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First lecture: A general frame for Fourier Analysis

I Origins of Fourier analysis: Fourier, Euler, D’Alembert.

I Four different settings: Rd,Td,Z,ZN

I Why sines and cosines? The characters in a group, the Fourier
transform.

I Translation invariant operators. Convolutions, multipliers,
regularization, Young’s inequality.

I Approximations of the identity. Density of test functions



Origins of Fourier Analysis

Solving the vibrating string, the heath diffusion problems with the
separation of variable method and the statement that an arbitrary
function in an interval can be expressed as a superposition of sines
and cosines

f (x) =
+∞∑
n=0

cn(f )e2πinx

with

cn(f ) =

∫ 1

0
f (x)e−2πinxdx .

A a- periodic function is superposition of the sines and cosines
having period a. For (non-periodic) arbitrary functions, making
a→ +∞

f (x) =

∫
R
cξ(f )e2πix ·ξdξ, cξ(f ) =

∫
R
f (x)e−2πiξ·xdx .



Locally compact abelian groups

I Discrete: Zd, ZN = N-th roots of unity.

I Continuous: Rd,Td

I Haar Measure: Lebesgue Lp(G ) spaces

I Translation operator: τx , x ∈ G , τx f )(y) = f (y − x).

I Translation-invariant spaces: spaces E such that τx f ∈ E
whenever f ∈ E , and τx f is continuous in x . For instance, all
Lp spaces are.

I T : E → E is said to be a translation invariant operator (tip)
if τx(Tf ) = T (τx f ), x ∈ G .

I a differential operator T is time-invariant iff it has constant
coefficients.



I We look for functions f such that the smallest
translation-invariant space containing f has dimension one.

I This means that for x ∈ G , τx f must be a scalar multiple of f ;
τx f = χ(−x)f , f (y − x) = χ(−x)f (y), x , y ∈ G .

I χ is continuous and so is f . Since τxτy = τx+y , χ must satisfy
χ(x + y) = χ(x)χ(y), x , y ∈ G .

I Specializing to y = 0 yields f (−x) = χ(−x)f (0).

I Therefore f is a scalar multiple of χ.

I A character of G is a continuous non-zero homomorphism
χ : G → C.

I Bounded: χ : G → T.

I The set of bounded characters of G has a natural group
structure and constitute the so-called dual group Ĝ .



Why are characters useful?

I χ a character, T a translation invariant operator acting on a
space containing χ,

I χ satisfies τxχ = χ(−x)χ, x ∈ G , as function of y

I If T commutes with translations

τx(Tχ) = T (τxχ) = T (χ(−x)χ) = χ(−x)T (χ)

I (Tχ)(y − x) = χ(−x)T (χ)(y), x , y ∈ G .

I If we set y = 0,Tχ = λχ with λ = T (χ)(0),

I The characters of a group are eigenvectors of all translation
invariant operators



The group of characters in Rd and Td

I In R,
∫ x+h
x χ(z)dz =

∫ h
0 χ(x + y)dy = χ(x)

∫ h
0 χ(y)dy .

I This implies that χ is differentiable.

χ′(x) = lim
y→0

χ(x + y)− χ(x)

y
= χ′(0)χ(x).

I Hence χ(x) = eαx for some α ∈ C.

I In Rd, α ∈ Cd, α · x = α1x1 + · · ·+ αdxd.

I Bounded: α = 2πiξ, eξ(x) = e2πiξ·x , ξ ∈ Rd.

I In Td = Rd/Zd: those of the above that are Zd-periodic,
α = 2πin for n ∈ Zd.

I Thus the dual group of Rd is identified with Rd and the dual
group of Td is identified with Zd.



The group of characters in Zd and ZN

I In Zd,n 7→ zn, z ∈ Cd, bounded characters correspond to
|zj | = 1,

χz(n) = zn = e2πit·n.

Thus the dual group of Zd is identified with Td.

I We identify the cyclic group ZN with {0, 1, . . . ,N − 1} and
functions there with N- periodic sequences x = (xn) indexed
by n ∈ Z.

I If ωN = e2πi/N denotes the primitive root of unity, it is
immediate to check that the dual group is ZN itself through

ψm(n) = ωnm
N , n ∈ Z,m = 0, 1, . . . ,N− 1.



The Fourier transform
I In linear algebra, to deal with a linear operator T on Cd (look

at vectors as functions defined on 1, 2, . . . n ) we try to
diagonalize it in a basis of eigenvectors.

I Characters are eigenvectors of T .
I If the characters of G constitute a basis of some sort in E

then we will have that all translation-invariant operators on E
diagonalize simultaneously in a basis of characters.

I Complex exponentials are linearly independent∑
k

cke
2πiξk ·x = 0 =⇒ ck = 0

I The Fourier transform of a function f ∈ L1(G ) is the function
f̂ on Ĝ defined by correlating with bounded characters

f̂ (χ) = 〈f , χ〉 =

∫
G
f χdµ, f ∈ L1(G )

I The map f ∈ L1(G ) 7→ f̂ ∈ L∞(Ĝ ) is called the Fourier
transform in G .



Multiplier of a translation invariant operator

I Ĝ has a natural structure of group and a Haar measure dν.

I Hope the χ behave like an orthonormal basis

f =

∫
Ĝ
f̂ (χ)χ dν(χ) =

∫
Ĝ
〈f , χ〉χ dν(χ)

that is (inversion formula)

f (x) =

∫
Ĝ
f̂ (χ)χ(x) dν(χ), x ∈ G .

I Since T commutes with infinite sums and χ is a eigenvector
of T , say T (χ) = m(χ)χ,

Tf =

∫
Ĝ
f̂ (χ)T (χ) dν(χ) =

∫
Ĝ
f̂ (χ)m(χ)χ dν(χ).

I Tf (x) =
∫
Ĝ
f̂ (χ)m(χ)χ(x) dν(χ). m is the multiplier of T .



Another way to look at t.i.o.’s: convolution, impulse
function

I Kernel of a linear operator T : Lp(G )→ Lq(G )

f =

∫
G
δx f (x)dµ(x) =⇒ Tf =

∫
G
T (δx)f (x)dµ(x),

Tf (y) =

∫
G
Kx(y)f (x)dµ(x),K (x , y) = T (δx)(y)

I K (x , y) is the continuous version of a matrix.
I If T commutes with translations, set

g(y) = K0(y) = T (δ0)(y). Then δx = τx(δ0) =⇒ Kx =
T (δx) = T (τxδ0) = τxT (δ0) = τxg ,K (x , y) = g(y − x).

I Formally, all translations invariant operators are given by
convolution

Tf (y) = (f ∗ g)(y) =

∫
G
g(y − x)f (x)dµ(x),

with a fixed ”object” g , the impulse response.
I By now, g a function or a measure.



Relationship between both views

I There is a relation between g and m.

