x) is simply the mean of f in x+Bε, the ball centered at x of
radious ε.

It is worth mentioning the Poisson family in Rd that corresponds to

k(x) = cd
1

(|x|2 + 1)
d+1
2

, cd =
Γ(d+1

2 )

π
d+1
2

,

and the Gaussian family given by

k(x) =
1

(
√

2π)d
e−

1
2
|x|2 .

On the torus Td we will see later that natural examples appear when
dealing with convergence of the Fourier series, namely the Fejer kernel. We
may consider as well approximations of the identity indexed by n ∈ N with
obvious modifications.

Theorem 9. • If (kε) is an approximation of the identity and f ∈
Lp(G), 1 ≤ p < +∞, then f ∗ kε → f in Lp(G) as ε→ 0.

• If f ∈ C0(G), then f ∗ kε → f uniformly on G.

• If f ∈ L1(G) and f is continuous at a point x0, then (f ∗ kε)(xo) →
f(x0).

Proof. We can write

f − f ∗ kε = f −
∫
G
τx(f)kε(x)dµ(x) =

∫
G

(f − τx(f))kε(x)dµ(x),

and hence, by the continuous Minkowski inequality
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‖f − f ∗ kε‖p ≤
∫
G
‖f − τx(f))‖p|kε(x)|dµ(x).

To estimate it we break the above in two parts, corresponding to small
x, say ‖x‖ ≤ δ, and ‖x‖ > δ. The first one is estimated by

C sup
‖x‖≤δ

‖f − τx(f)‖p,

and hence can be made arbitrarily small if δ is small enough, uniformly in ε,
due to the continuity of translations in Lp(G), while the second is estimated
by

2‖f‖p
∫
|x|>δ

|kε(x)|dx.

A consequence of this is

Theorem 10. A bounded operator T from Lp(Rd) to Lq(Rd), 1 ≤ p, q <
+∞ commutes with translations if and only if commutes with convolution
with L1 functions, that is,

T (f ∗ g) = f ∗ Tg, f ∈ L1(Rd),g ∈ Lp(Rd).

Proof. By Minkowski’s continuous inequality, the right hand side of

f ∗ g =

∫
G

(τxg)f(x)dµ(x),

is convergent in Lp, hence if T commutes with translations,

T (f ∗ g) =

∫
G
f(x)T (τxg) dµ(x) =

∫
G
f(x)τxTg dµ(x) = f ∗ Tg.

If T commutes with convolutions, we consider an approximation of the iden-
tity kε so that

T (τxg) = lim
ε
T ((τxg) ∗ kε) = lim

ε
T (g ∗ (τxkε))

= lim
ε

(Tg) ∗ (τxkε)) = τx(lim
ε

(Tg) ∗ kε) = τx(Tg).

The above theorem has two important consequences.

Theorem 11. The space of infinitely differentiable functions C∞(Td) is
dense in all Lp(Td) spaces, 1 ≤ p < ∞. The space C∞c (Rd) of infinitely
differentiable functions with compact support is dense in all Lp(Rd) spaces,
1 ≤ p < +∞.
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Proof. . The space of continuous functions with compact support is dense.
If f is in this space, and we take an approximation of the identity kε(x) =
ε−dk(x/ε), with k a C∞ function with compact support, then kε ∗ f ∈
C∞c (Rd) and tends to f in Lp.

The same proof shows that for an open set U ⊂ Rd the space C∞c (U)
is dense in all Lp(U) spaces as well. We point out the following easy conse-
quence

Theorem 12. If f ∈ L1
loc(U) and∫

U
f(x)ϕ(x) dx = 0

for all ϕ ∈ C∞c (U), then f = 0 a.e. The same is true if∫
B
f(x)dx = 0

for all balls B ⊂ U .

.
A remark is in order here. For most of the approximations of the identity

of type above, for f ∈ L1
loc(U), not only the means f ∗kε → f in L1

loc(U), but
in fact we will see later that f ∗ kε → f pointwise a.e. (Lebesgue tjeorem)

Theorem 13. The general form of a bounded translation-invariant operator
in L1(Td) or L1(Rd) is convolution with a finite complex Borel measure dµ.

Proof. Obviously convolution with a complex finite Borel measure is bounded
and translation invariant. Conversely, given such T , the idea is of course
that dµ should be T (δ0), and we simply replace δ0 by an approximation of
the identity kε. Since they are bounded in L1, T (kε) will be also bounded
in L1. By the Banach-Alaoglu theorem there exists a finite complex valued
measure dµ and a sequence εn → 0 such that

lim
n

∫
g(y)T (kεn)(y)dy =

∫
g(y)dµ(y), g ∈ Cc.

Now, since g = limn g ∗ kεn and T is bounded and commutes with convolu-
tions, one has Tg = limn g ∗ T (kεn). But

(g ∗ Tkεn)(x) =

∫
g(x− y)T (kεn)(y)dy =

∫
g(x− y)dµ(y) = (g ∗ µ)(x).

Hence T is convolution with µ on all functions with compact support and
hence on all functions.
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Chapter 3

The Fourier analysis of
periodic functions

We will deal mainly with dimension d = 1 in the beginning.

3.1 The Fourier series of periodic functions

Scaling we may assume that the period is 1 and we deal with functions on T,
parametrized by |t| ≤ 1

2 through e2πit. Here translation invariance becomes
rotation invariance and convolutions are circular or periodic convolutions

(f ∗ g)(t) =

∫
|t|≤ 1

2

f(t− x)g(x)dx.

Motivated by the considerations above we are to consider the characters
en(x) = ei2πnt, n ∈ Z, that is, the sines and cosines of period 2π as elemen-
tary building blocks. Recall that the en constitute an orthogonal basis of
L2(T), the so-called Fourier basis. The expression

∑
n〈f, en〉en is usually

written ∑
n

cn(f)e2πint,

with

cn(f) =

∫ 1

0
f(t)e−2πint dt.

This makes sense for f ∈ L1(T) (and for all ∈ Lp(T) ⊂ L1(T),p ≥ 1) ,
cn(f) is called the n-th Fourier coefficient of f and the formal series

S(f) =
∑
n∈Z

cn(f)e2πint,

is called the Fourier series of f .
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The fact that the en constitute an orthonormal basis of L2(T) can be
restated by saying that the map f → (cn(f))n is a bijection from L2(T) to
l2(Z) satisfying the so-called Plancherel’s identity

∑
n

|cn(f)|2 =

∫ 1

0
|f(t)|2 dt,

and its polarized version Parseval’s relation

∑
n

cn(f)cn(g) =

∫ 1

0
f(t)g(t) dt.

3.2 Properties of Fourier coefficients

Proposition 1. The following properties hold:

• cn(f ∗ g) = cn(f)cn(g).

• cn(τxf) = e−2πinxcn(f).

• (The Riemann-Lebesgue lemma). |cn(f)| ≤ ‖f‖1 and cn(f) → 0 as
|n| → ∞.

• If f is of class Ck and 2π- periodic, then cn(f (k)) = (2πin)kcn(f) and
cn(f) = o(|n|−k).

Proof. The first two are immediate consequences of the definition ( they
can be guessed by formal manipulation of S(f) too), as well as the bound-
edness of the coefficients. From the first it follows that cn(f − τxf) =
(1− e−2πinx)cn(f); choosing x = 1

2n we get 2|cn(f)| ≤ ‖f − τ2/nf‖1, so the
result is a consequence of the continuity of translations. The last property
is immediate too.