I This follows from the fact the Fourier transform of a
convolution is the product of Fourier transforms

f̂ ∗ g(χ) =

∫
G

(f ∗ g)(y)χ(y)dµ(y) =

=

∫
G

∫
G
g(y − x)f (x)χ(y − x)χ(x)dµ(x)dµ(y) =

= f̂ (χ)ĝ(χ)

I Hence, formally m = ĝ .

Tf = f ∗ g ≡ T̂f = mf̂ ,m = ĝ .



Convolution as a mean

I f ∗ g is an (infinite) linear combination of translates of g ,

f ∗ g =

∫
G
τx(g)f (x)dµ(x).

I f ∗ g = g ∗ f , f ∗ (g ∗ h) = (f ∗ g) ∗ h.

I In case g ∈ L1(G ), g ≥ 0,
∫
G gdµ = 1,

(f ∗ g)(y) =

∫
G
f (y − x)g(x)dµ(x)weighted average of f .

I g = 1
µ(B) 1B , (f ∗ g)(y) = mean value of f in the ball y + B.

I Think g as density of a random variable X , then

f ∗ g(y) = E (f (y − X )).



When is f ∗ g well defined? Properties of f ∗ g
Schur’s criteria for boundedness of operators T : Lp(G )→ Lq(G )

Tf (y) =

∫
G
K (x , y)f (x)dµ(x).

I Assume 1 ≤ p, q, r ≤ +∞, 1
p + 1

r = 1 + 1
q and

sup
x

(

∫
Y
|K (x , y)|rdν(y))

1
r ≤ C , sup

y
(

∫
X
|K (x , y)|rdµ(x))

1
r ≤ C .

I Then T is bounded from Lp(X ) to Lp(Y ) with constant
‖T‖ ≤ C .

I q = +∞ it follows from Holder’s inequality (p, r conjugate
exponents).

I r = +∞(p = q) is trivial: |Tf | ≤ C |f |
I p = +∞(r = 1, q = +∞ trivial;
I p = 1, r = q Continuous Minkowski inequality:

‖
∫

f (x)K (x , ·)dµ(x)‖q ≤
∫
|f (x)|‖K (x , ·)‖qdµ(x)



Proof of Schur‘s lemma

Assume all indexes are finite, positive K , f ∈ Lp(X ), g ∈ Lq
′
(Y ).

The hypothesis imply that

1

r ′
+

1

q
+

1

p′
= 1,

p

q
+

p

q′
= 1,

r

q
+

r

p′
= 1.

Using Holder’s inequality with r ′, q, p′,

|Tf (y)| ≤
∫
X
|f (x)|

p
r′ |f (x)|

p
q |K (x , y)|

r
q |K (x , y)|

r
p′ dµ(x) ≤

≤ ‖f ‖
p
r′
p

(∫
X
|f (x)|p|K (x , y)|rdµ(x)

) 1
q
(∫

X
|K (x , y)|rdµ(x)

) 1
p′

≤

≤ C
r
p′ ‖f ‖

p
r′
p

(∫
X
|f (x)|p|K (x , y)|rdµ(x)

) 1
q



Continuation of Schur’s proof. Young’s inequality

Raising to q and integrating in y gives

‖Tf ‖q ≤ C
r
p′ ‖f ‖

p
r′
p

(∫
X

∫
Y
|f (x)|p|K (x , y)|rdµ(x)

) 1
q

=

= C
r
p′ ‖f ‖

p
r′
p C

r
q ‖f ‖

p
q
p = C‖f ‖p

K (x , y) = g(x − y)→ Young’s inequality:

I Suppose
1 ≤ p, q, r ≤ +∞, 1

p + 1
r = 1 + 1

q , f ∈ Lp(G ), g ∈ Lr (G ).

I Then

(f ∗ g)(y) =

∫
G
g(y − x)f (x)dµ(x),

converges absolutely for a.e y , f ∗ g ∈ Lq(G ) and
‖f ∗ g‖q ≤ ‖f ‖p‖g‖r .



Local version of Young’s inequality

In case G = Rd we can state a local version of Young’s inequality,
in which one of the functions has compact support while the other
is locally in the corresponding Lp-space.

I Suppose
1 ≤ p, q, r ≤ +∞, 1

p + 1
r = 1 + 1

q , f ∈ Lploc(G ), g ∈ Lrc(G ).

I Then

f ∗ g(y) =

∫
G
g(y − x)f (x)dµ(x),

converges absolutely for a.e y , and f ∗ g ∈ Lqloc(G ).



Convolution as regularization
G = Rd,G = Td, look at the regularity properties of f ∗ g .

I Suppose 1 ≤ p, r ≤ +∞, 1
p + 1

r = 1,

I Either f ∈ Lp(G ), g ∈ Lr (G ), f ∈ Lploc(G ), g ∈ Lrc(G ) or
f ∈ Lpc (G ), g ∈ Lrloc(G ).

I Then f ∗ g is a continuous function.

I Assume that f (resp. g) is differentiable at every point and
that its partial derivatives ∂f

∂xi
(respectively ∂g

∂xi
) satisfy the

same hypothesis of f (resp. g). Then f ∗ g is differentiable
and

∂

∂xi
(f ∗ g) =

∂f

∂xi
∗ g , (respectively = f ∗ ∂g

∂xi
).

I f ∗ g inherits the regularity properties of both f , g .

Dα(f ∗ g) = (Dαf ) ∗ g , (respectively = f ∗ Dαg),

holds whenever one the the right terms makes sense.



Approximate identities. Regularization

I Consider the group Z. We will describe all translation
invariant operators T : l1(Z)→ lq(Z).

I Easy because the formal argument is OK: δ0 ∈ l1(Z ). Define
g = T (δ0) = (gn) ∈ lq(Z).

I If x = (xn) ∈ l1(Z), x =
∑

xnτn(δ0) is convergent in l1(Z)

I Tx =
∑

n xnτng , (Tx)m =
∑

n xngm−n,Tx = x ∗ g
I T : l1(Z)→ lq(Z)t.i.o. ≡ Tx = x ∗ g, g ∈ lq(Z), by

continuous Minkowsky inequality.



Approximations of the identity

I Non discrete groups G = Td or G = Rd, the delta mass is not
a function but a measure, so it does not belong to any Lp

space.

I However there is a good replacement for it. Note that δ is the
formal unit for convolution, f ∗ δ = f .

I In what follows G = Td or G = Rd with additive notation and
dx Lebesgue measure.

I An approximate identity (or approximate kernel) is a family
(kε) of functions in L1(G ) satisfying

1.
∫
G
kεdx = 1.

2.
∫
G
|kε|dx ≤ C , for some constant C > 0.

3. For any δ > 0,
∫
|x|>δ |kε(x)|dx → 0 as ε→ 0.



Examples

I If k ∈ L1(G ),
∫
g k = 1, set kε(x) = ε−dk(x/ε).

I The first two conditions are obvious, while for the third one∫
|x |>δ

|kε(x)|dx =

∫
|x |> δ

ε

|k(x)|dx → 0.

(rests of an absolutely convergent integral).

I The simplest example is to take as k the normalized
characteristic function of the unit ball, k(x) = 1

|B| if x ∈ B
and zero otherwise.