It can be seen that nothing more general can be said regarding the speed
of convergence of the coefficients cn(f), meaning that given any preestab-
lished decay one can construct f ∈ L1(T) with slower decay.

3.3 The Dirichlet, Fejer and Poisson kernels in T

To study S(f) it is natural to consider the partial sums

SN (f) =

N∑
−N

cn(f)e2πint.
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By direct computation,

SN (f)(t) =

∫ 1

0
f(x)

N∑
−N

e2πin(t−x) dx = (f ∗DN )(t),

with

DN (t) =
N∑

n=−N
e2πint =

sin(2N + 1)πt

sinπt
.

The family (DN ) is called the Dirichlet kernel. If it were an approximation
of the identity we would have that SNf → f for f ∈ Lp(T ), but it is easy
to see that ‖DN‖ behaves like logN .

It is a general fact in analysis that if a sequence aN has a bad behaviour
one should look at the sequence of averages 1

N+1(a0 + a1 + · · ·+ aN+1) as it
generally exhibits a better behaviour. That’s why we consider

σN (f) =
1

N + 1
(S0(f) + · · ·+ SN (f)) = (f ∗ σN ),

where

σN (t) =
1

N + 1
(D0(t) + · · ·+DN (t)) =

N∑
j=−N

(
1− |j|

N + 1

)
e2πint =

=
1

N + 1

(
sin(N + 1)πt

sinπt

)2

.

Thus σN is positive, has integral one and if |t| > δ then |σN (t)| ≤ cδ
1
N and

so it is an approximation of the identity. Hence we have

Proposition 2. • If f ∈ Lp(T) then σN (f) → f in Lp(T) as N → ∞,
1 ≤ p < +∞.

• If f is continuous at t0, then σN (f)(t0) → f(t0). If f is continuous
then σN (f)→ f uniformly.

• (Uniqueness theorem) If cn(f) = 0 for all n then f = 0. Hence, if
cn(f) = cn(g) for all n, then f = g.

• If f is continuous at t0 and S(f)(t0) converges, the sum must be f(t0)

Note that item b) above provides a constructive proof of the Weierstrass
approximation theorem on T. On the other hand by exploiting the symme-
try of the Fejer kernel one can show that in case f has lateral limits at t0
then σN (f)(t0) converges to their mean value and so this is the only possible
sum of S(f)(t0).

The Poisson kernel arises when dealing with the Dirichlet problem in
the unit disc D, that is, given a continuous function f ∈ C(T) to find an
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harmonic function u on D, continuous in D such that u = f on T . The later
is of course equivalent to the statement that u(re2πit)→ f(t) uniformly. We
solve this problem exploiting its invariance by rotations. To be precise, if for
each 0 < r < 1 we pose ur(t) = u(re2πit), the operator f → ur is rotation
invariant, hence it must be given by a circular convolution with some Pr,

ur = f ∗ Pr,

and must diagonalize in the Fourier basis, i.e.

cn(ur) = mncn(f),mn = cn(Pr).

Since the solution of the Dirichlet problem for f(t) = e2πint is u(re2πit) = zn

if n is positive and zn if n is negative, z = re2πit, we find mn = r|n|. Since

Pr(t) =
∑
n

r|n|e2πint =
1− r2

|1− re2πit|2
=

1− r2

1 + r2 − 2r cos(2πt
,

we guess that the solution should be

u(re2πit) = (f ∗ Pr)(t) =

∫ 1

0
f(x)

1− r2

1 + r2 − 2r cos(2π(t− x))
dx. (3.1)

One can reach the same conclusion by separating variables, that is, writing
the Fourier series of ur

ur(t) =
∑
n

cn(r)e2πint,

and imposing that u satisfies all properties. The kernel Pr is called the
Poisson kernel. Note that it is positive with integral one, while if |t| > δ,
then |1− re2πit| is bounded below uniformly in r, whence

Pr(t) ≤ cδ(1− r2).

This shows that (Pr) is also an approximation of the identity as r → 1. With
this one can easily prove that indeed the above is the solution to Dirichlet
problem:

Theorem 14. For f ∈ L1(T), the function u defined on the unit disc by
(3.1) above is an harmonic function in D satisfying ur → f in L1(T). In
case f ∈ C(T ), u is continuous in the closed disc with boundary values equal
to f and is thus the solution of Dirichlet’s problem.
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3.4 Pointwise convergence

The pointwise convergence of the Fourier series of f is a very natural ques-
tion. When using sumability ”a la Fejer” o ” a la Poisson” the situation
is quite good. Indeed, as both the Fejer and Poisson kernels are approxi-
mate identities one can prove that for f ∈ L1(T) both FN (f)(t) and ur(t)
have limit f(t) a.e. We will see this later as an application of the maximal
function of Hardy-Littlewood.

The pointwise convergence of S(f) in the classical sense is a much subtle
question. To begin with, Kolmogorov constructed an f ∈ L1(T) such that
S(f) diverges a.e.

The poinwise convergence of S(f) for f ∈ Lp(T),1 < p, was a very hard
open problem in Fourier analysis till Carleson proved that S(f)(t) converges
to f(t) for a.e. t for f ∈ L2(T ) in a celebrated breakthrough, and this was
generalized to Lp(T),1 < p < +∞ by Hunt.

To state sufficient conditions at a given point it is convenient to rewrite

SN (f)(t)− f(t) =

∫ 1
2

− 1
2

(f(t− x)− f(t))
sin(2N + 1)πx

sinπx
dx =

=

∫ 1
2

− 1
2

A(t, x) sin 2πNxdx+

∫ 1
2

− 1
2

f(t− x) cos 2πNxdx,

with

A(t, x) =
f(t− x)− f(t)

tanπx
.

Of the two terms above, the second one has limit zero as N → +∞ by the
Riemann-Lebesgue lemma. As to the first one, the contribution of |x| > δ
also tends to zero by the same reason because A(t, x) is integrable in |x| > δ.
this shows that the statement SN (f)(t)→ f(t) is equivalent to∫

|x|<δ

f(t− x)− f(t)

tanπx
sin 2πNxdx→ 0,

for δ small. This implies that the convergence of S(f)(t) to f(t) is of local
nature, i.e. it only depends on the local behaviour of f at t (Riemann’s

localization principle). For instance, the above shows that if f(t−x)−f(t)
x is

integrable, then S(f)(t) converges to f(t) (Dini’s criterion). In particular
this holds true if f satisfies a Lipschitz condition at t or if f is differentiable
at t.

3.5 Convergence in norm

Regarding convergence in Lp(T),1 ≤ p < +∞, we have seen that σN (f)→
f in Lp(T) while we trivially know that SN (f)→ f in L2(T) if f ∈ L2(T).
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We will see later, as an application of the CZ theory, that this holds true
for 1 < p < +∞.

Another natural question is studying uniform convergence of S(f) when
f is continuous. One needs extra assumptions, for du Bois-Reymond con-
structed a continuous f such that S(f) diverges at some point (in fact ex-
amples can be constructed where S(f) diverges on a dense set).

Using the arguments above one can prove that the Fourier series of an
absolutely continuous function or a Lipschitz function converges uniformly.
More generally, if f is continuous and of bounded variation then S(f) con-
verges to f uniformly.

3.6 Rotation invariant operators in Lp(T)

The Fourier series helps understanding the structure of rotation invariant
operators, as shown by the following result.

Theorem 15. For a bounded operator T : Lp(T) → Lq(T),1 ≤ p,q < ∞
the following are equivalent:

• It commutes with rotations.

• It commutes with convolution with L1(T) functions.