I Then f ∗ kε(x) is simply the mean of f in x + Bε, the ball
centered at x of radious ε.



The Poisson and Gauss kernels

I The Poisson family in Rd that corresponds to

k(x) = cd
1

(|x |2 + 1)
d+1

2

, cd =
Γ(d+1

2 )

π
d+1

2

,

I The Gaussian kernel is given by

k(x) =
1

(
√

2π)d
e−

1
2
|x |2 .

I On the torus Td we will see later that natural examples appear
when dealing with convergence of the Fourier series, namely
the Fejer kernel. We may consider as well approximations of
the identity indexed by n ∈ N with obvious modifications.



They do approximate δ0

I If (kε) is an approximation of the identity and
f ∈ Lp(G ), 1 ≤ p < +∞, then f ∗ kε → f in Lp(G ) as ε→ 0.

I If f ∈ C0(G ), then f ∗ kε → f uniformly on G .

I If f ∈ L1(G ) and f is continuous at a point x0, then
(f ∗ kε)(xo)→ f (x0).

We can write

f − f ∗ kε = f −
∫
G
τx(f )kε(x)dµ(x) =

∫
G

(f − τx(f ))kε(x)dµ(x),

and hence, by the continuous Minkowski inequality

‖f − f ∗ kε‖p ≤
∫
G
‖f − τx(f ))‖p|kε(x)|dµ(x).



Continuation of proof. Consequences

I To estimate it we break the above in two parts, corresponding
to small x , say ‖x‖ ≤ δ, and ‖x‖ > δ. The first one is
estimated by

C sup
‖x‖≤δ

‖f − τx(f )‖p,

and hence can be made arbitrarily small if δ is small enough,
uniformly in ε, due to the continuity of translations in Lp(G ),
while the second is estimated by

2‖f ‖p
∫
|x |>δ

|kε(x)|dx .

I A bounded operator T from Lp(Rd) to Lq(Rd),
1 ≤ p, q < +∞ is a t.i.o. if and only if commutes with
convolution with L1 functions, that is,

T (f ∗ g) = f ∗ Tg , f ∈ L1(Rd), g ∈ Lp(Rd).



I By Minkowski’s continuous inequality, the right hand side of

f ∗ g =

∫
G

(τxg)f (x)dµ(x),

is convergent in Lp, hence if T commutes with translations,

T (f ∗g) =

∫
G
f (x)T (τxg) dµ(x) =

∫
G
f (x)τxTg dµ(x) = f ∗Tg .

I If T commutes with convolutions, we consider an
approximation of the identity kε so that

T (τxg) = lim
ε
T ((τxg) ∗ kε) = lim

ε
T (g ∗ (τxkε))

= lim
ε

(Tg) ∗ (τxkε) = τx(lim
ε

(Tg) ∗ kε) = τx(Tg).



Density of test functions

I The space of infinitely differentiable functions C∞(Td) is
dense in all Lp(Td) spaces, 1 ≤ p <∞. The space C∞c (Rd)
of infinitely differentiable functions with compact support is
dense in all Lp(Rd) spaces, 1 ≤ p < +∞.

I Proof: the space of continuous functions with compact
support is dense. If f is in this space, and we take an
approximation of the identity kε(x) = ε−dk(x/ε), with k a
C∞ function with compact support, then kε ∗ f ∈ C∞c (Rd)
and tends to f in Lp.

I The same proof shows that for an open set U ⊂ Rd the space
C∞c (U) is dense in all Lp(U) spaces as well.



Path to distributions

I If f ∈ L1
loc(U) and ∫

U
f (x)ϕ(x) dx = 0

for all ϕ ∈ C∞c (U), then f = 0 a.e.

I The same is true if ∫
B
f (x)dx = 0

for all balls B ⊂ U.

I Remark: for most of the approximations of the identity of
type above, for f ∈ L1

loc(U), not only the means f ∗ kε → f in
L1
loc(U), but in fact we will see later that f ∗ kε → f pointwise

a.e. (Lebesgue theorem)



T.i.p’s from L1(G )

I The general form of a t.i.o. T : L1(Rd)→ L1(Rd) is
convolution with a finite complex Borel measure dµ.

I Proof: Given such T , the idea is of course that dµ should be
T (δ0), we replace δ0 by an approximation of the identity kε.
Since they are bounded in L1, T (kε) will be also bounded in
L1. By the Banach-Alaoglu theorem there exists a finite
complex valued measure dµ and a sequence εn → 0 such that

lim
n

∫
g(y)T (kεn)(y)dy =

∫
g(y)dµ(y), g ∈ Cc .

Now, since g = limn g ∗ kεn and T is t.i.o. one has
Tg = limn g ∗ T (kεn). But

(g∗Tkεn)(x) =

∫
g(x−y)T (kεn)(y)dy =

∫
g(x−y)dµ(y) = (g∗µ)(x).

I Hence T is convolution with µ on all functions with compact
support and hence on all functions.



Second lecture: Fourier analysis in the torus

I The Fourier series of a periodic function.

I The Dirichlet, Fejer and Poisson means.

I Convergence in norm.

I Pointwise convergence.

I The rotation invariant operators in L1(T ) and L2(T ).

I The Fourier transform in Td



The Fourier series of a periodic function.
I Assume that the period is 1, we deal with functions on T,

parametrized by e2πit .

(f ∗ g)(t) =

∫
|t|≤ 1

2

f (t − x)g(x)dx .

I Elementary blocks: en(x) = e i2πnt , n ∈ Z. The expression∑
n〈f , en〉en is usually written∑

n

cn(f )e2πint ,

with cn(f ) =
∫ 1

0 f (t)e−2πint dt, f ∈ L1(T).
I cn(f ) is called the n-th Fourier coefficient of f and the formal

series
S(f ) =

∑
n∈Z

cn(f )e2πinx ,

is called the Fourier series of f . Question: in what sense
f = S(f )?



The Fourier basis
I The en constitute an orthonormal basis of L2(T): pairwise

orthogonal,

〈en, em〉 =

∫ 1

0
e2πi(n−m)tdt = 0

and their finite linear combinations are dense (Weierstrass
theorem).

I This can be restated by saying that the map f → (cn(f ))n is a
bijection from L2(T) to l2(Z) satisfying

I f (x) =
∑

n cn(f )e2πinx in L2(T)
I f (x) =

∑
n cne

2πinx , (cn) ∈ l2(Z), general expression.
I Plancherel’s identity∑

n

|cn(f )|2 =

∫ 1

0
|f (t)|2 dt,

I polarized version Parseval’s relation∑
n

cn(f )cn(g) =

∫ 1

0
f (t)g(t) dt.



Properties of Fourier coefficients

I cn(f ∗ g) = cn(f )cn(g).

I cn(τx f ) = e−2πinx)cn(f ).

I If f is of class C k and 2π- periodic, then
cn(f (k)) = (2πin)kcn(f ) and cn(f ) = o(|n|−k).

I (The Riemann-Lebesgue lemma). |cn(f )| ≤ ‖f ‖1 and
cn(f )→ 0 as |n| → ∞.

I Proof: from the second it follows that

cn(f − τx f ) = (1− e−2πinxcn(f )

Choose x = 1
2n : 2|cn(f )| ≤ ‖f − τ2/n‖1, so the result is a

consequence of the continuity of translations.

I Nothing more general can be said regarding the speed of
convergence.



The Dirichlet kernel

I To study S(f ) it is natural to consider the partial sums

SN(f )(x) =
N∑
−N

cn(f )e2πinx =

=

∫ 1

0
f (t)

N∑
−N

e2πin(x−t) dx = (f ∗ DN)(x),

DN(x) =
N∑

n=−N
e2πint =

sin(2N + 1)πx

sinπx
.

I (DN) is the Dirichlet kernel. It is NOT an approximation of
the identity because ‖DN‖ behaves like logN.

I However, we know SN f → f in L2 if f ∈ L2.



The Fejer kernel

I σN(f ) = 1
N+1 (S0(f ) + · · ·+ SN(f )) = (f ∗ σN),

σN(x) =
1

N + 1
(D0(x) + · · ·+ DN(x)) =

N∑
j=−N

(
1− |j |

N + 1

)
e2πinx =

=
1

N + 1

(
sin(N + 1)πx

sinπx

)2

.

I σN is positive, has integral one and if |x | > δ then
|σN(x)| ≤ cδ

1
N , so it is an approximation of the identity.

I If f ∈ Lp(T),p < +∞. then σN(f )→ f in Lp(T).

I If f is continuous at t0, then σN(f )(t0)→ f (t0).

I If f is continuous then σN(f )→ f uniformly (Weierstrass
thm)

I Uniqueness theorem: If cn(f ) = 0 for all n then f = 0.

I If f is continuous at x0 and S(f )(x0) converges, sum must be
f (t0)



The Poisson kernel

I Dirichlet problem in the unit disc D, that is, given f ∈ C (T)
to find u s.t. ∆u = 0, u ∈ C (D), u = f onT .

I We solve this problem exploiting its invariance by rotations.

I For each 0 < r < 1 we pose ur (t) = u(re2πit); the operator
f → ur is rotation invariant (because ∆ is) hence it must be
given by a circular convolution with some Pr , ur = f ∗ Pr ,

I and must diagonalize in the Fourier basis, i.e.
cn(ur ) = mncn(f ),mn = cn(Pr ).

I the solution of the Dirichlet problem for f (t) = e2πinx is
u(re2πit) = zn if n is positive and zn if n is negative,
z = re2πit , so mn = r |n|.

I Since

Pr (x) =
∑
n

r |n|e2πinx =
1− r2

|1− re2πix |2
=

1− r2

1 + r2 − 2r cos(2πx)
,

we guess that the solution should be



I u(re2πit) = (f ∗ Pr )(t) =
∫ 1

0 f (x) 1−r2

1+r2−2r cos(2π(t−x))
dx .

I The kernel Pr is called the Poisson kernel. It is positive with
integral one; if |t| > δ, then |1− re2πit | ≥ c − δ, whence

Pr (t) ≤ cδ(1− r2).

-(Pr ) is an approximation of the identity as r → 1.

I For f ∈ L1(T), the function u defined on the unit disc by ( )
above is an harmonic function in D satisfying ur → f in
L1(T). In case f ∈ C (T ), u is continuous in the closed disc
with boundary values equal to f and is thus the solution of
Dirichlet’s problem.



Pointwise convergence

I Pointwise convergence of the Fourier series of f : when
f (x) =

∑
n cn(f )e2πinx a.e. or at a given point?

I Using sumability ”a la Fejer” o ” a la Poisson” the situation is
quite good. Indeed, as both the Fejer and Poisson kernels are
approximate identities one can prove that for f ∈ L1(T) both
FN(f )(t) and ur (t) have limit f (t) a.e. We will see this later
as an application of the maximal function of
Hardy-Littlewood.

I The a.e. pointwise convergence of SN(f )(x) to f (x) is a
extremely hard question.

I Kolmogorov constructed an f ∈ L1(T) such that S(f )
diverges a.e.



I The poinwise convergence of S(f ) for f ∈ Lp(T) was a very
hard open problem in Fourier analysis till Carleson proved that
S(f )(t) converges to f (t) for a.e. t for f ∈ L2(T ) in a
celebrated breakthrough, and this was generalized to
Lp(T), 1 < p < +∞ by Hunt.

I Convergence of S(f ) at a point x0 where f is continuous is
not guaranteed. But if the modulus of continuity of f at x0

satisfies a Dini type condition then S(f )(x0) converges to
f (x0).

I In particular this is the case if f satisfies a Lipschitz condition
or if it is differentiable at x0.



Convergence in norm

I Regarding convergence in Lp(T), 1 ≤ p < +∞, we have seen
that σN(f ) and ur have limit f in Lp(T) while we trivially
know that SN(f )→ f in L2(T) if f ∈ L2(T).

I We will see later, as an application of the CZ theory, that this
holds true for 1 < p < +∞.

I Uniform convergence of S(f ) when f is continuous.

I du Bois-Reymond constructed a continuous f such that S(f )
diverges at some point (in fact examples can be constructed
where S(f ) diverges on a dense set).

I Sufficient conditions can be given. For instance, if f is
continuous and of bounded variation then S(f ) converges to f
uniformly.



Rotation invariant operators in Lp(T)
For a bounded operator T : Lp(T)→ Lp(T), 1 ≤ p , the following
are equivalent:

I It commutes with rotations.

I It commutes with convolution with L1(T) functions.

I It diagonalizes in the Fourier basis: cn(Tf ) = mncn(f ), n ∈ Z.

Moreover, the general form of T is given

I In case p = 1, by Tf = f ∗ µ, with a finite complex Borel
measure µ, in which case mn = cn(µ).

I In case p = 2, by cn(Tf ) = mncn(f ) with mn an arbitrary
bounded sequence, in which case the norm of T as an
operator in L2(T) equals supn |mn|.

I In both cases T is convolution with g =
∑

n mme
2πinx .

I p = 1: g is a measure, but not able to describe the mn.

I p = 2: not able to describe g , describe exactly its coefficients.

I Note that Young inequalities would not prove the result for
p = 2 because g /∈ L1(T).



The Fourier transform in Td

I If f is a-periodic in R the Fourier series becomes

f (x) =
∑
n

cn(f )e2πi n
a
x , cn(f ) =

1

a

∫ a

0
f (x)e−2πi n

a
x dx .

Frequencies located at the integer multiples of 1
a .

I The Fourier series of a function on Td is

Sf (t) =
∑
k∈Zd

ck(f )e2πik·t , k · t = k1t1 + · · ·+ kd td ,

with

ck(f ) =

∫ 1

0
. . .

∫ 1

0
f (t)e−2πik·t dt1 . . . dtd .

g non trivial periodic function in Rd,d > 1; its group of
periods is a lattice Λ = A(Zd),A ∈ GL(d) with fundamental
region I = A([0, 1]n).