• The characters en are eigenvectors of T , Ten = mnen.

• It diagonalizes in the Fourier basis: cn(Tf) = mncn(f), n ∈ Z.

The same holds replacing Lp(T),Lq(T) by C(T) in case p, q = +∞. More-
over

• In case p = q = 1, the general form of T is given by Tf = f ∗ µ, with
a finite complex Borel measure µ, in which case mn = cn(µ), and ‖T‖
equals the total variation of µ.

• The general form of a bounded translation-invariant operator T :
C(T)→ C(T) is also Tf = f ∗µ, with a finite complex Borel measure
µ.

• In case p = q = 2, the general form of T is given by cn(Tf) = mncn(f)
with mn an arbitrary bounded sequence, in which case the norm of T
as an operator in L2(T) equals supn |mn|.

.

Proof. We already know that a) implies b) implies c). To see that this
implies d) we consider f ∈ Lp(T). Then

cn(Tf) = lim
N
cn(σNTf) = lim

N
cn(T (σNf)) = mncn(f).
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If d) holds then τxTf and T (τxf) have the same Fourier coefficients and so
they are equal.

In case p = q = 1 we know already the statement after theorem ??. In
case p = q = 2 the result is an easy consequence of the fact that the en
constitute a basis of L2(T ).

In the case of C(T) the statement is almost a tautology; indeed, if T is
bounded and translation invariant in C(T ), then f → Tf(0) is a continuous
bounded functional, hence there exists a measure µ such that

Tf(0) =

∫
T
f(x)dµ(x).

If dν(x) = dµ(−x), then

T (f)(y) = τ−y(Tf)(0) = T (τ−yf)(0) =

∫
T

(τ−yf)(x)dµ(x) =∫
T

(τ−yf)(−x)dν(x) =

∫
T
f(y − x)dν(x).

Note that in the above result T is formally the convolution of f with

g(t) =
∑
n

mme
2πint.

But this object g is not in general an L1(T) function (for instance if mn

does not tend to zero) not even a measure. That object g is in general a
distribution. In L1(T) the situation is somewhat the opposite: we know pre-
cisely the object g, a measure, but we do not know exactly which multipliers
mn may arise. In the other cases we do not know the exact description of
neither g nor the mn.

3.7 The Fourier transform in Td

The Fourier series of a function on Td is

Sf(t) =
∑
k∈Zd

ck(f)e2πik·t, k · t = k1t1 + · · ·+ kdtd,

with

ck(f) =

∫ 1

0
. . .

∫ 1

0
f(t)e−2πik·t dt1 . . . dtd.

Much of the analysis done in the previous section goes over to N > 1,
provided that appropriate definitions are given, namely that of SNf(t). If
rectangulars sums are used, that is,

SrN (f)(t) =
∑
|ki|≤N

ck(f)e2πik·t,
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and correspondingly for σN (f), then the results for SN (f) and σN (f) hold
as well. However, if spherical sums are considered

SeN (f)(t) =
∑
|k|≤N

ck(f)e2πik·t, |k|2 = k2
1 + · · ·+ k2

d,

then the situation becomes more complicated and will not be explained here.
Finally we remark another aspect to be taken into consideration for later

reference. In one variable a non trivial periodic function has a fundamental
period a > 0 and by scaling the Fourier development reads

f(t) =
∑
n

cn(f)e
2π
a
int,

with

cn(f) =
1

a

∫ a

0
f(t)e−

2π
a
int dt.

The frequencies are then the integer multiples of 2π
a .

For a full non trivial periodic function g in Rd,d > 1 its group of periods
is a lattice of the form Λ = A(Zd) for some n× n invertible matrix A, with
fundamental region I = A([0, 1]n). If f(t) = g(At), f is Zd periodic and has
a Fourier series expansion as above. Rewriting it in terms of g one obtains,
with Λ∗ = (A∗)−1(Zd) being the dual lattice

g(t) =
∑
ρ∈Λ∗

cρ(g)e2πiρ·t,

where

cρ =
1

|detA|

∫
I
g(t)e−2πiρ·tdt.

The frequencies are then located at Λ∗.

35



Chapter 4

The Fourier transform in Rd

4.1 The Fourier transform in L1(Rd)

For f ∈ L1(Rd) we define its Fourier transform f̂ by

f̂(ξ) = 〈f, eξ〉 =

∫
Rd

f(x)e−2πiξ·x dx, ξ ∈ Rd.

More generally we can define the Fourier transform of a finite complex
Borel measure dµ by

µ̂(ξ) =

∫
Rd

e−2πiξ·x dx.

Besides the translation operators τx, x ∈ Rd, we consider too the di-
lation operators ρλf(x) = f(λx), λ > 0. The following properties are ele-
mentary. They establish that translations and multiplication by characters
correspond one each other under Fourier transform, dilation goes to inverse
dilation, and differentiation corresponds to multiplication by polynomials,
up to constants.

Proposition 3. The following properties hold:

• τ̂xf(ξ) = e−2πiξ·xf̂(ξ)

• If g(x) = e2πiη·xf(x), then ĝ(ξ) = τη(ξ).

• ρ̂λf(ξ) = λ−df̂( ξλ).

• D̂αf(ξ) = (2πiξ)αf̂(ξ).

• (Dαf̂)(ξ) = ((−2πix)αf(x))̂(ξ).

• f̂ ∗ g = f̂ ĝ.
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• If A is an invertible matrix and fA(x) = f(Ax), then

f̂A(ξ) =
1

|detA|
f̂(A−1)∗ξ).

• (The Riemann-Lebesgue lemma). f̂ is a continuous function vanishing
at ∞.

Also note that if A is an orthogonal matrix, then the Fourier transform
commutes with composition by A. It follows that if a function f(x) is radial(
that is, it only depends on |x|, or if f(Ax) = f(x) for all orthogonal A), then
f̂ is also radial. As a consequence, convolution of radial functions is radial.

In particular, if P (D) =
∑

α∈Nd cαD
α is a differential operator with

constant coefficients (and so translation invariant) one has

P̂ (D)f(ξ) = P (2πiξ)f̂(ξ), (P (D)f̂)(ξ) = (P (−2πix)f )̂(ξ),

whenever the left hand side makes sense.
A translation- invariant operator T has a multiplier, for instance that

of P (D) is m(ξ) = P (2πiξ). We say that T is invariant by rigid motions if
moreover T (fA) = (Tf)A for all orthogonal matrices. Then, its multiplier
must be radial. For instance, the Laplace operator

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

,

is radial and has multiplier m(ξ) = −4π2|ξ|2. If a differential operator P (D)
is invariant by rigid motions, then its multiplier is a radial polynomial, that
is a polynomial in |ξ|2, and hence we have

Proposition 4. A differential operator P (D) is invariant by rigid motions
if and only if it is a polynomial in ∆.

4.2 The Dirichlet, Fejer and Poisson kernels in Rd

Again, by the motivation explained in a general context, we ask ourselves
about the validity of

f =

∫
Rd

〈f, eξ〉eξdξ,

that is

f(x) =

∫
Rd

f̂(ξ)e2πix·ξ dξ, (4.1)

in some sense.
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The first and most natural method is to consider the Dirichlet means.
Here we have two choices, we can use cubes of size R or else balls of size R,
that is,

(ScRf)(x) =

∫
|ξi|≤R

f̂(ξ)e2πix·ξ dξ

(SbRf)(x) =

∫
|ξ|≤R

f̂(ξ)e2πix·ξ dξ

It turns out that these means have a different behaviour. Here we will
use the rectangular means, because as we shall see their kernels are tensor
products of one variable kernels. By direct computation we find that

(ScRf)(x) = (f ∗DR)(x), DR(x) =

d∏
j=1

sin 2πRxj
πxj

.