If f (t) = g(At), f is Zd periodic and has a Fourier series expansion
Rewriting it in terms of g one obtains, with

Λ∗ = (A∗)−1(Zd)

being the dual lattice

g(t) =
∑
ρ∈Λ∗

cρ(g)e2πiρ·t ,

where

cρ =
1

|detA|

∫
I
g(t)e−2πiρ·tdt.

The frequencies are then located at Λ∗.



I Much of the analysis done in the previous section goes over to
N > 1, provided that appropriate definitions are given, namely
that of SN f (t).

I If rectangulars sums are used, that is,

S r
N(f )(t) =

∑
|ki |≤N

ck(f )e2πik·t ,

and correspondingly for σN(f ), then the results for SN(f ) and
σN(f ) hold as well.

I However, if spherical sums are considered

Se
N(f )(t) =

∑
|k|≤N

ck(f )e2πik·t , |k|2 = k2
1 + · · ·+ k2

d ,

then the situation becomes more complicated.



Third lecture: Fourier analysis in Rd

I The Fourier transform in L1(Rd), uniqueness theorem, the
inversion formula

I The Fourier transform in L2(Rd).

I Translation invariant operators in L1(Rd) and L2(Rd).



The Fourier transform in L1(Rd)

f̂ (ξ) = 〈f , eξ〉 =
∫
Rd f (x)e−2πiξ·x dx , ξ ∈ Rd, f ∈ L1(Rd)

µ̂(ξ) =
∫
Rd e

−2πiξ·x dx ., µmeasure.

I τ̂x f (ξ) = e−2πiξ·x f̂ (ξ)

I If g(x) = e2πiη·x f (x), then ĝ(ξ) = τη(ξ).

I D̂λf (ξ) = λ−d f̂ ( ξλ).

I D̂αf (ξ) = (2πiξ)αf̂ (ξ).

I (Dαf̂ )(ξ) = ((−2πix)αf (x))̂(ξ).

I f̂ ∗ g = f̂ ĝ .

I If A is an invertible matrix and fA(x) = f (Ax), then

f̂A(ξ) =
1

|detA|
f̂ (A−1)∗ξ).

I (The Riemann-Lebesgue lemma). f̂ is a continuous function
vanishing at ∞.



I Fourier transform commutes with composition with
orthogonal matrices A.

I f (x) is radial =⇒ f̂ radial.

I f , g radial =⇒ f ∗ g radial.

I P(D) =
∑

α∈Nd cαD
α is a differential operator with constant

coefficients (and so translation invariant)

P̂(D)f (ξ) = P(2πiξ)f̂ (ξ), (P(D)f̂ )(ξ) = (P(−2πix)f )̂(ξ),

I A translation- invariant operator T has a multiplier, for
instance that of P(D) is m(ξ) = P(2πiξ).



I We say that T is invariant by rigid motions if moreover
T (fA) = (Tf )A for all orthogonal matrices. Then, its
multiplier must be radial. For instance, the Laplace operator

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

,

is radial and has multiplier m(ξ) = −4π2|ξ|2.

I If a differential operator P(D) is invariant by rigid motions,
then its multiplier is a radial polynomial, that is a polynomial
in |ξ|2, and hence we have

I A differential operator P(D) is invariant by rigid motions if
and only if it is a polynomial in ∆.



The Dirichlet, Fejer and Poisson kernels in Rd

f =
∫
Rd〈f , eξ〉eξdξ, f (x) =

∫
Rd f̂ (ξ)e2πix ·ξ dξ,

I Dirichlet means with cubes or balls. Quite different behavior.

(Sc
R f )(x) =

∫
|ξi |≤R

f̂ (ξ)e2πix ·ξ dξ

(Sb
R f )(x) =

∫
|ξ|≤R

f̂ (ξ)e2πix ·ξ dξ

(Sc
R f )(x) = (f ∗ DR)(x),DR(x) =

d∏
j=1

sin 2πRxj
πxj

.

I DR is strictly speaking not integrable ( a typical example of a
conditionally convergent integral) and is NOT an
approximation of the identity.



But their means are an approximation of the identity

(σR f )(x) =
1

R

∫ R

0
(Sc

r f )(x) dr = (f ∗ FR)(x),

FR(x) = RdF (Rx),

F (x) =
d∏

i=1

1− cos 2πxj
2π2x2

j

.

F has integral one and hence FR is an approximation of the
identity.



Poisson and Gauss means

I The general scheme: continuous integrable function
Φ,Φ(0) = 1

fΦ(ε, x) =

∫
Rd

f̂ (ξ)e2πix ·ξΦ(εξ)dξ.

I Fubini’s theorem implies that∫
Rd

f̂ (ξ)g(ξ)dξ =

∫
Rd

f (y)ĝ(y)dy , f , g ∈ L1(Rd).

I The Fourier transform of Φ(εξ) is (ε)−d Φ̂( yε ) = Φ̂ε(y),

whence the Fourier transform of e2πix ·ξΦ(εξ) is Φ̂ε(y − x) and
so

fΦ(ε, x) = (f ∗ Φ̂ε)(x).

I Choose Φ so that
∫

Φ̂ = 1→ approximation of the identity.



Heath diffusion
I Choose Φ(x) = e−π|x |

2
, Φ̂(ξ) = e−π|ξ|

2
, Φ̂ = Φ.

fΦ(ε, x) =
∫
Rd f̂ (ξ)e−πε

2|ξ|2e2πix ·ξ dξ = (f ∗ Φε)(x),

I But
∫
Rd Φ(x)dx = Φ̂(0) = Φ(0) = 1, therefore Φε is an

approximation of the identity so fφ(ε, x)→ f (x) in L1(Rd).

I Unicity theorem: if f̂ = 0, then f = 0. It also implies
I Inversion theorem: If f ∈ L1(Rd) and f ∈ L1(Rd) then

f (x) =

∫
Rd

f̂ (ξ)e2πix ·ξ dξ, a.e.x

and in particular f is a.e. equal to a continuous function
vanishing at infinity.

I If we put F for the Fourier transform, this means
F−1f (x) = F f (−x), that we call the Fourier cotransform.

I Connection with heath diffusion: u(t, x) = fφ(
√
t, x) is the

solution of the heath equation

∂u

∂t
=

1

4
∆xu(x , t), u(0, x) = f (x).



Harmonic extension

I More generally, choose any continuous function Φ ∈ L1 such
that Φ(0) = 1 and Φ̂ is integrable. Then by the above the
integral of Φ̂ equals Φ(0) = 1 and we can repeat the same
argument.

I Another choice is Φ(x) = e−2π|x | (Abel means). In this case

Φ̂(ξ) = cd
1

(1 + |ξ|2)(d+1)/2
, cd =

Γ[d+1
2 ]

π(d+1)/2
.

I In this case u(t, x) = fφ(t, x) satisfies

∂2u

∂t2
+ ∆xu(t, x) = 0, u(0, x) = f (x),

that is, is the solution of the Dirichlet problem in the
half-space.



The Fourier transform in L2(Rd)
I Schwarz class S(Rd) of C∞ functions f such that

lim
|x |→+∞

|xβDαf (x)| = 0, α, β ∈ Nd.

Dense in all Lp spaces, 1 ≤ p < +∞, contains C∞c (Rd).
I The Fourier transform is a bijection from S(Rd) to itself that

transforms convolutions into multiplication and conversely.
I Applying

∫
f ĝ =

∫
f̂ g to f ∈ S, we find

‖f ‖2 = ‖f̂ ‖2, f ∈ S
I Thus we have that the Fourier transform is an isometry

between S and itself, so extends to an isometry of the whole
of L2,

f̂ (ξ) = lim
R→+∞

∫
|x |≤R

f (x)e−2πiξ·x dx ,

exists in L2(Rd), defines f̂ , and

‖f̂ ‖2 = ‖f ‖2,Plancherel
′sidentity



A miracle?

f =

∫
Rd
〈f , eξ〉eξdξ.

I The eξ /∈ L2(Rd) yet they behave as if they were an
orthonormal basis of L2(Rd). True bases: the wavelet bases.

I Kernel K (x , ξ) = e2πix ·ξ of modulus one; ensures L1(Rd) to
L∞(Rd), but its boundedness in L2 depends on much more
than size, depends on cancelations.

∫
Rd
|f̂ (ξ)|2 dξ =

∫
Rd

∫
Rd

∫
Rd

f (x)f (y)e2πiξ(y−x)dxdydξ.

I This being equal to
∫
Rd |f (x)|2 dx means formally that∫
Rd

e2πiξx dξ = δ0(x).

I The above says that superposition of all frequencies is zero
outside zero.



Translation invariant operators in Lp(Rd)
I For a bounded operator T : Lp(Rd)→ Lp(Rd),p = 1, 2, the

following are equivalent:
1. It commutes with translations.
2. It commutes with convolution with L1(Rd) functions.

3. It diagonalizes in the Fourier basis: T̂f (ξ) = m(ξ)f̂ (ξ).
I Moreover, the general form of T is given by

1. in case p = 1, Tf = f ∗ µ, with a finite complex Borel measure
µ, in which case m(ξ) = µ̂(ξ).

2. in case p = 2, T̂f (ξ) = m(ξ)f̂ (ξ) with m an arbitrary bounded
function.

I The t.i.p on S(Rd), by Fourier transform correspond to

multiplication operators acting on S(Rd), T̂f = mf̂ , with m a
C∞(Rd) of slow growth meaning that for every α ∈ Nd there
exists k ∈ N such that |Dalpham(x) = O(|x |k).

I Do not know exactly m when p = 1, we do not know exactly
what is ∫

Rd
m(ξ)e2πix ·ξdξ,m ∈ L∞(Rd).



Translation invariant subspaces of L2(Rd)

I The last result serves to describe all closed translations
invariant subspaces E of L2(Rd).

I Associate to E the projection operator P onto E , that is,
Pf ∈ E and f − Pf is orthogonal to E , P2 = P.

I If E is invariant by translations so is P, hence it has a
bounded multiplier m ∈  L∞(Rd).

I Now, P2 = P translates to m2 = m, whence m = 0 or m = 1.

I Let A be the set where m = 0. A given f ∈ E if and only if
Pf = f , that is mf̂ = f̂ , whence it follows that
ḟ ∈ E if and only if f̂ vanishes a.e. on A.

I This is the general form of a closed translation invariant
subspace in L2(Rd). In particular, the translates of a a given
function f ∈ L2(Rd) span the whole of L2(Rd) if and only if
f̂ 6= 0 a.e. (Beurling’s theorem)



Fourth lecture: Distributions in Harmonic Analysis

I The notion of distribution. Operations with distributions.

I Convergence of distributions

I Distributions with compact support and tempered
distributions.

I Fourier transform of tempered distributions.

I Convolution of distributions

I Translation invariant operators in test spaces and in spaces of
distributions.

I Fundamental solutions of linear constant coefficient PDE’s.

I Poisson’s summation formula. An unified language



What is a distribution in an open set U ⊂ Rd ?
I Basic idea is to consider that functions f are not given by

their values at points but by their action on other functions by
integration.

I D(U) dense in all Lp(U) spaces. Hence, if f , g ∈ L1
loc(U)

∫
U
f (x)ϕ(x)dx =

∫
U
g(x)ϕ(x)dx ,∀ϕ ∈ D(U) =⇒ f = g a.e.

I This means that f is completely known as soon as one knows

uf (ϕ) =

∫
U
f (x)ϕ(x) dx ,

I A distribution on U is a continuous linear map u : D(U)→ C.
I Continuity: if ϕn ∈ tends to zero (meaning that they have

their supports in a fixed compact set K of U and Dα(ϕn)→ 0
uniformly in K for all α), then u(ϕn)→ 0.

I It is customary to write u(ϕ) = 〈u, ϕ〉. The space of
distributions on U is denoted D′(U)



Examples

I Functions f ∈ L1
loc are distributions.

I A locally finite measure dν on U is also a distribution.

I The Dirac measure at a will be denoted δa.

I If Λ is a discrete set in U (hence countable), the comb∑
a∈Λ

δa,

is also a distribution.

I Example of a distribution that is not a function nor a measure.

〈p.v .1
x
, ϕ〉 = lim

ε→0

∫
|x |>ε

ϕ(x)

x
dx .

Note that the limit exists because it equals

lim
ε→0

∫ ∞
ε

ϕ(x)− ϕ(−x)

x
dx .



Operations with distributions

I When defining an operation on distributions we look for
consistency

I Definition of τxu should be so that τxuf = uτx f for f ∈ L1
loc .∫

Rd
τx f (y)ϕ(y)dy =

∫
Rd

f (y − x)ϕ(y)dy =

=

∫
Rd

f (z)ϕ(z + x)dz =

∫
Rd

f (z)τ−xϕ(z) dz ,

I Must define
〈τxu, ϕ〉 = 〈u, τ−xϕ〉.

I u ∈ D′(Rd) a- periodic if τau = u. All a-periodic functions
are, and also the Dirac comb ∆a =

∑
n∈Z δna.

I Product of u ∈ D′(U) with g ∈ C∞(U) : 〈gu, ϕ〉 = 〈u, gϕ〉.
gδa = g(a)δa, g∆a =

∑
n g(na)δna, x v .p.

1
x = 1.



Derivatives of distributions

I Derivative Dαu : 〈Dαu, ϕ〉 = (−1)|α|〈u,Dαϕ〉.
In R,

∫
f ′ϕ = −

∫
f (ϕ)′ holds for all locally absolutely

continuous functions ( undefinite integrals of integrable
functions), so that (uf )′ = uf ′ for those.