The kernel DR is strictly speaking not integrable ( a typical example
of a conditionally convergent integral) and is not an approximation of the
identity. However, if we consider their means as we did in the periodic case,
we find

(σRf)(x) =
1

R

∫ R

0
(Scrf)(x) dr = (f ∗ FR)(x),

where FR(x) = RdF (Rx), with

F (x) =
d∏
i=1

1− cos 2πxj
2π2x2

j

.

One can check that F has integral one and hence FR is an approximation
of the identity.

Another way, more useful, to deal with (4.1) is to introduce other types of
means. The general scheme is as follows: we consider a continuous integrable
function Φ such that Φ(0) = 1 and the mean∫

Rd

f̂(ξ)e2πix·ξΦ(εξ)dξ.

Now, Fubini’s theorem implies that∫
Rd

f̂(ξ)g(ξ)dξ =

∫
Rd

f(y)ĝ(y)dy, f, g ∈ L1(Rd).

The Fourier transform of Φ(εξ) is ε−dΦ̂(yε ) = Φ̂ε(y), whence the Fourier

transform of e2πix·ξΦ(εξ) is Φ̂ε(y − x) and so∫
Rd

f̂(ξ)e2πix·ξΦ(εξ)dξ = (f ∗ Φ̂ε)(x).
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The most simple choice is Φ(x) = e−π|x|
2

(Gauss means), for which it is
easy to compute that Φ̂(ξ) = e−π|ξ|

2
, that is Φ̂ = Φ. For this choice we then

have ∫
Rd

f̂(ξ)e−επ|ξ|
2
e2πix·ξ dξ = (f ∗ Φε)(x). (4.2)

But
∫
Rd Φ(x)dx = Φ̂(0) = Φ(0) = 1, therefore Φε is an approximation of

the identity and therefore GεF → f in L1(Rd). This implies the unicity
theorem: if f̂ = 0, then f = 0. It also implies

Theorem 16. (Inversion theorem) If f ∈ L1(Rd) and f ∈ L1(Rd) then

f(x) =

∫
Rd

f̂(ξ)e2πix·ξ dξ, a.e.x

and in particular f is a.e. equal to a continuous function vanishing at infinity.

The Gauss means (4.2) are connected with the heath diffusion problem:
indeed one can check that u(t, x) = fφ(

√
t, x) is the solution of the heath

equation

∂u

∂t
=

1

4
∆xu(x, t), u(0, x) = f(x).

More generally, we can choose any continuous function Φ such that
Φ(0) = 1 and Φ̂ is integrable. Then by the above the integral of Φ̂ equals
Φ(0) = 1 and we can repeat the same argument. For instance, another
choice is Φ(x) = e−2π|x| leading to the Abel means. One can check that in
this case

Φ̂(ξ) = cd
1

(1 + |ξ|2)(d+1)/2
, cd =

Γ[d+1
2 ]

π(d+1)/2
.

and that in this case u(t, x) = fφ(t, x) satisfies

∂2u

∂t2
+ ∆xu(t, x) = 0, u(0, x) = f(x),

that is, is the solution of the Dirichlet problem in the half-space.
We saw that the Fourier transform converts convolution to products. We

can now show that it also converts products to convolutions, when every-
thing makes sense:

Proposition 5. If f, g, f̂ , ĝ ∈ L1(Rd), then f̂g = f̂ ∗ ĝ.

Proof. By the inversion formula, both f, g are continuous functions vanishing
at infinity, so fg is integrable. Checking that both terms have the same
transform we are done.
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4.3 The Fourier transform in L2(Rd)

Let us observe that the pointwise definition of f̂(ξ) does not make sense for
f ∈ L2(Rd). We will see, however that it can be still be defined in a suitable
sense, in L2 sense. The basic fact is the following theorem:

Theorem 17. If f ∈ L1(Rd)∩L2(Rd) then f̂ ∈ L2(Rd) and ‖f‖2 = ‖f̂‖2.

Proof. We observe first that (4.2) also implies that if h ∈ L1(Rd), ĥ ≥ 0
and h is continuous at zero then ĥ ∈ L1(Rd), the inversion formula holds
and h(0) =

∫
Rd ĥdξ. Given f ∈ L1(Rd)∩L2(Rd), let g(x) = f(−x) so that

ĝ = f̂ , and consider h = f ∗g. Then h is in L1(Rd), ĥ = |̂f !2; Since both f, g
are in L2(Rd), h is continuous (by the continuity of translations). Hence∫

Rd

|f̂(ξ)|2 dξ =

∫
Rd

ĥ = h(0) =

∫
Rd
|f(x)|2 dx.

At this point we introduce the Schwarz class S(Rd) of C∞ functions f
such that all derivatives Dαf decay faster at infinity than all polynomials:

lim
|x|→+∞

|xβDαf(x)| = 0, α, β ∈ Nd.

Obviously this space is dense in all Lp spaces, 1 ≤ p < +∞ because it
contains the space C∞c (Rd). Using the properties of the Fourier transform
and the inversion theorem, it is immediate to see that the Fourier transform
is a bijection from S(Rd) to itself. Now, trivially L1(Rd)∩L2(Rd) contains
S(Rd) and so does its image under the Fourier transform. Thus we have that
the Fourier transform is an isometry between a dense subspace of L2(Rd)
an another dense subspace. We can then define the Fourier transform of
an arbitrary f ∈ L2(Rd) taking an approximation in L2 by functions in
L1(Rd)∩L2(Rd), for instance f(x) times the indicator function of a ball of
radius R. Then

f̂(ξ) = lim
R→+∞

∫
|x|≤R

f(x)e−2πiξ·x dx,

exists in L2(Rd), defines f̂ , and

‖f̂‖2 = ‖f‖2.

(Plancherel’s identity). It is an isometry onto L2(Rd), the inverse being

f(x) = lim
R→+∞

∫
|ξ|≤R

f̂(ξ)e2πiξ·x dξ,
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also convergent in L2(Rd).
Being an isometry is equivalent to preserving inner products, that is, to

the polarized version∫
Rd

f(x)g(x) dx =

∫
Rd

f̂(ξ)ĝ(ξ) dξ,

which is known as Parseval’s relation.
With this definition, the properties of the Fourier transform listed above

hold true as well in L2(Rd). Generally speaking, a rule that makes sense
does hold. The convolution of two L2 functions is a bounded continuous
functions, not necessarily in L1, so we cannot consider at this stage its
Fourier transform. However, their product is in L1 and the convolution f̂ ∗ ĝ
is a continuous function. So the rule f̂g = f̂ ∗ ĝ makes sense and would
be proved by an approximation argument. In a similar way, for instance, if
f ∈ L1(Rd),g ∈ L2(Rd), then f ∗ g ∈ L2(Rd) and has Fourier transform
the L2 function f̂ ĝ.

With an abuse of notation we may thus write that indeed, in the sense
above,

f =

∫
Rd

〈f, eξ〉eξdξ. (4.3)

Some comments are in order. The eξ do not even belong to L2(Rd) (as
they have modulus one), yet they behave as if they were an orthonormal basis
of L2(Rd), as in the periodic case. More precisely, they behave like a rigid
frame. Incidentally, real orthonormal basis of L2(Rd) can be constructed,
namely the wavelet bases, but this is another direction of Fourier analysis.

Coming back to the Fourier transform, it is clear that (4.3) is due to
the existence of cancellations that we try now to explain. To begin with,
we have seen that the Fourier transform is an isometry of L2(Rd). Observe
that it is given by a kernel K(x, ξ) = e2πix·ξ of modulus one; this is by the
way enough to ensure that it is bounded from L1(Rd) to L∞(Rd), but its
boundedness in L2 depends on much more than size. To ilustrate it, let us
formally manipulate∫

Rd

|f̂(ξ)|2 dξ =

∫
Rd

∫
Rd

∫
Rd

f(x)f(y)e2πiξ·(y−x)dxdydξ.

This being equal to
∫
Rd |f(x)|2 dx means formally that∫

Rd

e2πiξ·x dξ = δ0(x).

We arrive to the same formal conclusion if we manipulate similarly the
Fourier inversion theorem. The above says that superposition of all frequen-
cies is zero outside zero. An intuitive way to understand this is by noting
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that (d = 1) ∫ R

R
e2πiξx dξ =

sin 2πRx

πx
,

is zero for x an integer multiple of 1
R , so when R → +∞ the zeros become

more and more dense.
A final remark regarding the definition itself of the Fourier transform in

L2(Rd) is in order. Namely we have defined

f̂(ξ) = lim
R→+∞

∫
|x|≤R

f(x)e−2πiξ·x dx,

where the convergence is in the L2-norm. This implies that, given f , a
sequence Rj → +∞ exists so that

f̂(ξ) = lim
j→+∞

∫
|x|≤Rj

f(x)e−2πiξ·x dx,

almost everywhere, but does not imply a.e. convergence of the means. This
is in fact true, a very deep result proved by L. Carleson.

4.4 Translation invariant operators in Lp(Rd)-spaces

With the above tools we can have a better understanding of translation
invariant operators, as the next theorem shows.

Theorem 18. For a bounded operator T : Lp(Rd)→ Lq(Rd),p,q = 1,2,
the following are equivalent:

• It commutes with translations.

• It commutes with convolution with L1(Rd) functions.

• It diagonalizes in the Fourier basis: T̂ f(ξ) = m(ξ)f̂(ξ).

Moreover, the general form of T is given

• in case p = q = 1, by Tf = f ∗ µ, with a finite complex Borel measure
µ, in which case m(ξ) = µ̂(ξ) is continuous.

• in case p = q = 2, by T̂ f(ξ) = m(ξ)f̂(ξ) with an arbitrary bounded
function m, in which case the norm of T as an operator in L2(Rd)
equals ‖m‖∞.

Proof. We need prove only that T diagonalizes in case it is translation
invariant and commutes with convolution with L1 functions. If f, g ∈
L1(Rd) ∩ L2(Rd) we will have

f ∗ Tg = T (f ∗ g) = T (g ∗ f) = g ∗ Tf,
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and hence f̂ T̂ g = ĝT̂ f . Take now as g the Gaussian function for which

ĝ = g > 0 to find T̂ f = mf̂ , with m = T̂ g
ĝ , for all f ∈ L1(Rd) ∩ L2(Rd)

whence for all f by density.
Once we have m the statement in L2(Rd) is an easy consequence of the

Fourier transform being an isometry in L2.

We can describe as well all continuous operators acting on S(Rd) which
are translation invariant. They will correspond to functions m that act on
S(Rd) by multiplication.

Definition 4. We say that a C∞ function ψ has slow growth if for every
α ∈ Nd there exists k ∈ N such that |Dalphaψ(x)| = O(|x|k)|.

We call B(Rd) the space of functions of slow growth.

Theorem 19. A function m operates on S(Rd) by multiplication if and

only if m ∈ B(Rd). Then, T̂ϕ = mϕ̂ is the general form of a continuous
translation invariant operator on S(Rd).

Notice that in the above statements if we take an approximation of the
identity f = kε with k ∈ L(Rd) ∩ L2(Rd), then

T̂ kε(ξ) = m(ξ)k̂(εξ),

and since k̂(0) =
∫
k = 1,

m(ξ) = lim
ε
T̂ kε(ξ),

which amounts to say that T is given by its action on the ”delta” mass.
Another final comment: T is formally the convolution of f with

g(x) =

∫
Rd

m(ξ)e2πix·ξ dξ.

But this object g is not in general a function but a distribution, see later.
The last result describing all translation invariant operators of L2(Rd)

serves to describe all closed translations invariant subspaces E of L2(Rd).
Indeed, let us associate to E the projection operator P onto E, that is,
Pf ∈ E and f − Pf is orthogonal to E, P 2 = P . If E is invariant by
translations so is P , hence it has a bounded multiplier m ∈  L∞(Rd). Now,
P 2 = P translates to m2 = m, whence m = 0 or m = 1. Let A be the set
where m = 0. A given f ∈ E if and only if Pf = f , that is mf̂ = f̂ , whence
it follows that f ∈ E if and only if f̂ vanishes a.e. on A. This is the general
form of a closed translation invariant subspace in L2(Rd). In particular, the
translates of a a given function f ∈ L2(Rd) span the whole of L2(Rd) if and
only if f̂ 6= 0 a.e. (Beurling’s theorem)
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Chapter 5

Distributions

5.1 What is a distribution?

The basic idea of distribution is to consider that functions f are not given by
their values at points but by their action on other functions by integration.
That is, two functions f, g defined in an open set U of Rd are equal if∫

U
f(x)ϕ(x)dx =

∫
U
g(x)ϕ(x)dx, (5.1)

for all ϕ in a certain test space. The smaller the test space the stronger is
the statement. So we chose once for all the smallest and nicer test space,
the space that we have seen is dense in all Lp(U) spaces. So the starting
point is the statement 12 that we recall here

Proposition 6. . If f, g ∈ L1
loc(U) and (5.1) holds for all ϕ ∈, then f = g

a.e.

This means that f is completely known as soon as one knows

uf (ϕ) =

∫
U
f(x)ϕ(x) dx,

and is the basis of the following definition.

Definition 5. A distribution on U is a continuous linear map u :→ C.

We understand continuity as follows: if ϕn is a sequence in that tends
to zero (this meaning that they have their supports in a fixed compact set
K of U and Dα(ϕn)→ 0 uniformly in K), then u(ϕn)→ 0. It is customary
to write u(ϕ) = 〈u, ϕ〉.

Thus every function f ∈ L1
loc is a distribution, in particular constants.

A locally finite measure dν on U is also a distribution. The Dirac measure
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at a will be denoted δa. If Λ is a discrete set in U (hence countable), the
comb ∑

a∈Λ

δa,

is also a distribution.
The following is an example of a distribution that is not a function nor

a measure. We define the distribution p.v. 1x in R by

〈p.v.1
x
, ϕ〉 = lim

ε→0

∫
|x|>ε

ϕ(x)

x
dx.

Note that the limit exists because it equals

lim
ε→0

∫ ∞
ε

ϕ(x)− ϕ(−x)

x
dx.

The space of distributions on Rd is denoted D′(Rd)

5.2 Operations with distributions

When defining an operation on distributions we look for consistency, and in
doing so the definition comes up in a natural way. For instance, we want to
define the translation τxu of a distribution in Rd. The definition should be
so that τxuf = uτxf for f ∈ L1

loc. Since∫
Rd

τxf(y)ϕ(y)dy =

∫
Rd

f(y − x)ϕ(y)dy =

∫
Rd

f(z)ϕ(z + x)dz =

=

∫
Rd

f(z)τ−xϕ(z) dz,

we must define for a general distribution u the translation τxu by the rule

〈τxu, ϕ〉 = 〈u, τ−xϕ〉.