I Unit step of Heaviside function H, 1 for positive x and zero
for negative x . Then H ′ = δ0 because:

〈H ′, ϕ〉 = −〈H, ϕ′〉 = −
∫ ∞

0
ϕ′(x)dx = ϕ(0),

I A function f which is continuously differentiable in the closed
intervals determined by some points a1, . . . , aN where it has
some jump discontinuities with jumps si . Then
(uf )′ = uf ′ +

∑
i siδai .

I The a- periodic function which in each interval [na, (n + 1)a]
is linear from 0 to 1 has derivative 1

a −∆a.



I Derivative of log |x | is p.v . 1
x .

−
∫
R

log |x |ϕ′(x) dx = − lim
ε

(∫ −ε
−∞

+

∫ +∞

ε

)
log |x |ϕ′(x) dx

lim
ε

(ϕ(ε)− ϕ(−ε)) log ε+ lim
ε

∫
|x |>ε

ϕ(x)

x
dx ,

I One can prove, in R, that if u′ = 0 then u is constant and
that every distribution has a primitive.



Convergence of distributions

I un → u means simply 〈un, ϕ〉 → 0 for all ϕ.

I With this definition all operations are continuous, in particular
the differentiation.

I In particular we can consider series of distributions. We will
be interested in trigonometric series∑

n∈Z
cne

2πi n
a
x .

I Partial sums act as

〈
N∑

n=−N
cne

2πi n
a
x , ϕ〉 =

N∑
n=−N

cnϕ̂(−n

a
).

ϕ̂ ∈ S(Rd), ϕ̂(−n
a ) = O(|n|−k) for all k.

I If cn = O(|n|k) for some k then the series indeed defines a
distribution. This is not necessarily the Fourier series of a
periodic function.



Distributions with compact support

I A distribution with compact support is a continuous linear
map T : C∞(Rd)→ C

I Continuity means here that if ϕn ∈ C∞(Rd) tend to zero
(meaning that Dαϕn(x)→ 0 uniformly on compacts) then
〈T , ϕn〉 → 0.

I Again, we may think that T has compact support if it is
capable to act against all C∞(Rd) functions. The space of
distributions with compact support is denoted E ′(Rd)



I Consider the a- periodic function f equal to x
a in [0, a]. By

direct computation

f (x) =
1

2
+

i

2π

∑
n 6=0

1

n
e2πi n

a
x .

I Convergent in L2(T) =⇒ convergent as distributions,

f ′(x) = −1

a

∑
n 6=0

e2πi n
a
x .

I Shaw before that f ′ = 1
a −∆a, so

∆a =
∑
n∈Z

δna =
1

a

∑
n∈Z

e2πi n
a
x .



Tempered distributions

I Would like to define the Fourier transform of a distribution.

I For f ∈ L1(Rd),
∫
Rd f̂(x)ϕ(x)dx =

∫
Rd f(x)ϕ̂(x)dx, so should

define 〈û, ϕ〉 = 〈u, ϕ̂〉.
I Problem is that ϕ̂ is no longer in D(Rd). Must restrict to a

particular class of distributions. The Schwarz space is
invariant by the Fourier transform, so the above would work if
S(Rd) were used instead of D(Rd)

I A tempered distribution is a continuous linear map
u : S(Rd)→ C

I Continuity means: ϕn → 0 in S(Rd) (meaning that
supx |x ||β||Dαϕn(x)| → 0 as n→ +∞ for all α, β ∈ Nd) then
〈u, ϕn〉 → 0.

I The restriction of u to D(Rd) is then a distribution (and in
fact u is completely determined by this restriction since D(Rd)
is dense in S(Rd)).



Examples

I Tempered distributions as those capable to act on S(Rd).
Denote by S ′(Rd) the space of tempered distributions.

I All distributions with compact support are in S ′(Rd).

I Among the f ∈ L1
loc , those with slow growth, meaning that

|f (x)| = O(|x |k) for some integer k are in S ′(Rd).

I All Lp- functions, 1 ≤ p ≤ +∞ are as well.

I All L1
loc periodic functions are in S ′(Rd).

I Easy to see that gu ∈ S ′(Rd) if u ∈ S ′(Rd) and g ∈ C∞(Rd)
and its derivatives have slow growth, that is, for all
α ∈ Nd, |Dαg(x)| = O(|x|k) for some k because in this case
gϕ ∈ S(Rd) for all ϕ ∈ S(Rd).

I We denote by B(Rd) the class of these g



Fourier transform of tempered distributions

I The Fourier transform T̂ of a tempered distribution is thus
defined by 〈û, ϕ〉 = 〈u, ϕ̂〉.

I Since the Fourier transform in S(Rd) is an isomorphism the
same happens with S ′(Rd).

I Properties of the Fourier transform regarding translations vs
multiplication by exponentials and derivatives vs
multiplication by polynomials go over to S ′(Rd).



Examples

I δ̂a(ξ) = −e2πiaξ, ˆe2πiax = δa. In particular, δ̂0 = 1, 1̂ = δ0.

I In particular ∆̂a =
∑

n
ˆδna =

∑
n e

2πinaξ = 1
a∆ 1

a
.

I In particular, ∆1 is its own Fourier transform.

I Let us compute the Fourier transform of p.v . 1
x . Its action on

ϕ is

lim
ε

∫
ε<|xi |<1/ε

ϕ̂(ξ)

ξ
dξ =

lim
ε

∫
R
ϕ(x)

(∫
ε<|xi |<1/ε

e−2πixξ dξ

ξ

)
dx =

= −i lim
ε

∫
R
ϕ(x)

(∫
ε<|xi |<1/ε

sin 2πxξ
dξ

ξ

)
dx =

Last inner integral is known to be uniformly bounded in ε, x
and has limit πsign(x), so the Fourier transform of p.v . 1

x is
−iπsign(ξ).



The Fourier transform of a distribution with compact
support

I If f ∈ D(Rd), then f̂ ∈ S(Rd). In fact something much more
precise can be said.

I Note that f̂ (ξ) makes sense for z ∈ Cd,

f̂ (z) =

∫
Rd

f (x)e−2πiz·x dx .

and it is an entire function in Cd (in particular it cannot have
compact support in Rd).

I u ∈ E ′(Rd), as it is capable to act on C∞- functions not
necessarily with compact support, may consider the entire
function

h(z) = 〈ux , e−2πiz·x〉,

which is formally û(x) for x ∈ Rd.



I One can check that the two definitions of û, u ∈ E ′(Rd) agree,
that is,

〈u, ϕ̂〉 =

∫
Rd

h(x)ϕ(x).

I This means that for u ∈ E ′(Rd), û is in fact the restriction to
Rd of an entire function. Moreover, it is easy to see that
û ∈ B(Rd).

I Two Paley-Wiener theorems characterize exactly the class of
entire functions that are Fourier transforms of D(Rd) and
E ′(Rd).



Convolution of a function with a distribution

I Want to define convolutions, g ∗ f (x) =
∫
g(x − y)f (y)dy .