A distribution in R is called periodic with period a if τau = u. All
a-periodic functions are, and also the Dirac comb ∆a =

∑
n∈Z δna.

Let us define next the product of a distribution u with a function g. This
cannot be other than

〈gu, ϕ〉 = 〈u, gϕ〉,

and we realize that makes sense for g ∈ C∞(U). For instance, trivially gδa =
g(a)δa. Analogously, g∆a =

∑
n g(na)δna. Incidentally, g∆a represents the

sampling of g every a units.
Also

〈xv.p.1
x
, ϕ = lim

ε→0

∫
|x|>ε

ϕ(x)dx =

∫
R
ϕ(x)dx = 〈1, ϕ〉,
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that is, x v.p. 1x = 1.
We define now the derivative Dαu of a distribution in the only possible

way to keep consistency, namely, in view of the integration by parts rule,

〈Dαu, ϕ〉 = (−1)|α|〈u,Dαϕ〉.

In R, the integration by parts rule
∫
f ′ϕ = −

∫
f(ϕ)′ holds for all lo-

cally absolutely continuous functions ( undefinite integrals of integrable func-
tions), so that (uf )′ = uf ′ for those.

Consider the unit step of Heaviside function H, 1 for positive x and zero
for negative x. Then

〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ ∞

0
ϕ′(x)dx = ϕ(0),

so that H ′ = δ0.
it is important in some cases to distinguish between classical derivative

and derivative in the sense of distributions. Consider for example a function
f which is continuously differentiable in the closed intervals determined by
some points a1, . . . , aN where it has some jump discontinuities with jumps
si. Then (uf )′ = uf ′ +

∑
i siδai . The a- periodic function which in each

interval [na, (n+ 1)a] is linear from 0 to 1 has derivative 1
a − Sa.

As a final example, let us compute the derivative of log |x|. Its action on
ϕ is

−
∫
R

log |x|ϕ′(x) dx = − lim
ε

(∫ −ε
−∞

+

∫ +∞

ε

)
log |x|ϕ′(x) dx.

If we integrate by parts we find that this equals

lim
ε

(ϕ(ε)− ϕ(−ε)) log ε+ lim
ε

∫
|x|>ε

ϕ(x)

x
dx,

so that its derivative is p.v. 1x .
One can prove, in R, that if u′ = 0 then u is constant and that every

distribution has a primitive.

5.3 Convergence of distributions

The notion of convergence of distributions that we adopt is simply the weak
convergence: un → u means simply 〈un, ϕ〉 → 0 for all ϕ. With this def-
inition all operations are continuous, in particular the differentiation. In
particular we can consider series of distributions. We will be interested in
trigonometric series ∑

n∈Z
cne

2πin
a
x.
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The partial sums act as

〈
N∑

n=−N
cne

2πin
a
x, ϕ〉 =

N∑
n=−N

cnϕ̂(−n
a

).

Now, ϕ̂ is in the Schwarz class, so that ϕ̂(−n
a ) = O(|n|−k) for all k. This

shows that if the coefficients cn are slowly increasing meaning that cn =
O(|n|k) for some k then the series indeed defines a distribution. This is not
necessarily the Fourier series of a periodic function.

Let us consider the a- periodic function f equal to x
a in [0, a]. By direct

computation we find its Fourier series

f(x) =
1

2
+

i

2π

∑
n6=0

1

n
e2πin

a
x.

As it is convergent in L2(T) is also convergent as distributions, and its
derivative is

f ′(x) = −1

a
sumn6=0e

2πin
a
x.

But we shaw before that f ′ = 1
a −∆a, so it follows that the periodic distri-

bution ∆a has also a Fourier series

∆a =
∑
n∈Z

δna =
1

a

∑
n∈Z

e2πin
a
x.

5.4 Distributions with compact support

Definition 6. A distribution with compact support is a continuous linear
map u : C∞(U)→ C.

Continuity means here that if ϕn ∈ C∞(Rd) tend to zero (meaning that
Dαϕn(x) → 0 uniformly on compacts) then 〈u, ϕn〉 → 0. This amounts to
the existence of a constant C, a compact K and m such that

|〈u, ϕ〉| ≤ C sup
x∈K,|α|≤m

|Dαϕ(x)|.

It is completely known by its restriction to C∞c (U), by density. Again,
we may think that u has compact support if it is capable to act against
all C∞(Rd) functions. To be precise, let us define that a distribution u ∈
D′(Rd) has support in a compact set K if 〈u, ϕ〉 = 0 for all ϕ supported
in the complement of K. Then one can see that it extends its action to
ϕ ∈ C∞ in a continuous way.

The following is left as an exercise:

Theorem 20. A distribution u is supported in 0 if and only if is a finite
linear combination of derivatives of δ.

The space of distributions with compact support is denoted E ′(Rd)
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5.5 Tempered distributions, Fourier transform of
tempered distributions

We would like to define the Fourier transform of a distribution. For f ∈
L1(Rd) we have ∫

Rd

f̂(x)ϕ(x)dx =

∫
Rd

f(x)ϕ̂(x)dx,

and so we should define
〈û, ϕ〉 = 〈u, ϕ̂〉.

The problem with this definition is that ϕ̂ is no longer in D(Rd). So we
cannot define the Fourier transform of an arbitrary distribution and must
restrict to a particular class of distributions.

Recall that we shaw in section 4.3. that the Schwarz space is invariant by
the Fourier transform, so the above would work if S(Rd) were used instead
of D(Rd) to define distributions. That’s why we define

Definition 7. A tempered distribution in Rd is a continuous linear map
u : S(Rd)→ C

Here continuity means that if ϕn → 0 in S(Rd), meaning that

sup
x
|x||β||Dαϕn(x)| → 0

as n→ +∞ for all α, β ∈ Nd, then 〈u, ϕn〉 → 0. Again, this amounts to the
existence of C and m such that

|〈u, ϕ〉| ≤ C sup
x∈Rd,|α|≤m

|Dαϕ(x)||x|m.

The restriction of u to D(Rd) is then a distribution (and in fact u is
completely determined by this restriction since D(Rd) is dense in S(Rd)).
Here it is enough that we look at tempered distributions as those that are
capable to act on the larger space S(Rd). We denote by S ′(Rd) the space
of tempered distributions.

For instance, among the locally integrable functions f , those that have a
slow growth, meaning that |f(x)| = O(|x|k) for some integer k are tempered
distributions. All Lp- functions, 1 ≤ p ≤ +∞ are as well. It is easy to see
too that all periodic functions, integrable over a period, are also tempered
distributions. This is so because if ϕ ∈ S(Rd),∑

n

|ϕ(x+ na)|

is a bounded function.
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It is easy to see that gu ∈ S ′(Rd) if u ∈ S ′(Rd) and g ∈ B(Rd), that
is, for all α ∈ Nd, |Dαg(x)| = O(|x|k) for some k, because in this case
gϕ ∈ S(Rd) for all ϕ ∈ S(Rd).

The Fourier transform û of a tempered distribution is thus defined

〈û, ϕ〉 = 〈u, ϕ̂〉.

Since the Fourier transform in S(Rd) is an isomorphism with its inverse
being the same transform composed with reflection, the same happens with
S ′(Rd). The properties of the Fourier transform regarding translations vs
multiplication by exponentials and derivatives vs multiplication by polyno-
mials go over to S ′(Rd).