I Want to replace f by a general distribution u we should define

(g ∗ u)(x) = 〈uy , g(x − y)〉,

I This makes sense in three cases, the resulting function being

D(Rd) ∗ D′(Rd) ⊂ C∞(Rd),S(Rd) ∗ S ′(Rd) ⊂ C∞(Rd)
C∞(Rd) ∗ E ′(Rd) ⊂ C∞(Rd),D(Rd) ∗ E ′(Rd) ⊂ D(Rd)

I In fact in the second case, ϕ ∗ u ∈ B(Rd).

I All rules that make sense hold:

1. Convolution is continuous in both variables.
2. Dα(g ∗ u) = (Dαg) ∗ u = g ∗ Dαu
3. ϕ̂ ∗ u = ϕ̂û, ϕ ∈ S(Rd),u ∈ S ′(Rd)
4. ϕ̂u = ϕ̂ ∗ û, ϕ ∈ S(Rd),u ∈ S ′(Rd)



Convolution of two distributions

I From

〈g ∗ f , ϕ〉 =

∫ ∫
g(x − y)f (y)ϕ(x)dx dy =

=

∫
(

∫
g(z)ϕ(y + z)dz)f (y)dy =

∫
(

∫
f (y)ϕ(y + z)dy)g(z)dz

I Should define 〈u ∗ v , ϕ〉 = 〈uz , 〈vy , ϕ(y + z)〉〉, or
〈u ∗ v , ϕ〉 = 〈vy , 〈uz , ϕ(y + z)〉〉.

I To make sense, one of the distributions must have compact
support. Fortunately the two definitions agree and defines
u ∗ v ∈ D′(Rd).

I δ ∗ u = u for all distributions u,

I Dα(u ∗ v) = (Dαu) ∗ v = u ∗ Dαv .

I E ′(Rd) ∗ S ′(Rd) ⊂ S ′(Rd) and û ∗ v = ûv̂ .



Translation invariant operators in test spaces

I With the language of distributions and tempered distributions
one can state a number of representation theorems for
continuous operators in spaces of distributions invariant by
translations.

I Assume that T : D(Rd)→ C(Rd) is t.i.o. Then ϕ→ T (ϕ)(0)
is a distribution, and using translation invariance we find that
T (ϕ) = ϕ ∗ u for u ∈ D′(Rd).

I It will take values in D(Rd) iff u ∈ E ′(Rd), Thus, convolution
by u ∈ E ′(Rd) is the general form of a continuous t.i.o. from
D(Rd) to itself.

I Convolution by u ∈ E ′(Rd) is the general form of a t.i.o. from
C∞(Rd) to itself.

I Convolution by u ∈ S ′(Rd) is the general form of a t.i.o. from
S(Rd) to C∞(Rd). It will take S(Rd) to itself iff û ∈ B(Rd).



Translation invariant operators in spaces of distributions

I A basic fact of the spaces C∞(Rd),D(Rd) and S(Rd) is that
they are reflexive. This means that they equal their second
dual.

I In other words, if ω : D′(Rd) :→ C is a continuous linear
functional, then there exists ϕ ∈ D(Rd) such that
ω(u) = 〈u, ϕ〉.

I Analogously, every continuous linear functional on E ′(Rd) is
given by testing on some ϕ ∈ S(Rd) and every continuous
linear functional on S ′(Rd) is given by testing on some
ϕ ∈ S(Rd).

I Using this it is easy to prove that the general form of a
continuous t.i.o. T : D′(Rd)→ D′(Rd) or
T : E ′(Rd)→ E ′(Rd) is convolution by some uE ′(Rd).

I Convolution by u ∈ S ′(Rd) with û ∈ B(Rd) is the general
form of a continuous t.i.o. from S ′(Rd) to S ′(Rd).



Hormander’s theorem

I If X ,Y are some spaces of tempered distributions in which
S(Rd) is dense, like all Lp(Rd) spaces, every continuous t.i.p
T from X to Y is given by convolution with some u ∈ S ′(Rd).

I Indeed it will commute with convolution with L1 functions so
T (ϕ ∗ ψ) = ϕ ∗ T (ψ) = T (ϕ) ∗ ψ, hence

ϕ̂ ∗ T̂ψ = ψ̂T̂ϕ,

hence T̂ψ = mψ̂,m = T̂ϕ
ϕ̂ .

I Choosing ϕ(x) = e−|x |, ϕ̂(ξ) is the Poisson kernel whose
inverse has slow growth. Then m ∈ S ′(Rd)



Fundamental solutions
I If T : D′(Rd) :→ D′(Rd) is t.i.o. we say that E ∈ D′(Rd) is a

fundamental solution if T (E ) = δ0.
I In this case T (E ∗ f ) = T (E ) ∗ f = δ ∗ f = f whenever E ∗ f

makes sense.
I Malgrange-Ehrenpreis theorem: every linear constant

coefficient operator P(D) has a fundamental solution.
I Note that if T is a t.i.o. operator in S ′(Rd), then is

convolution with u ∈ S ′(Rd) with û = m ∈ B(Rd), so
1 = mÊ . If 1

m ∈ S
′(Rd), then the tempered distribution with

Ê = 1
m is the fundamental solution.

I For the laplacian ∆, m(ξ) = −4π2|ξ|2 and E (x) = cd |x |2−d
when d > 2 and E (x) = c2 log |x | when d = 2.

I It then follows that ∆(E ∗ f ) = f in the sense of distributions
for every f ∈ S(Rd).

I Weyl’s lemma: if f ∈ C∞(Rd) and ∆u = f in the sense of
distributions, then u ∈ C∞(Rd) and ∆u = f in the classical
sense.



The Poisson summation formula. An unified language for
the Fourier transform

I 1
a∆̂ 1

a
= ∆a as tempered distributions. This means exactly that

∑
n

ϕ(na) =
1

a

∑
n

ϕ̂(
n

a
), ϕ ∈ S(Rd).

I Replacing ϕ by τ−xϕ we get∑
n

ϕ(x − na) =
1

a

∑
n

ϕ̂(
n

a
)e2πix n

a ,

or interchanging ϕ and ϕ̂,∑
n

ϕ̂(x − na) =
1

a

∑
n

ϕ(na)e−2πix n
a .

I This is known as Poisson’s summation formula and if fact
holds for a much larger class of functions.



A unified language
I Assume that f is a a-periodic function integrable in one

period. It has a formal series
∑

n cn(f )e2πi n
a
x , not converge in

general to f .
I Let us look at f as a tempered distribution and let us

compute its Fourier transform.

〈f̂ , ϕ〉 = 〈f , ϕ̂〉 =

∫
R
f (x)ϕ̂(x) dx =

∫ a

0
f (x)

∑
n

ϕ̂(x − na)dx =

=
1

a

∫ a

0
f (x)

∑
n

ϕ(
n

a
)e−2πix n

a =
∑
n

cn(f )ϕ(
n

a
)

I This means that as a tempered distribution

f̂ =
∑
n

cnδ n
a

the sum being convergent in S ′(Rd).
I By applying the inverse Fourier transform we find that

f =
∑
n

cn(f )e2πi n
a
x in S ′(Rd).