Example 1. 1. δ̂a(ξ) = −e2πiaξ, ê2πiax = δa. In particular, δ̂0 = 1, 1̂ =
δ0. This is a restatement of the inversion theorem.

2. In particular ∆̂a =
∑

n δ̂na =
∑

n e
2πinaξ. But we shaw before that

this equals 1
a∆ 1

a
. Therefore

∆̂a =
1

a
∆ 1

a
,

and in particular, ∆1 is its own Fourier transform.

3. Let us compute the Fourier transform of p.v. 1x . Its action on ϕ is

lim
ε

∫
ε<|xi|<1/ε

ϕ̂(ξ)

ξ
dξ =

lim
ε

∫
R
ϕ(x)

(∫
ε<|xi|<1/ε

e−2πixξ dξ

ξ

)
dx =

= −i lim
ε

∫
R
ϕ(x)

(∫
ε<|xi|<1/ε

sin 2πxξ
dξ

ξ

)
dx =

But the last inner integral is known to be uniformly bounded in ε, x
and has limit πsign(x), so the Fourier transform of p.v. 1x is −iπsign(ξ).

5.6 The Fourier transform of a distribution with
compact support

If f ∈ D(Rd), then f̂ ∈ S(Rd). In fact something much more precise can
be said. Note first that f̂(ξ) makes sense for z ∈ Cd,

f̂(z) =

∫
Rd

f(x)e−2πiz·x dx.
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and it is an entire function in Cd (in particular it cannot have compact
support in Rd).

Now, if u ∈ E ′(Rd), as it is capable to act on C∞- functions not neces-
sarily with compact support, we may consider as well the entire function

h(z) = 〈ux, e−2πiz·x〉,

which is formally û(x) for x ∈ Rd. One can check that the two definitions
of û, u ∈ E ′(Rd) agree, that is,

〈u, ϕ̂〉 =

∫
Rd

h(x)ϕ(x).

This means that for u ∈ E ′(Rd), û is in fact the restriction to Rd of an
entire function.

Moreover, it is easy to see that û ∈ B(Rd). In fact, the Paley-Wiener
theorem characterizes exactly the class of entire functions F that are Fourier
transforms of u ∈ E ′(Rd). They are exactly those of exponential type,
meaning that

|F (z)| ≤ CeA|Imz|, z ∈ Cd,

for some constants A,C, and such that the restriction to Rd is in B(Rd).
Among these, the ones that are Fourier transforms of function ϕ ∈ D(Rd)
are exactly those such that the restriction to Rd is in S(Rd).

5.7 Convolutions among functions and distribu-
tions

Now we would like to define convolutions, among functions and distributions
first, and among distributions in a second step. From

g ∗ f(x) =

∫
g(x− y)f(y)dy

we see that if we want to replace f by a general distribution u we should
define by consistency

(g ∗ u)(x) = 〈uy, g(x− y)〉,

This makes sense in three cases, and defines a function lying in the
indicated space

D(Rd) ∗ D′(Rd) ⊂ C∞(Rd),S(Rd) ∗ S ′(Rd) ⊂ C∞(Rd)

C∞(Rd) ∗ E ′(Rd) ⊂ C∞(Rd),D(Rd) ∗ E ′(Rd) ⊂ D(Rd)
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Checking that g ∗ u is a C∞ function depends on showing of course that
the rule

Dα(g ∗ u) = Dαg ∗ u

holds. For instance, in case |α| = 1, this is a consequence of the fact that
for g ∈ D(Rd), the incremental quotients defining Dαg converge not only
pointwise but in D(Rd), and similarly in the other cases.

It is an immediate consequence of the definition that convolution is con-
tinuous in both arguments.

When convolving ϕ ∈ S(Rd) with u ∈ S ′(Rd), one can check just using
the definition of continuity of a tempered distribution that moreover one has
ϕ ∗ u ∈ B(Rd). This makes sense to the rules

ϕ̂ ∗ u = ϕ̂û, ϕ ∈ S(Rd),u ∈ S ′(Rd)

ϕ̂u = ϕ̂ ∗ û, ϕ ∈ S(Rd),u ∈ S ′(Rd)

and they can be routinely checked too.
Next we want to define the convolution of two distributions. Again from

the relations

〈g ∗ f, ϕ〉 =

∫ ∫
g(x− y)f(y)ϕ(x)dx dy =

=

∫
(

∫
g(z)ϕ(y + z)dz)f(y)dy =

∫
(

∫
f(y)ϕ(y + z)dy)g(z)dz

we see that we should define

〈u ∗ v, ϕ〉 = 〈uz, 〈vy, ϕ(y + z)〉〉,

or else
〈u ∗ v, ϕ〉 = 〈vy, 〈uz, ϕ(y + z)〉〉.

Written in a more compact form, using the notation ϕσ(x) = ϕ(−x),

〈u ∗ v, ϕ〉 = 〈u, (ϕσ ∗ v)σ〉, ϕ ∈ D(Rd).

Also note that for this to make sense, one of the distributions must
have compact support. Fortunately one may routinely check that the two
definitions agree and defines a commutative operation u∗v ∈ D′(Rd). Again,
convolution is continuous in both variables and

Dα(u ∗ v) = (Dαu) ∗ v = u ∗Dαv.

Note that of course δ ∗ u = u,Dαδ ∗ u = Dαu for all distributions u.
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Now assume that u ∈ E ′(Rd),v ∈ S ′(Rd). Then still ϕ ∗ v ∈ C∞(Rd),
and so the definition above makes sense for ϕ ∈ S(Rd), and u ∗ v ∈ S ′(Rd).
Then, as one may expect

û ∗ v = ûv̂

is another relation that makes sense (because û ∈ B(Rd)) and so does hold.

5.8 Translation invariant operators in spaces of
distributions

With the language of distributions and tempered distributions one can state
a number of representation theorems for continuous operators in spaces of
distributions invariant by translations.

Of course the definition is the same. If T acts on distributions, we say
that T is invariant by translations if Tτx = τxT . We will show that generally
speaking T is always given by convolution.

Assume first that T : D(Rd) → C(Rd) is translation invariant. Then
ϕ→ T (ϕ)(0) is a distribution, and using translation invariance we find that
T (ϕ) = ϕ ∗ u for u ∈ D′(Rd), this is the general form of T . That is almost
a tautology.

It will take values in D(Rd) if and only if u ∈ E ′(Rd). Thus, convolution
by u ∈ E ′(Rd) is the general form of a continuous t.i.p. from D(Rd) to itself.

In an analogous way, convolution by u ∈ E ′(Rd) is the general form of a
continuous translation invariant operator from C∞(Rd) to itself, and con-
volution by u ∈ S ′(Rd) is the general form of one from S(Rd) to C∞(Rd).
It will take S(Rd) to itself iff û ∈ B(Rd).

Now, a basic fact of the spaces C∞(Rd),D(Rd) and S(Rd) is that they
are reflexive. This means that they equal their second dual. In other words,
if for instance ω : D′(Rd) :→ C is a continuous linear functional, then there
exists ϕ ∈ D(Rd) such that ω(u) = 〈u, ϕ〉. Analogously, every continuous
linear functional on E ′(Rd) is given by testing on some ϕ ∈ C∞(Rd) and
every continuous linear functional on S ′(Rd) is given by testing on some
ϕ ∈ S(Rd).

Using this fact it is easy to prove that the general form of a continuous
translation invariant operator T : D′(Rd) → D′(Rd) is convolution against
some u ∈ E ′(Rd). Indeed, for all ϕ ∈ D(Rd), the composition u→ 〈Tu, ϕ〉 is
a continuous linear functional, and so it is given by testing against some other
function S(ϕ) ∈ D(Rd). The operator S thus defined is continuous and
translation invariant and so it consists in convolving with some distribution
with compact support. From this one we get the required u.

In a similar way, the general form of a continuous translation invariant
T : E ′(Rd) → E ′(Rd) is convolution by some uE ′(Rd), and convolution
with u ∈ S ′(Rd), such that û ∈ B(Rd), is the general form of a continuous
translation invariant operator from S ′(Rd) to S ′(Rd).
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In general, if X,Y are some spaces of tempered distributions, every con-
tinuous t.i.p T from X to Y is given by convolution with some distribution
u. For instance,

Theorem 21. If T : Lp(Rd)→ Lq(Rd) is bounded and translation invari-
ant, there exists u ∈ S ′(Rd) such that T (f) = f∗, f ∈ S(Rd).

Proof. Indeed T it will commute with convolution with L1 functions so

T (ϕ ∗ ψ) = ϕ ∗ T (ψ) = T (ϕ) ∗ ψ,

hence
ϕ̂ ∗ T̂ψ = ψ̂T̂ϕ, ϕ ∈ L1(Rd) ∩ Lp(Rd), ψ ∈ Lp(Rd).

Thus T̂ψ = mψ̂, with m = T̂ϕ
ϕ̂ . Choosing ϕ(x) = e−|x|, ϕ̂(ξ) is the Poisson

kernel whose inverse has polynomial growth. Then m is the product of an
Lq function with a function of polynomial growth, and so is a tempered
distribution. It now suffices to choose u so that û = m.

5.9 Fundamental solutions

Definition 8. If T : D′(Rd) → D′(Rd) is continuous and translation in-
variant, we say that E ∈ D′(Rd) is a fundamental solution if T (E) = δ0.

In this case T (E ∗v) = T (E)∗v = δ ∗v = v for v ∈ E ′(Rd) and generally
whenever E ∗ f makes sense. Thus convolution with E is an inverse of T .

We state without proof the following theorem:

Theorem 22. (Malgrange-Ehrenpreis theorem): every linear constant co-
efficient operator T = P (D) has a fundamental solution.

Note that if T is a translation invariant operator in S ′(Rd), then it is
convolution with u ∈ S ′(Rd) with û = m ∈ B(Rd), so TE = δ is equivalent
to 1 = mÊ. If it happens that 1

m ∈ S
′(Rd), then the tempered distribution

with Ê = 1
m is a fundamental solution.

For example, for the laplacian ∆, m(ξ) = −4π2|ξ|2. Here, 1
m is locally

integrable if d > 2 and so we can find a fundamental solution E = 1̂/m. It
must be radial, and by homogeneity it must be of the form cd|x|d−2. For
d = 2, a direct proof shows that E = c2 log |x| is a fundamental solution.

The fundamental solution is of course not unique since we cal add to
it a solution of Tu = 0. For the Laplacian, the tempered distributions u
such that ∆u = 0 must satisfy |ξ|2û = 0, whence û is supported in zero,
whence û is a finite linear combination of derivatives of the delta function,
and therefore u is a (harmonic) polynomial. The fundamental solution E
found above is the only one vanishing at ∞.

In connection to this we mention the Weyl’s lemma that holds true more
generally for elliptic operators.
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Theorem 23. Weyl’s lemma: if f ∈ C∞(Rd) and ∆u = f in the sense of
distributions, then u ∈ C∞(Rd) and ∆u = f in the classical sense.

5.10 The Poisson summation formula.

Let us go back now to what we found before, formula

1

a
∆̂ 1

a
= ∆a

as tempered distributions. This means exactly that∑
n

ϕ(na) =
1

a

∑
n

ϕ̂(
n

a
), ϕ ∈ S(Rd).

Replacing ϕ by τ−xϕ we get∑
n

ϕ(x− na) =
1

a

∑
n

ϕ̂(
n

a
)e2πixn

a , (5.2)

or interchanging ϕ and ϕ̂,∑
n

ϕ̂(x− na) =
1

a

∑
n

ϕ(na)e−2πixn
a .

This is known as Poisson’s summation formula and if fact holds for a much
larger class of functions, as the following argument shows, that constitutes
as well a direct proof, that works as well in Rd

For f ∈ L1(R) we consider its a-periodized function

F (x) =
∑
n

f(x− na).

Indeed, this series converges a.e. and defines an a-periodic function in
L1(0, a). This is so because∫ a

0

∑
N<|n|<M

|f(x− na)|dx ≤
∫
|x|≥Na

|f(x)| dx.

The Fourier coeficients of F are

ck(F ) =
1

a

∫ a

0

∑
n

f(x− na)e−2πik x
a dx =

∑
n

∫ n+1

n
f(x)e−2πik x

a =

=
1

a

∫
R
f(x)e−2πik x

a =
1

a
f̂(
k

a
).

Hence the right hand side of (5.2) is the formal power series of F . If F
satisfies some of the criteria for pointwise convergence, then (5.2) will hold
pointwise. One such criteria is that F is absolutely continuous. It can be
seen that this is the case if f is differentiable with derivative in L1(R).
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5.11 Tempered distributions, a common frame for
the Fourier transform in Z,ZN,T,R

Assume that f is a a-periodic function integrable in one period. It has a
sequence of Fourier coefficients

cn(f) =
1

a

∫ a

0
f(x)e−2πin

a
x dx

and a formal series ∑
n

cn(f)e2πin
a
x.

This series does not converge in general to f . Let us look at f as a tempered
distribution and let us compute its Fourier transform.

〈f̂ , ϕ〉 = 〈f, ϕ̂〉 =

∫
R
f(x)ϕ̂(x) dx =

=

∫ a

0
f(x)

∑
n

ϕ̂(x− na)dx =

=
1

a

∫ a

0
f(x)

∑
n

ϕ(
n

a
)e−2πixn

a =
∑
n

cn(f)ϕ(
n

a
)

This means that as a tempered distribution

f̂ =
∑
n

cnδn
a

the sum being convergent in S ′(Rd). By applying the inverse Fourier trans-
form we find that

f =
∑
n

cn(f)e2πin
a
x,

this development being in S ′(Rd).
Something similar happens with an infinite digital sequence x = (xn).

This is identified with x =
∑

n xnδn, which certainly is a tempered distri-
bution if x ∈ lp(Z) or if xn has slow growth. Its Fourier transform as a
tempered distribution is ∑

n

xne
−2πinξ

which again is its definition as a Fourier transform in Z.
Now suppose that this signal is N -periodic, that is, xj+N = xj . This

means that the tempered distribution x can be written

x =
N−1∑
k=0

xkτk∆N ,
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and hence

x̂(ξ) =
N−1∑
k=0

xkτ̂k∆N (ξ) =
N−1∑
k=0

xke
−2πiξk 1

N
∆ 1

N
=

=
1

N

N−1∑
k=0

xk
∑
j∈N

e−2πi j
N
kδ j

N
=

=
∑
j∈N

(
1

N

N−1∑
k=0

e−2πi j
N
k)δ j

N
,

This is another N - periodic signal whose N defining numbers are the Fourier
transform defined in section 2.4.

We thus see that all four definitions of the Fourier transform for each of
the different groups fit together in the common frame of tempered distribu-
tions. It can be proved that any a- periodic tempered distribution T has a
Fourier series convergent in S(Rd)′, and that T̂ is supported in N

a .
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